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ABSTRACT 
We study theoretically the non-phase-matched degenerate four-wave mixing of type 212 ωωω −=s , involving beams 
carrying two-dimensional spatial phase dislocations in the form of singly-charged optical vortices (OVs). 
Accompanying third-order nonlinear processes in the non-resonant nonlinear medium (NLM), which are accounted 
for, are self- and cross-phase modulation. In the case of pump OV beams with identical topological charges the 
model predicts the generation of signal beams carrying OVs of the same charge. If the pump beams carry OVs with 
opposite charges, the generated signals are predicted to carry triply charged vortices which, in the case of a non-
negligible initial free-space propagation from the plane of vortex generation to the NLM, decay inside the NLM into 
three singly-charged vortices with highly overlapping cores.  
 
Keyword list: four-wave mixing, Kerr nonlinearity, self-focusing, optical vortex, phase dislocation, phase matching 
 
 

1. INTRODUCTION 
Degenerate four-wave mixing (DFWM) is a third-order nonlinear process in which two waves (i and j) interact in a 
nonlinear medium to produce an output at sum and/or difference frequencies1 

jis ωωω ±= 2 . Four-wave mixing is 
related to self-phase modulation (SPM) and cross-phase modulation (XPM) since all these effects originate from the 
same (Kerr) nonlinearity and differ only in terms of degeneracy of the waves involved. XPM can be expressed as 

jjss ωωωω −+= , whereas the relation for SPM is ssss ωωωω −+= . Importantly, neither SPM nor XPM generate 
new distinct frequencies. Rather both, self- and cross-phase modulation, change the medium’s refractive index in a 
nonlinear way thus giving rise to nonlinear phase shifts and to spectral broadening of the already existing frequency 
components.  
 Optical vortices (OVs) are associated with the presence of a spiral phase dislocation in the wavefront of a 
light beam that determines its phase and intensity structure. The study of OVs has received special attention in recent 
years due to a variety of potential applications including particle micro-manipulation2, imaging3, interferometry4, 
quantum information5, high-resolution microscopy, lithography6 etc. In experiments conducted with Rb7 and cold Cs 
atoms8 it is demonstrated that the optical angular momentum carried by an OV beam can be transferred, through 
interaction with the atomic system by means of a FWM process, to another light beam mode. Clearly, OVs at 
various wavelengths or even multi-color OVs are desirable for such applications. The transformation of the 
topological structure of an OV beam under multiwave mixing in the media with resonant nonlinearity has been 
analyzed theoretically9. In a second-harmonic generation process the OV topological charge and orbital angular 
momentum per photon becomes doubled10,11. Multi-colored OVs can be created through nonlinear frequency 
conversion processes (FWM), e.g. via optical phase conjugation12. Unlike OV propagation in a Raman13 or quadratic 
nonlinear medium14, the FWM process is expected to preserve the topological charge of the OVs and can be an 
important factor for white-light vortex generation. However, as the FWM process may be accompanied by 



noticeable self- and induced focusing (spatial analogs of SPM and XPM, respectively), special attention should be 
paid to the vortex integrity. The OV dynamics in a nonlinear medium is known to lead to vortex break-up or 
disintegration15-17. Recently we reported18 the first experimental demonstration of femtosecond supercontinuum 
generation by an optical vortex beam. The results demonstrate that the initial spatial profile of the optical vortex is 
well preserved in the process of supercontinuum generation. However, the generated continuum did not carry the 
phase structure of the initial beam and appeared as a wide white-light background surrounding the fundamental OV. 
We have found that strong diffraction of the supercontinuum generated from each individual filament formed on the 
bright vortex ring is the reason for the observed white-light background. 
 Here we expand our earlier studies and analyze numerically the process of FWM with singular beams. Our 
studies show that the coherent generation of new frequency components in the FWM process provides a viable path 
for generation of white-light singular beams despite the azimuthal instabilities of the optical vortices in Kerr-type 
nonlinear media. 
 
 

2. THEORETICAL MODEL AND NUMERICAL PROCEDURE 
The model we use in this work is based on a set of four nonlinear partial differential equations (1) describing the 
evolution of the four slowly-varying amplitudes Am of four distinct spectral components at frequencies ω-δ, ω, ω+δ, 
and ω+2δ 
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( δωδωωδω 2 , , , , ++−=nm ). Here the terms in the brackets account for the self-phase modulation (SPM), for the 
cross-phase modulation (XPM), and  
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reflect the different possible degenerate four-wave frequency mixing (FWM) processes, which depend on the 
respective phase matching relations 
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km stands for the wavenumber of the m-th wave inside the NLM. Since we assume that initially the two high-
intensity pump waves are at frequencies ω and ω+δ, it is natural to express the propagation coordinate z in units of 
diffraction lengths of one of these waves. We choose normalization to the Rayleigh diffraction length of the optical 
vortex nested in a wave of frequency ω, i.e. to 2akLDiff ω

ω = , where a is the radius of the OV beam, being the same for 
both pump waves. The linear term in Eq.(1) comprising ⊥Δ  accounts for the two-dimensional beam diffraction, 
whereas γ is the Kerr nonlinear coefficient.  

Accounting for FWM, we solved the model system of differential equations (1) by means of a modified split-
step Fourier method with a computational window spanning over 1024x1024 grid points for each wave. As a 
standard test we modeled the formation of a fundamental OV soliton by setting the sign of the nonlinearity γ to be 



negative (for calibration purposes only). Unless stated otherwise, the intensities of the pump beams at frequencies 
ω+δ and ω are kept equal to that needed to form a fundamental OV soliton in self-defocusing NLM when only SPM 
is accounted for and all FWM terms are neglected. sign(γ) is kept positive, which corresponds to CaF2 as a suitable 
NLM. The two pump waves are chosen to have central wavelengths of 780 nm and 800 nm, i.e. the newly generated 
components will be centered at 761 nm and 821 nm. All necessary refractive indices and wave numbers are 
calculated at these wavelengths. Other waves at frequencies lower than ω-δ or higher than ω+2δ are neglected in 
this model. Since CaF2 is an isotropic material with a cubic crystal structure with inverse symmetry, collinear phase 
matching for the degenerate FWM processes 211 2 ωωω −=s  and 122 2 ωωω −=s  is not possible for the chosen pump 
wavelengths. Vector phase matching is however possible and requires angular offset between the pump beams of 3.9 
mrad for signal wave at 761 nm and 2.7 mrad for that at 821 nm. Therefore, the collinear interaction geometry 
modeled numerically is to be classified as non-phase matched.  

The input pump OV beams are described by 
 

                                                           )exp()/tanh()( 00 ϕimrrrBAA =   ,                                                           (4) 
 

where A0 is the peak field amplitude, B(r) is the Gaussian bright background carrying the optical vortex 
{ }( ))/(exp)( 22

BGrrrB −= , tanh(r/r0) describes the OV profile, and the integer m is the OV topological charge (m=±1 
throughout this work). The background beam width rBG was chosen sufficiently broader than the vortex core. 
 
 

3. RESULTS 
3.1. FWM of vortices with equal unit topological charges 
The obtained numerical results for this case are summarized in Fig. 1. Some 8% of the total computational area is 
shown in each frame. The expected9,12 transformations of the topological charges m of the pump OVs during the 
DFWM processes 211 2 ωωω −=s  and 122 2 ωωω −=s  are that 11121 =−×=sm  and 11122 =−×=sm . This means that 
both newly generated signal beams should contain vortices carrying equal unit TCs. This is clearly seen in the upper 
and lower frames in the last column of Fig. 1. Although the initial phase profile of both pump OV beams were 
chosen to be identical in this simulation (see phase profiles at 0zL = ), after a free-space propagation up to 

ω
DiffL 3Lz =  they accumulate phase difference due to their different (central) wavelengths. The difference between the 

diffraction spreading of the OV cores of the pump beams is too small to be seen in this mode of presentation but is 
noticeable when the cross-sections of the pump OVs are compared. The positive nonlinearity naturally contributes to 
the accelerated pump OV core broadening along the NLM (see the intensity profiles at ω

DiffNL L5.0z =  in Fig. 1). 
However this is not the main reason for the newly generated dark beams to be so much broader. Rather, this is due to 
the fact that the FWM processes are intensity-dependent and the maximum pump beam intensity is along the vortex 
ring, which is much larger than the pump OV core. Comparing closely the 2D intensity profiles of the generated 
signal OVs one can see that the vortex ring of the signal component at the lower frequency ω-δ is somewhat 
modulated in azimuthal direction with a maximum (at this particular distance) on the right-hand side and with a 
minimum on the left-hand side. The detailed numerical analysis showed that this is due to the phase mismatch of the 
components involved in the DFWM process, which is stronger pronounced for the low-frequency signal than for the 
high-frequency signal. The energy density and phase profiles of the newly generated low-frequency wave s1 at 
different nonlinear propagation distances shown in Fig. 2 support this statement. The maximum conversion 
efficiency of the process is 10-4, which is a reasonable value considering there is no phase matching. As expected, 
we observed oscillations in the conversion efficiency vs. nonlinear propagation path length due to the energy flow 
from the pump waves to the signals and backwards. This is not seen on Fig. 2 since we normalized the energy 
density for each frame in order to underline the changes in the symmetry of the generated waves.  
 
3.2. FWM of vortices with opposite topological charges 
Let us assume that an azimuthal increase of the phase around the point phase dislocation of the OV in counter-
clockwise direction refers to a TC mj=+1. We will denote such a vortex as negatively-charged. The transformations 
of the topological charges of the pump OVs during the DFWM processes 211 2 ωωω −=s  and 122 2 ωωω −=s  are then 

3)1(121 =−−×=sm  and 31)1(22 −=−−×=sm . Therefore, both newly generated signal beams should be triply 
charged optical vortices carrying opposite TCs. This is clearly seen in the respective phase profiles of the signal 



beams shown in the upper and lower frames in Fig. 3 (right column). Since OVs with TCs higher than 1 are unstable 
against perturbations and the presence of a second signal wave the triply charged vortices decay into singly-charged 
ones. This is also well seen in the phase profiles of the signal beams shown in Fig. 3: Although the cores of the 
decaying vortices are still strongly overlapping, the three screw point dislocations separate as the distance increases. 
In addition, the vortex ring of the generated signal is more noticeably reshaped in the s1-wave. This appears to be 
due to the larger signal wavelength, which is diffracting stronger than the signal s2 at the shorter wavelength. 
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Fig. 1. Pump beams with equal TCs. Energy density (odd rows) and phase profiles (even rows) of the pump waves at frequencies 
ω and ω+δ and of the newly generated waves at frequencies ω-δ and ω+2δ in the plane of OV beam generation (left two 
columns), after a free-space propagation distance ω

DiffL 3Lz =  (middle) and at the exit of the NLM after nonlinear propagation path 
length ω

DiffNL L5.0z =  (right two columns).  

 
 
3.3. Pumping with an OV and a Gaussian beam 
Another possible situation deserving attention is to have DFWM in which one singly-charged OV beam and a 
fundamental Gaussian beam with zero topological charge are involved. The results of this situation are summarized 
in Fig. 4. In this case one should expect that one of the generated signals will carry a TC equal to +2 (according to 
the adopted convention for the TCs) and, the other one – an OV with a TC equal to -1. This can be clearly seen in 
the phase profiles of the signal beams shown in the right column in Fig. 4. As a result of SPM, XPM and FWM the 
Gaussian pump beam becomes modulated in both amplitude and phase but does not acquire any topological charge. 
Under the perfect initial conditions of this numerical simulation the generated twofold-charged OV beam is 
predicted to be stable. 
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Fig. 2. Equal TCs of the pump beams. Energy density (upper row) and phase profiles (lower rows) of the low-frequency wave s1 
at different nonlinear propagation distances. 
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Fig. 3. Opposite TCs of the pump beams. Energy density (odd rows) and phase profiles (even rows) of the pump waves at 
frequencies ω and ω+δ and of the newly generated waves at frequencies ω-δ and ω+2δ in the plane of OV beam generation (left 
two columns), after a free-space propagation distance ω

DiffL 3Lz =  (middle) and at the exit of the NLM after nonlinear propagation 
path length ω

DiffNL L5.0z =  (right two columns). 
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Fig. 4. Pump – OV and Gaussian beams. Energy density (odd rows) and phase profiles (even rows) of the OV and Gaussian 
pump waves at frequencies ω and ω+δ, respectively, and of the newly generated OVs at frequencies ω-δ and ω+2δ at the 
entrance of the NLM (left two columns), after nonlinear propagation path length ω

DiffNL L5.0z =  (middle) and at the exit of the 
NLM ( ω

DiffNL L5.0z = ; right two columns). 

 
 

4. CONCLUSION 
The reported numerical results on the non-phase-matched degenerate four-wave frequency mixing of the type 

212 ωωω −=s  involving optical vortices confirm the transformation of the vortex topological charges of the newly-
generated signal waves expected in such nonlinear process. The accompanying third-order nonlinear processes of 
self- and cross-phase modulation seem to noticeably influence the phase-mismatch, the amplitudes of the pump 
beams and the stability of the eventually generated multiply charged OVs. In the case of pump OV beams with 
identical topological charges we predict generation of signal beams carrying OVs with the same charges. When the 
pump beams carry OVs with opposite charges, the generated signals are expected to carry triply charged vortices 
which, however, will decay eventually and reshape the vortex rings of the signals. When one input pump beams is 
an OV and the other a fundamental Gaussian beam, generation of OVs with charge one and two and with opposite 
sign is predicted. 
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