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Engineering competing nonlinearities
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Weak modulation of a quasi-phase-matching (QPM) grating opens possibilities for engineering both the average
quadratic nonlinearity and the incoherent average cubic nonlinearity induced by QPM. The relative strength
of the average quadratic and effective (intrinsic plus induced) cubic nonlinearity is studied for LiNbO3. We
show how the induced average cubic nonlinearity can be engineered to dominate the intrinsic material cubic
nonlinearity and how doing so will allow the intensity at which the quadratic and cubic nonlinearities balance
and thus compete to be decreased to a few gigawatts per square centimeter.  1999 Optical Society of America

OCIS codes: 070.4340, 050.2770, 060.4080, 190.5530.
Quasi-phase-matching (QPM) by electric-field poling
in ferroelectric materials, such as LiNbO3, is promis-
ing for the engineering of photolithographic masks
and thus of QPM gratings (see Ref. 1 for a review).
Engineering a QPM grating by breaking its periodicity
introduces additional degrees of freedom for light
control. An appropriate design of the longitudinal
grating structure allows for distortion-free tempo-
ral pulse compression,2 soliton shaping,3 broadband
phase matching,4 multiwavelength second-harmonic
generation5 (SHG), and an enhanced cascaded phase
shift.6 Transverse patterning can be used for beam
tailoring,7 broadband second-harmonic generation,8

and soliton steering.9

At lowest order the effect of QPM is to eliminate
the phase mismatch and to average the quadratic [or
x �2�] nonlinearity, resulting in an effective x �2� nonlin-
earity experienced by the slowly varying (on the scale
of the coherence length) averaged field, which is re-
duced by a factor of p�2. At the next order, QPM
induces cubic nonlinear self-phase-modulation (SPM)
and cross-phase-modulation terms in the equations for
the averaged field.10 This induced nonlinearity is a
result of incoherent or non-phase-matched coupling be-
tween modes11 and is of a nature that is fundamentally
different from the intrinsic material Kerr nonlinearity.
Thus its effect can be significantly different from that
of material x �3� nonlinearity on SHG12 and x �2� soli-
tons.11 It has been shown how the induced x �3� nonlin-
earity affects the amplitude and phase modulation of
cw waves13 while still supporting solitons.10 However,
in the materials in which QPM has been demonstrated,
the cubic corrections were small. Here we show how
the average x �2� and x �3� nonlinearities can be engi-
neered by modulation of the QPM grating, e.g., to make
their effects equally strong and important.

We consider a linearly polarized electric field
E � ê�E1�z�exp�ik1z 2 ivt� 1 E2�z�exp�ik2z 2 i2vt� 1
c.c.��2, propagating in a lossless QPM x �2� medium, for
0146-9592/99/201413-03$15.00/0
which the dynamic equations take the form

i≠zE1 1 G�z�x1E�
1 E2 exp�2iDkz� � 0 , (1)

i≠zE2 1 G�z�x2E2
1 exp�iDkz� � 0 , (2)

where ≠z � d�dz, xj � vdeff��njc�, E1�z� is the slowly
varying envelope of the fundamental wave with fre-
quency v and wave vector k1, and E2�z� is the sec-
ond harmonic with wave vector k2. The x �2� coefficient
deff � jx �2�j�2 is given in MKS units, and Dk � 2k1 2 k2
is the wave-vector mismatch. The total intensity I �
h0�n1jE1j

2 1 n2jE2j
2��2 is conserved, where nj � n� jv�

is the refractive index at frequency jv � j � 1, 2� and
h0 �

p
e0�m0 is the specific admittance of vacuum.

The modulation of the x �2� susceptibility is described
by the periodic grating function G�z� with unit am-
plitude, and Fourier series G�z� �

P
n gn exp�inf �z��,

where gn � 0 for n even and gn � 2��ipn� for n odd,
are the coefficients of the unperturbed square grating.
We take f �z� � k0z 1 e2 sin�k2z� and consider weakly
modulated QPM gratings with L2�e2 .. L0, where
L2 � 2p�k2 is the modulation period and L0 � p�k0
is the unperturbed domain length. Such gratings cor-
respond to those of a square grating with a slowly
varying local domain length given by Ld�z� � p�≠zf �
p��k0 1 e2k2 cos�k2z��, as illustrated in Fig. 1 for e2 �
1.2 and L2 � 10L0 � 40 mm.

We consider first-order QPM with slow modulation of
the short domain length, i.e., L0 � Lc ,, L and L0 ,,
L2, where L is the crystal length and Lc � p�Dk is
the coherence length. Then we expand Ej in a Fourier
series in wave number k0, E1 �

P
n wn�z�exp�ink0z�,

and E2 �
P

n vn�z�exp�ink0z�, where the coefficients
are slowly varying on the L0 scale, i.e., j≠zwnj ,,
jk0wnj and j≠zvnj ,, jk0vnj. Following the approach
of Ref. 10, we then obtain the averaged equations for
w̃ � w0 and ṽ � iv0:

i≠zw̃ 1 h1D1w̃�ṽ exp�2ib0z�

1 �g2jw̃j2 2 g1jṽj2�w̃ � 0 , (3)
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Fig. 1. Modulated QPM grating function G�z� (left y axis,
dotted line) with the corresponding local domain length
Ld�z� (right y axis, solid line) for L2 � 10L0 � 40 mm and
e2 � 1.2.

i≠zṽ 1 h2D2w̃2 exp�ib0z� 2 2g2jw̃j2ṽ � 0 , (4)

where b0 � Dk 2 k0 ,, k0 is the small residual
mismatch, hj � 2xj�p, and gj � x1xj �1 2 8�p2��k0.
The difference between Eqs. (3) and (4) and the equa-
tions obtained in Ref. 10 is the periodic function D6 �
D6�z� � exp�6ie2 sin�k2z��, which can be expanded in
the Fourier series

D6�z� �
P

n
d6n exp�ink2z�, dn � Jn�e2� , (5)

where Jn�e2� is the Bessel function of the first kind of
order n. Thus d2n � �21�ndn.

Analytical treatment is possible in two cases: In
the adiabatic limit when D6�z� varies much more
slowly than w̃�z� and ṽ�z�, the field can be assumed
to follow adiabatically the variation of D6�z�.2,3 Here
we consider the opposite limit, i.e., that when the
modulation period is short compared with the length
of the crystal, L2 ,, L. The spectrum of G�z� for such
a grating is decomposed into separate nonoverlapping
blocks about the peaks of the unperturbed spectrum,
as shown in Fig. 2.

We now expand w̃�z� and ṽ�z� in a Fourier series
in wave number k2, w̃ �

P
n w̃n�z�exp�ink2z� and ṽ �P

n ṽn�z�exp�ink2z�, where the coefficients vary slowly
on the L2 scale, j≠zw̃nj ,, k2w̃n and j≠zw̃nj ,, k2ṽn.
Again following the approach of Ref. 10, we obtain the
equations for the average fields w � w̃0 and v � ṽ0:

i≠zw 1 h1mw�v exp�2ibmz�

1 �g2mjwj2 2 g1mjvj2�w � 0 , (6)

i≠zv 1 h2mw2 exp�ibmz� 2 2g2mjwj2v � 0 , (7)

where bm � b0 2 mk2 � Dk 2 k0 2 mk2 ,, k2 is the
effective mismatch for matching to the mth peak next
to the k0 peak, as illustrated in Fig. 2, right. The
nonlinearity coefficients are given by

hjm � xj �2Jm�e2��p� , (8)

gjm � x1xj ��p2 2 8��k0 2 4Sm�e2��k2��p2 , (9)

where Sm � 2S2m �
P

nfi0 Jn1m
2�n. For m � 0 we

obtain S0 � 0. Thus gj0 � gj of the unperturbed
grating, as it should. Using the recurrence and
addition formulas for Bessel functions, we obtain
S1 � 22J0�e2�J1�e2��e2. Closed-form analytical ex-
pressions for Sm are progressively more difficult
to obtain for higher orders, m $ 2. The effective
equations (6) and (7) for the averaged fields are easily
extended to incorporate higher-order QPM and diffrac-
tion in the transverse x and (or) y direction.10

In Fig. 3 we show the normalized average nonlinear-
ity coefficients h1m�h1 and g2m�g2 versus the modu-
lation parameter e2 for different orders of phase
matching and the same QPM grating as in Fig. 2.
The right-hand ordinate axis gives the corresponding
values for bulk LiNbO3 of the average x �2� coeffi-
cient d

qpm
eff , defined as h1m � vd

qpm
eff ��n1c�, and the

induced average cubic SPM coefficient x
�3�
qpm, defined as

x
�3�
qpm � 4n1l1g2m��3p�. We have used a fundamental

wavelength of l1 � 1.064 mm, for which deff �
30 pm�V, n1 � n2 � 2.2, and the nonlinear refractive
index is nref � 50 3 10214esu for LiNbO3.14 From
Fig. 3 we see that by matching to the m � 1 peak we
can increase the strength of the induced x �3� nonlinear-
ity by a factor of 23 (to 44 3 103 pm2�V2 in LiNbO3)
by choosing a sufficiently weak modulation �e2 ,, 1�.
In comparison, the material SPM nonlinearity in bulk
LiNbO3 is x

�3�
spm � 3 3 103 pm2�V2, and thus the in-

duced x �3� nonlinearity can actually be made dominant
by the modulation. However, for e2 ,, 1 the effective
x �2� nonlinearity is reduced (averaged out) to nearly
zero for m $ 1. Choosing the correct modulations is
thus a matter of optimization for the specific design
purpose. For example, if the aim is efficient uniform
multiwavelength SHG, e2 � 1.7 should be chosen to

Fig. 2. Left, amplitude spectrum of G�z� for e2 � 1.2 and
L2 � 20L0 � 100 mm. Right, block structure near k � k0,
showing order m of effective mismatch bm.

Fig. 3. (a) Normalized average quadratic nonlinearity
h1m�h1 and (b) induced average cubic nonlinearity g2m�g2
versus modulation parameter e2 for L2 � 20L0 � 100 mm.
The right-hand ordinate axis shows the actual strength for
bulk LiNbO3.
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Fig. 4. (a) Modulation depth Lm and threshold intensity
Ith versus L2 for bulk LiNbO3 with e2 � 1.2 and L0 �
10 mm. (b) Effective averaged x �2� coefficient d

qpm
eff and

Ith versus L2 for bulk LiNbO3 with Lm � 1 mm and
L0 � 10 mm.

have a constant value of the effective x �2� nonlinearity
for all three peaks m � 0, 1, 2.

Introducing normalized dimensionless coordinates
w�z� � af1�z � and v�z� � af2�z� into Eqs. (6) and
(7), where a � �2I��n1h0��1/2 and z � z�L, we mea-
sure the relative strength of the average x �2� and
x �3� nonlinearities as the ratio of the coefficients
in front of the cubic SPM term for the fundamen-
tal wave and the x �2� term. Equating this intensity-
dependent ratio to unity gives the threshold intensity
Ith � �n1h0�2� �h1m��g2m 1 gSPM��2, where we have in-
cluded the intrinsic cubic SPM nonlinearity gSPM �
3px

�3�
SPM��4n1l1�. For intensities above (below) Ith the

x �3� �x �2�� nonlinearity is dominant on average.
In Fig. 4 we show how the threshold intensity and

effective x �2� nonlinearity are changed by the modu-
lation given by period L2 and depth Lm � p��k0 2
e2k2� 2 p��k0 1 e2k2�. We chose the unperturbed do-
main length L0 � 10 mm (because Ith decreases with
L0), corresponding to the coherence length at l1 �
1.5 mm in LiNbO3. From Fig. 4(a) with fixed e2 � 1.2
(i.e., f ixed d

qpm
eff � 12 pm�V) we see that for reason-

able modulation depths the threshold intensity can be
decreased to a few gigawatts per square centimeter.
From Fig. 4(b) with fixed Lm � 1 mm we see that the
threshold intensity can be further decreased but at the
expense of a significant reduction in the effective x �2�

nonlinearity. The singularity at L2 � 1 mm (and at
L2 � 1.5 mm) is due to the induced cubic nonlinearity’s
becoming equally as strong as the material nonlinear-
ity, but negative. Between L2 � 1 mm and 1.5 mm the
effective (material plus induced) cubic SPM nonlinear-
ity for the fundamental wave is thus defocusing.

In conclusion, we have shown that weak modula-
tion of a QPM grating permits engineering of average
x �2� and induced average x �3� nonlinearities. We have
shown how the induced average x �3� nonlinearity can
dominate the intrinsic material nonlinearity, thereby
decreasing the intensity at which the x �2� and x �3� ef-
fects balance to a few gigawatts per square centime-
ter. This result opens a range of new possibilities that
arise when x �2� and x �3� nonlinearities compete on an
equal footing. Such possibilities include attainment of
engineered bandwidth for parametric wave mixing and
frequency generation, cascading phase shifts, and soli-
tons. In particular, the averaged model can have a
self-defocusing cubic nonlinearity, which can dominate
the self-focusing nonlinearity that is intrinsic to typi-
cal x �2� materials such as LiNbO3 and might therefore
support stable dark vortex solitons.15
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