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ABSTRACT 
In this work we study the evolution of dark beams of finite length carrying edge-screw phase dislocations in self-
focusing Kerr nonlinear media aiming to find appropriate conditions to control the process of filamentation of the 
background beam. In the case of a single fractional vortex dipole, geometry-controlled conditions for changing the 
intensity ratio of the peaks and their offset are found. Depending on their orientation, two parallel or two in-line mixed 
phase dislocations carried by a common background beam are predicted to perturb it and to initiate filamentation of 
different number of peaks with different spatial distributions.  
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1. INTRODUCTION 
Propagation of optical beams in nonlinear media (NLM) has been a subject of continuing interest for more than four 
decades due to the possibility for creation of reconfigurable waveguides through the intensity-dependent refractive index 
change1,2. Such optically induced waveguides can guide weak signal beams and pulses3,4, which motivates the 
investigation of novel techniques for manipulation of the transverse beam dynamics and opens possibilities for 
realization of waveguides with complex geometries. Besides their intriguing physical picture, particular interest in dark 
spatial solitons (DSSs) is motivated by their ability to induce gradient optical waveguides in bulk self-defocusing 
NLM1,4-8. The only known truly two-dimensional (2D) DSSs are the optical vortex solitons5 whereas in one transverse 
spatial dimension the DSSs manifest themselves as dark stripes9. The odd initial condition required for generating a 
fundamental 1D DSS corresponds to a π-phase jump centered along the irradiance minimum of the stripe (e.g. to an step 
phase dislocation). The OVSs have a helical (screw-type) phase profile described by exp(imφ) multiplier, where φ is the 
azimuthal coordinate and the integer number m is the so-called topological charge. 1D and 2D fundamental DSSs of 
these types have the common feature of zero transverse velocity with respect to the background beam if no perturbations 
are present. A variable number of quasi-2D dark spatial solitons of adjustable transverse velocities could be generated10 
by a proper choice of the initial phase profile (odd or even), the width of the crossed 1D dark beams, and the 
background-beam intensity.  
 

In contrast, dark (or grey) waves are known in singular optics which slowly change their parameters, even when they are 
generated from perfectly odd initial conditions. Classical example are the ring dark solitary waves11,12. In their 
pioneering research Nye and Berry13 conjectured that mixed edge–screw dislocations cannot exist. Nonetheless, an 
indication of their existence was found14 for two interacting optical vortices of opposite topological charges. Moderate 
saturation of the medium third-order nonlinearity enabled to stabilize the snake instability of crossed 1D dark solitons 
and to identify 1D odd dark beams (ODBs) of finite length containing mixed-type (step-screw (SS) or edge-screw (ES)) 
phase dislocations15,16. Later on, such ODBs with SS phase dislocations were experimentally generated under 
controllable initial conditions by computer-generated holograms17. The data confirmed17 that one can effectively control 
the steering dynamics of such beams by varying the magnitude and/or the length of the mixed step–screw phase jump. 
Although two different schemes for directional coupling of signal beams by steering fractional vortex dipole beams were 
proposed in Kerr media with negative nonlinearities18, the first successful experiment was conducted only recently in 
biased photorefractive medium with a positive nonlinearity19. The key to understand this and to avoid any confusion is in 
the fact that the inherently restless ODB is coupled to a steering bright peak on the same background beam and this peak, 
being self-focused, induces the all-optical waveguide in the self-focusing NLM.  
 



 

 

2. NUMERICAL PROCEDURE 
The mixed edge-screw (ES) phase dislocation considered here consist of a one-dimensional phase step of limited length, 
which ends, by necessity, with pairs of phase semi-spirals on π with opposite helicities. This is why this dark beam can 
be called fractional vortex dipole. The phase profile of the ES dislocation can be described by 

                                                     ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
−⎟

⎠
⎞

⎜
⎝
⎛

+
ΔΦ

=Φ
bx

y
bx

yyxES arctanarctan
2

),(
π

 .                                                  (1) 

In Eq. 1 ΔΦ stands for the magnitude of the step portion of the dislocation, 2b for its length, and x and y denote the 
transverse Cartesian coordinates parallel and perpendicular to the dislocation. An increase in the ODB transverse 
velocity can be achieved17 by decreasing ΔΦ , but here we refrained from exploiting this. The reason is that during the 
steering process even the initially “black” ODB inevitably becomes “grey”, and an initially “grey” ODB causes weaker 
background beam modulation. All the data in this work refer to π=ΔΦ . Surface plot of the ES phase dislocation is 
shown in Fig. 1. The slowly-varying electric field amplitude of the ES ODBs (SVEA approximation) is assumed to be 
tanh-shaped and of the form 
                                                  [ ] [ ]),(exp/),(tanh),()0,,( ,0 yxiayxryxBIzyxE ESES Φ== βα  ,                                (3) 
where 
                                                                           [ ] 2/122

, )(),( ybxyxr ++= βαβα                                                             (4) 
is the effective radial coordinate and the parameters α  and β are defined as follows: 
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In order to avoid any influence of the finite background beam of super-Gaussian form  
                                                                          [ ]{ }8222 /)(exp),( wyxyxB +−=  ,                                                          (6) 
its width w is chosen to exceed more that 10 times the dislocation half-length b.  
 

The numerical simulations of the ODB propagation along the local Kerr NLM are carried out using the (2+1)-
dimensional nonlinear Schrödinger equation (NLSE) 
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which accounts for the evolution of the slowly-varying optical beam envelope amplitude under the combined action of 
nonlinearity and diffraction. Here TΔ  is the transverse part of the Laplace operator whereas 2kaLDiff =  and )/(1 2IknLNL =  
stand for the diffraction and nonlinear length of the dark beam and 1)( 2 ±=nsign  for self-focusing and self-defocusing 
nonlinearity respectively. ( 1)( 2 −=nsign  and 

NLDiff LL =  are necessary conditions for dark spatial soliton formation). In the 
above notations, k is the wave number inside the medium and I is the peak field intensity. The transverse spatial 
coordinates (x and y) are normalized to the ODB width a. The model NLSE we solved by means of the split-step Fourier 
method with a computational window spanning over 1024x1024 grid points. As a standard test we modeled the 
formation of a fundamental one-dimensional dark spatial soliton by setting the length of the one-dimensional part of the 
ES dislocation 2b several times longer than the computational window (Fig. 1, open circles and solid curve). Setting the 
background beam intensity 1.7 times higher than this needed to form the fundamental DSS ( D

solII 1= ), we got the expected 
DSS spatial shrinking (Fig. 1, dashed curve). Unless stated otherwise, the intensity in the following simulations is kept 
equal to that needed to form a fundamental 1D DSS of “infinite” length.  
 

 
3. EVOLUTION IN SELF-DEFOCUSING KERR MEDIA 

As shown in previous analyses17,18 of ODBs with mixed SS dislocations, the background-beam intensity has a weak 
influence on the dark beam steering. Negative nonlinearity is important, however, for keeping the optically induced 
refractive index modulation (and dark beam profile) steep, which is crucial for all-optical guiding, deflection, and switch 



 

 

 
 

 
-4 -2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Transverse coordinate y/a(z=0)

 
Fig. 1   Edge-screw mixed phase dislocation (fractional vortex 
dipole) described by Eq. 1. 

Fig. 2   Negative nonlinearity. Cross-section of the input 1D 
ODB (solid curve) and the fundamental 1D DSS at z/LDiff=5 
(open circles). Dashed curve – 1D DSS shrinking for 1.7 times 
higher background beam intensity. 

 

ing of signal beams or pulses. Because the ODBs with mixed phase dislocations shorten and flatten along the nonlinear 
media (tending asymptotically to washout), the power density redistribution on the background creates peaks near the 
ODBs. The self-defocusing tends to suppress their growth and contributes, as the diffraction does, to their broadening. 
Under self-focusing conditions, however, the picture should be drastically different. Concerning the degrees of freedom 
to control the transverse velocity of fractional vortex dipoles with ES phase dislocations, refraining to vary the 
magnitude of the phase jump and fixing it to π=ΔΦ , the other known possibility is to vary the encoded dislocation 
length 2b and the associated physical length-to-width ratio of the ODB (see Fig. 3). As seen in Fig. 4, the dependence of 
the ODB deflection vs. length-to-width ratio is linear and the shorter the ODB the larger the dark beam deflection. There 
are physical limitations for the horizontal scale of this graph. At initial ODB length-to-width ratio of the order of 4 or 
more, snake instability breaks up the dark beam into pairs of optical vortices (see Fig. 3, left inset). In contrary, when the 
initial dislocation length is approximately equal to the beam width, the interaction between phase semi-spirals dominates, 
the (fractional) topological charges annihilate and ring dark solitary wave is born (see Fig. 3, right inset).  
 

Fig. 3   Negative nonlinearity. Cross-section of the ODBs with 
ES phase dislocations at the entrance (solid curve) and at the exit 
of the NLM (z=2LNL) for initial ODB length-to-width ratio 3.3 
(dashed), 2.2 (dotted), and 1.4 (dash-dotted curve). Insets: snake 
instability (left; z/LNL=2) and ring dark wave formation (right; 
z=LNL) for ODB length-to-width ratio 8.7 and 1, respectively.  

 
Fig. 4   Negative nonlinearity. Normalized ODB deflection 
Δy/a(z=0) vs. ODB length-to-width ratio. 1/ 1 =D

SOLII  and 
z/LNL=2. 



 

 

4. NONLINEAR DYNAMICS IN SELF-FOCUSING KERR MEDIA 
In contrast to the evolution in self-defocusing NLM, the positive Kerr nonlinearity leads to (accelerated) dark beam 
broadening and to a self-focusing of the bright structures on the background20 formed as a result of the energy density 
redistribution due to the ODB steering. This is clearly seen in Fig. 5, in which the initial (dashed curve) and the output 
ODB profiles (solid curve; after a nonlinear propagation path length z=1LNL in a self-focusing NLM) are compared in the 
case of an initial ODB length-to-width (LtW) ratio of 2.2. The comparison between this curve and the respective profile 
shown in Fig. 3 (the dotted curve) shows that the only parameter which remains the same as the sign of the nonlinearity 
becomes changed, is the transverse position of the ODB minimum. Under self-focusing conditions and at this particular 
distance of nonlinear propagation, the satellite bright peaks increased their peak intensity approximately 1.2 and 1.7 
times, respectively. We refrained to continue the simulations to much higher distances in order to not violate the SVEA 
approximation under which the model NLSE (Eq. 6) is valid. In the rest of this paper we will denote the peak preceding 
the ODB in the steering direction as a leading peak, whereas the peak dominating on the other side of the ODB will be 
called trailing peak. When a single fractional vortex dipole is created on the background beam, at a fixed nonlinear 
propagation distance the positions of these two dominating peaks should change with changing the initial ODB length-
to-width ratio. In Fig. 6 we show the estimated normalized leading peak offset Δ/a(z=0) from the dislocation position vs. 
ODB length-to-width ratio for 1/ 1 =D

SOLII . The saturation of this curve at relatively small dislocation lengths could be 
explained by the influence of the 2D self-focusing bright structures on the background beam as predicted20 for the 
interaction of OVs for n2>0 (see right inset in Fig. 5). Interestingly, the largest offsets of the leading peaks are to be 
expected for ODBs with length-to-width ratios ensuring also the highest leading-to-trailing peak intensity contrast (see 
Fig. 7) at this initial stage of self-focusing. The peak evolution up to this distance but at a higher intensity and at the 
same intensity but up to larger distance is, however, not trivial. For an ODB with an initial length-to-width ratio 
LtW=2.2 and 7.1/ 1 =D

SOLII , at z/LNL=1 the peak intensities grow approximately 3.5 times but the peaks appear nearly 
equal in intensity. The model simulations yielded qualitatively the same result for 1/ 1 =D

SOLII  and z/LNL=1.5 except that 
the peak intensities grow less - approximately 2.5 times. In both last cases the leading peak offset from the dislocation 
position remains the same (Δ/a(z=0)=3.9) whereas for an initial ODB with an initial length-to-width ratio LtW=2.2 
Δ/a(z=0)=3.8. The comparative simulations showed that the shape of the background beam, Gaussian or super-Gaussian, 
does not have noticeable influence on the results presented in Figs. 6-8 if the ES dislocation is created initially in the 
center of the background.  

 
Fig. 5   Positive nonlinearity. Cross-section of the input ODB (dashed) and of the deflected beam (solid curve) for an initial length-to-
width ratio of 2.2 at z/LNL=1. Insets: Greyscale 2D images of the input (left) and output ODB intensity distributions (right). 1/ 1 =D

SOLII . 

 
 In Fig. 8 we show data obtained for a further evolution stage (z/LNL=2) of the self-focusing peaks around the 
fractional vortex dipole, for which the SVEA approximation should still hold. The result predicts that by using a single 



 

 

fractional vortex dipole beam it should be possible to vary the ratio between the intensities of the trailing and leading 
peak by adjusting the initial ODB length-to-width ratio. 
 

 
Fig. 6   Positive nonlinearity. Normalized leading peak offset 
Δ/a(z=0) from the dislocation position vs. ODB length-to-width 
ratio. 1/ 1 =D

SOLII . 

Fig. 7   Positive nonlinearity. Leading-to-trailing peak intensity 
ratio vs. ODB length-to-width ratio. 1/ 1 =D

SOLII . 

 

 
Fig. 8   Positive nonlinearity. Trailing-to-leading peak intensity ratio vs. ODB length-to-width ratio for z/LNL=2 and 1/ 1 =D

SOLII . 

 
 As a next step in this analysis we concentrated on the background beam evolution in self-focusing NLM when 
two fractional vortex dipoles with equal or opposite phase profiles are created symmetrically with respect to its center. 
All further illustrations presented in this work refer to z/LNL=1.75 and 1/ 1 =D

SOLII . The (0 - 2π) range in the phase profiles 
denoted with (b) and (d) on Figs. 9-12 are encoded in gray scale. For the sake of better visibility the respective intensity 
profiles denoted with (c) and (e) are shown in inverted grey scale (black corresponding to maximal peak intensity) and  



 

 

 
 
 
 
 

 
 
 

 
 

 
Fig. 9   Positive nonlinearity. Initial amplitude (a) and phase (b) distributions of a pair of parallel and opposite ES 
phase dislocations and output field intensity distribution (c). Output intensity distribution in the case of equal phase 
dislocations (d) is shown in frame (e). ODB length-to-width ratio 2.2 corresponding to encoded dislocation length 
2b=32 pix. Dislocation offset δ=2b.  
 

 

 
 
 
 
 

 

 
 

 
 

 
 

 

Fig. 10   The same as in Fig. 9, but for three times larger dislocation offset (δ=6b). 
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the dominating peak(s) are surrounded in dashed circles. The dislocation mutual offset is chosen to be just large 
enough so that the background between the dark beams reaches its undisturbed level.  

In the case of opposite phase dislocations (Fig. 9b) which, in principle, force the ODBs to start moving in 
opposite directions, the model predicts that four peaks with nearly equal intensities become self-focused (see Fig. 
9c). When the two dislocations are equal causing ODB steering also in the same direction (downwards on Fig. 9d), 
one peak on the trailing side of both ODBs strongly dominates the other three formed on the background. In the 
qualitatively similar situation, but at a three times larger initial dislocation offset (δ=6b), independent on the 
direction of the ODB steering, the dominating peak is located between the fractional vortex dipoles. The relative 
intensities of the other two peaks located on a line perpendicular to the 1D portions of the ES dislocations, however, 
does depend on the mutual orientation of the dislocations.  

Another interaction scheme can involve two in-line ES dislocations. As observed in self-focusing 
photorefractive medium20 for a single SS dislocation, when the pair of fractional vortex dipoles are well separated 
(δ=4b) and steer either in opposite (Fig.11c) or in the same direction (Fig.11e), the dominating peaks are located 
behind the respective ODB. New features are the two peaks starting to grow between the ODBs, which can be 
explained by the energy-density redistribution within the surrounding background. When the ODBs steer in opposite 
directions (Fig. 11c) these two peaks are equally well pronounced, in the other case the leading peak of the pair is 
equally pronounced as compared to the peaks leading each individual dislocation. At much larger offset these 
satellite peaks between the ODBs will probably be negligible if present at all.  

If ODBs of the same initial length-to-width ratio are initially more closely spaced (δ=2b; see Fig. 12) four or 
five peaks with different spatial locations dominate on the background.  

 
 
 
 

 
 
 

 
 

 
 

 

Fig. 11   Positive nonlinearity. Initial amplitude (a) and phases (b,d) of a pair of in-line ODBs with opposite (b) and 
equal ES phase dislocations (d) and the respective intensity profiles (d) and (e). ODB length-to-width ratio LtW=2.2 
corresponding to encoded dislocation length 2b=32 pix. Center-to-center dislocation offset δ=4b. 

 
 
 
 

 
 
 

 
 

 
 

 

Fig. 12   The same as in Fig. 11 but for twice longer ES phase dislocations 2b=64 pix. Center-to-center offset δ=2b. 
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5. CONCLUSION 
The presence and evolution of odd dark beams of finite length carrying edge-screw phase dislocations (fractional vortex 
dipoles) are noticeably perturbing the carrying background beam and, in a self-focusing Kerr nonlinear media, can 
initiate filamentation of the background beam. In the case of a single fractional vortex dipole, geometry-controlled 
conditions for changing the intensity ratio of the peaks and their offset are found. Depending on their orientation, two 
parallel or two in-line mixed phase dislocations carried by a common background beam are predicted to perturb it and to 
initiate filamentation of different number of peaks with different spatial distributions. In view of the above, the control of 
the positions and distributions of the self-focusing filaments on the background beam seems feasible. 
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