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Abstract. All-optical streaking in a cubic nonlinear medium 
is analyzed theoretically. The model based on the variational 
method employs the induced phase front distortion on a 
probe beam. The numerical calculations for a planar inert- 
gas filled waveguide show that on-line measurements of 
picosecond pulse durations in the short-wavelength region 
are possible. 

PACS: 42.65, 42.80, 42.60.E 

The progress in laser technology, including laser design, 
nonlinear optical materials and fiber optics, enable the gen- 
eration of ultrashort laser pulses from the infrared to the 
ultraviolet region [1,2]. Recently, the possibility of using 
the induced phase modulation (IPM) [3] with a subsequent 
pulse compression [4, 5] was proposed as a possible mean 
for achieving ultrashort pulses in the VUV spectral range [6]. 
The IPM has been considered as a method for induced focus- 
ing [7], collimation [8], light bullet formation [9], and all- 
optical beam deflection [10, 11]. Progress has been achieved 
in the development of a variety of methods for pulse duration 
measurement [12]. A commonly used technique in the UV 
is the single-shot and multiple-shot autocorrelation method 
based on multiphoton ionization/fluorescence [13]. 

In this paper we analyze theoretically the spatio-temporal 
dynamics of the induced deflection of an off-axial probe 
beam [10]. On this base we propose a novel technique for 
measuring pulse widths. In view of the recent experimental 
results reported [11], this idea seems feasible. In a planar 
waveguide containing a proper inert gas as a nonlinear 
medium, such a device would combine the fast nonlinear 
response of the electronic nonlinearity with the possibility 
for measuring pulse widths in the short-wavelength region. 

Theoretical Model 

The nonlinear medium considered is taken to be homoge- 
neous, stationary and with a resonant structure. The last as- 

sumption is made to retain the possibility for achieving the 
pure effect of pump-induced probe beam deflection, although 
it is not obligatory [10, 11]. The copropagating beams are 
coherent, although in a nonresonant medium this is not nec- 
essary [14]. Choosing the probe- and pump-wavelengths A s 
and Ap in the vicinity of A s + Ap two-photon resonance, one 
Can obtain high values of the nonlinear susceptibility for IPM 

(3). XmM)' When the diffraction is limited to one transversal di- 
mension (as in a planar, gas-filled optical waveguide), the 
system of coupled ordinary differential equations describ- 
ing the spatio-temporal evolution of the probe and pump 
beam/pulse have the form 
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In these equations ~s and ~p are the slowly-varying envelope 
amplitudes of the probe and pump beam/pulse, respectively, 
asp = (-1/2)[As3 p/27vc2)] [02n/OA2]),=),s,p is the group- 

velocity dispersion (GVD) coefficient, fls, p = 1/(2ks, p), ks, p 
is the corresponding wave-number, 
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are the nonlinear coefficients for IPM of the probe pulse 
and self-phase modulation (SPM) for the pump pulse, N 
is the particle density, X (3) is the corresponding nonlinear 
susceptibility, nos p are the refractive indexes, and r denotes 
the transverse diff"action non-limited coordinate. 
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The trial functions are chosen to be Gaussian in both time 
and space 

¢s(X,  r, 7) - As ( x )  [ (T - 7D - xz'sP)2 ] 
COs(x) exp - 2rs2(X ) + ibs (x ) r  2 

[r -- r0(x)] 2 ks•s(X)r 2 ] 
x exp a2co2(x) i ~- , (3a) 

@p(x, r, 7-) - Ap(x) exp + ibp(x)r 2 
cop(X) 2rp2 (x) 

x exp @co~(z) i , (3b) 

and the spatio-temporal coordinate system is taken to be 
connected with the pump. In (3) A s and A e are the electric 
field amplitudes, cos and COp are the normalized beam radii, 
a s and ap are the physical beam radii at the entrance 
of the nonlinear medium, r 0 is the distance between the 
beam centers, ~s and kge are the inverse of the radii of the 
probe/pump beam wavefront curvature, r s and r e are the 
half-pulse widths at 1/e level, b e and b s are the (self)induced 
chirp-rates for the pump/probe, ~-D is the eventual initial 
delay between the pulses, and Use = (va- ~ - V~p 1) accounts 
for the group-velocity mismatch. 

If k s and Ap are far from single- and two-photon reso- 
nances, the SPM is negligible compared to the IPM 

(3) . (3) 1 [XsPM(As,p) << <IPMJ' Therefore, the nonlinear term in (lb) 
can be neglected. If we assume a negligible self-action of 
the pump, the evolution of the pump beam radius and the 
pump pulse duration are given by the well-known relations 
[1] 

COp(X) = [1 + (X/LDp)2] 1/2 , (4a) 

rp(X) = rp(X = 0)[1 + (x /L~p)2]  1/2 , (4b) 

where LDp = ]~pa2(x = 0 ) / 2  is the Rayleigh diffraction 

length and L~)p = TF(x  = 0)/(2lOZpl ) is the dispersion length. 
Let us now analyse the behavior of the probe beam. 

The initial conditions for the parameters of interest are 
COs(X = 0) = 1 and Ps(X = 0) = 0. The mathematical 
description of the probe beam evolution is based on the 
variational approach for solving (la) [15]. The analytical 
form of the results is the main advantage of this method, 
which results in a set of ordinary differential equations for 
the corresponding variational parameters 

d% 
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d x  - 2r°G '  (5b) 
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It is natural to expect that the spatio-temporal evolution of 
the probe beam/pulse depends crucially on the beam shapes. 
In Appendix A the corresponding variational results for sech- 
type trial functions are presented. 

The physical mechanism of the induced deflection is the 
probe beam phase profile distortions induced by the pump 
[10, 11, 14]. It can be shown, (5b, c), that for Gaussian 
beam/pulse shapes, the condition 

[ ( 4r~ ) ]  
sign hIpM(As) 1 a 2 2 2 > 0 (6) 

asco s @ apcop 

corresponds to induced focusing and the opposite one - to 
induced defocusing. Therefore, the conditions under which 
induced probe beam deflection can occur, depend simulta- 
neously on the sign of the nonlinear susceptibility, the beam 
radii and their initial physical separation. This result is im- 
portant for extending the number of nonlinear media [10] 
appropriate for observing the effect proposed. 

Figure 1 Shows the evolution of the distance between 
the beam centers r 0 along the nonlinear medium in the 
case of A n  = (1/2)n2]Epl  2 = - 5 . 7  × 10 -5 (1 arm Xe, 

A s = 264.42nm, .~p = 248nm, I v = 5 x 108W/cm 2, 
(3) )qpM(As) = --5.8 x 10-S2esu and Gaussian beam/pulse 

shapes). The same conditions are kept in the rest of this 
work. The nonlinear susceptibility is calculated according to 
the single-sided Feynman diagrams [16] and the accuracy, 
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Fig. 1. ]Evolution of the distance between the beam centers %/% along 
the nonlinear medium. The parameters used are: nonlinear medium 
Xe (latin), A s = 264.42nm, Ap = 248nm, Ip = 5 x 108W/cm 2, 
(3) XipM(Xs) = --5.8 × 10 32esu, An = --5.7 x 10 -5 . The distance is 

normalized to the nonlinear length LNL 
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Fig. 2. Influence of the initial delay T n between the signal and the pump 
pulse on the distance between the beam centers ro/a  p. The parameters 
are the same as in Fig. 1 

according to the accuracy of the dipole matrix elements used, 
was estimated to be 40%. For convenience, the longitudinal 
coordinate z is normalized to the nonlinear distance LNL = 
I/lkmm(),s) IAp[21. As can be seen from the figure, with 

increasing the ratio of signal to pump pulse duration ~-s/Tp 
the nonlinear propagation regime becomes weaker because 
of the decrease of the effective pulse overlap. Further, with 
increasing the initial time delay with respect to the pump 
pulse duration, the change rate of the distance between the 
beam centers r 0 decreases. This dependence is nonlinear 
with Td/T p (Fig. 2). The case T d >> Ts, T p corresponds to 
a linear propagation regime of two noninteracting beams, 
separated in time and space. In order to achieve a linear 
deflection of the probe beam, the length of the nonlinear 
medium XNL should be restricted to the region of a nearly 
linear reduction of r 0 along the x-axis (XNL ~ 7 cm, i.e. 
X/LNL ~ 17.5 in the case considered; see Fig. 1). The 
spatial separation of the two beams outside the nonlinear 
medium can be performed by introducing a small initial 
angular deviation 0 = (dro/dx)z= o. In this case (5b) should 
be transformed to 

dr° = 0 + 2r0~ s . (7) 
dx 

Figure 3 plots the dependence r0(x) for different values of 
0 (solid lines). The dashed lines represent the evolution 
of the distance between the beam centers in the absence 
of a pump. As seen from the figure, with increasing the 
initial angle 0 between the beams, the contrast between the 
corresponding pairs of curves decreases. Therefore, it should 
be kept reasonably small [11]. 

Since the method is fundamentally based on nonlinear 
spatial interaction of two beams, one would expect that 
the spatial distribution of the beams plays an important 
role, but the energy redistribution in the transverse cross- 
section of the probe beam could not be accounted for within 
the variational description presented, Figure 4 plots the 
evolution of the distance between the beam centers ~'0(X)/ap 
along the nonlinear medium for Ganssian-(eurves 1) and 
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Fig. 3. Influence of the initial angular deviation 0 between the signal 
and pump beams on the distance between the beam centers ~'0/% (solid 
line). Dashed line: off-axis distance evolution in the absence of a pump. 
The parameters are the same as in Fig. 1 
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Fig. 4. Evolution of the distance between the beam centers ro/a p along 
the nonlinear medium for Gaussian- (curves 1) and sech-shaped beams 
(curves 2). Solid lines: variational results; dashed lines: numerical 
results. The parameters are the same as in Fig. 1 

sech-shaped beams (curves 2). These curves are obtained by 
solving (1) numerically (dashed lines), using the split-step 
Fourier method. For comparison, the solid curves represent 
the variational results [see Fig. 2, the lowest curve, (5a-5e) 
and (A3-A6)]. As seen from Fig. 4, under the same initial 
conditions, the numerical results for sech-shaped beams are 
close to the variational predictions for Ganssian beams. 
Generally speaking, because of the energy redistribution and 
the shape-changes, the numerical results for Gaussian- and 
sech-shaped beams are much more optimistic and accurate. 
It should be noted, that the results for sech-trial functions in 
space are calculated under the optimum initial conditions for 
deflection of Gaussian beams. The optimum conditions for 
sech-beam profiles seem difficult to obtain in an analytical 
form (see Appendix A). Generally, at a certain delay only 
that part of the probe pulse overlapping with the pump 
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pulse will be deflected. Exiting the nonlinear medium, the 
probe beam may develop oscillatory wings, as a result of  
the optical wave-breaking [ 11 ]. Under this probe beam/pulse 
distortion, the probe beam center should be attributed to the 
mostly deviated maximum in the temporally-averaged probe 
beam profile [11]. It should be noted that in the practical 
cases considered [10, 11] this peak strongly dominates the 
oscillatory wing of  the deflected beam. 

In view of  the above mentioned results, we will try to 
propose an experimental arrangement for measuring pump 
pulse durations based on the induced probe beam deflection 
in an off-axis geometry. The potential experimental setup is 
shown in Fig. 5a. The two incoming beams, the pump (to be 
measured in time) and the probe beam, enter the nonlinear 
medium with a length xr, ~, having an initial axis separation 
ro(X = 0) and an initial angular deviation 0. A linear diode 
array placed in a proper distance L M from the entrance of  
the medium, can be used for determining the position of  
the probe beam center in the plane of measurement. This 
distance should be large enough for an effective angular 
separation of  the beams. Figure 5b shows the results for 
the normalized beam separation evolution ro(x)/a p, obtained 
by solving (5a-c) under the simplifying assumption that 
the pulse durations and their mutual temporal disposition 
does not change significantly inside the nonlinear medium 
(U d ~ 0 and Usp ~ 0). For the numerical example we have 

chosen XNL : 7cm,  ias/ap)[x= 0 = 0.4, (ro/ap)[x= o = 0.4, 

0 = -- 2 × 10-3rad,  L M = 100cm, A n  = (1/2)n2[Ep[ 2 = 
- 5 . 7  x 10 -5, r s = Up = 10ps. The dashed line represents 
the linear propagation of  the probe beam without influence 
from the pump. The solid cmwes correspond to the probe 
beam propagation for different values of the initial delay 
r d with respect to the pump pulse duration. As expected, 
the presence of a pump leads to a maximum probe beam 
deviation at % = 0, whereas at % = 5Up the probe beam 
propagation is practically the same as in the linear case. It 
should be noticed, that the dependence of  the probe beam 
center position at the linear diode array is not linear with 
respect to rd/U p. The resolution of  this position will be 
limited by the spatial resolution of the position sensitive 

• detector (typically 25 gm). 
For practical use it is necessary to derive an approximate 

analytical relationship, appropriate for a fast deduction of  the 
pump pulse duration. At r a >> Us, Up, the probe beam phase 
front distortions are negligible and it continues to propagate 
as a plane wave (G(x) = 0, dro/dx = 0). Therefore, (5c) 
can be rewritten in the form 

2 2-3/2 D aZP (a2c°2 q- apCOp) 
a4w4ks ]kIPM(As)[ [ dp ]2ap 

Up [ U2max ] 
- / 3  (u 2 + u2)1/2 exp ( rsgT~2)]  , (8a) 

where 

( 47 .2 ~ --1 ( 2r  2 
D = 1 -  2 2 2 2 exp 2 2 2 2 " (8b) \ asW s -[- apCOp J \ asW s .+ apCOp J 

In (8a) %max is the maximum initial temporal delay between 
the pulses, for which the linear and the nonlinear probe beam 
propagation regime cannot be resolved and/3 is a constant 

L zM 

a 

i ga=O 
~-a >>%p 
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Fig. 5. a A proposed experimental setup for all-optical streaking 
using induced phase-front distortions; b Signal beam d e v i a t i o n  ro/a p 
as a function of distance cC/LDs to the position-sensitive detector 
for different initial delays r D. XNL = 7cm, (as/ap)l~= o = 0.4, 
(ro/ap)lx=O = 0.4, 0 = - 2  x 10-3rad, L M = 100cm, An = 
(1/2)n21Epl 2 = -5 .7  x 10 -s, r s = rp = 10ps and LDS = 200cm. 
Dashed line: linear propagation of the signal beam without a pump 

(/3 >> 1 corresponds to a dominating diffraction divergence). 
Let us introduce the notation 3' = [apCOp/(asCOs) ]lx=O. Making 
use of  the relations 

IApl 2 = 8rrIp/(CnOs) (9a) 

and 

IF (1 q- ,-}/2)3/2 V/~C/~2Tb02s 
PCRIT --  2v/~7 2 IPM ' 8re In2 (As) I (9b) 

Np • Pp/ pIFRIT , 

one can derive an alternative form of (8), namely: 

(1 + @)U2 D 

2x/27 Np 

[ 2 1 Up rama x (10) 
- / 3  (Us + Up )X/2 exp (u2 + " 

In (9) /DIFIT is the critical power for induced focusing (IF) 
of a probe beam, on-axially aligned to the pump beam. 
The term comprising "/ reflects the enhancement of  the 
critical power for IF at 3' = [apWp/(asWs)] > 1 due to 
the reduced refractive index change over the cross-section 
of the probe beam [17]. The quantity /3Np/D can be 
obtained by a calibrating measurement of  Tdmax (Fig. 5b) 
with pump and probe pulses of same duration. Using a 
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reference channel for the pump to eliminate the pulse-to- 
pulse instabilities from the experimental conditions one can 
deduce the value o f /3  for the particular position-sensitive 
detector. The numerical calculation, according to (10), at 
T s = Tp = 10ps, (as/ap)lz=O = 0.4, (ro/ap)lx=O = 0.4, 
0 = - -2  X 10 -3 rad, 7 = 2.5, and Np = 2 (see Fig. 4, solid 

curve 1) gives a value of (/3/D) = 516. If  r s / r  p = 10, the 
relative error between the results of (10) and (5) is within 
10%. In our opinion, this is the typical inaccuracy of the 
analytical approximate relation, given by (9), compared to 
the variational results (5). 

As can be seen from Fig. 5b, by the set of  parameters 
considered and 1 mrad probe-beam deflection, the variational 
approach predicts an accuracy of the order of  30%. In con- 
trast, the numerical method which can account for the beam 
profile evolution by the same set of parameters predicts a 
measurement accuracy of  better than 5%. Unfortunately, the 
estimation of  the temporal form of the measured pulse, pos- 
sible in an streak-camera measurement, seems impossible. 

Conclusion 

In a medium with cubic nonlinearity the pump-induced 
probe beam phase front distortions can be used to achieve 
all-optical streaking. A variational model of the spatio- 
temporal dynamics of this process is presented, resulting 
in a set of differential equations for Gaussian- and sech- 
beam profiles. A novel technique for measuring pulse widths 
based on the induced deflection of an off-axis probe beam 
copropagating with the pump beam is proposed. A simple 
analytical expression is derived for an on-line deduction of 
the pump pulse duration at the expense of  an inaccuracy 
within 10%. With a proper inert gas as a nonlinear medium, 
such a device would combine the fast response of the 
electronic nonlinearity with the possibility for measuring 
pulse widths in the short-wavelength region. The method 
discussed can also find application in all-optical deflectors, 
modulators, memory' and switching devices. The progress in 
tunable ultrashort sources, especially those based on solid 
state/semiconductor materials seems to make the idea of  all- 
optical deflection in the short-wavelength region viable. A 
device based on this principle seems to be realizable and 
relatively simple. 

Appendix A 

According to the notations introduced the pump and probe beams are 
assumed to be of sech-type: 

As(x) exp [-- (r -- TD X/ZSp)2 +ibs(x)r 2] 

x sech [r - ~o(z)l exp [ _  i kse~ z)~2 ] 
L asws(x) l , (A1) 

¢p(m, r, r) = Ap(x) exp - - -  + ibe(x)r 2 
Up(X) 2r2(x) 

X sech [ ~ ]  exp [ - i kPQp~x)r2] , (A2) 

Applying the variational procedure, we obtain a system of differential 
equations. Three of them, &os/dx, dro/dx, and drs/dx, are identical 
to (5a), (5b), and (5d), respectively, and 

dos 2 4 6kIPM()~s) [Apl2 (B - G) 
d x  - - ~ s  2 2 4 4 2 3 3 2 "/r ]¢sasCO s 71- ]%askOsCO p 

rp [ (rD_ 2_=,Sp)2] 
X (rs2 + r2)1/2 exp ~ r2 + r2 j ,  (A3) 

dbs = _ 4%b2 -~ % hmM(As) IApl2B Tp 
a~ r4 2as~s~ (r~ + r~)3/2 

[1 (rE 2- XUsp )2 ] exp [ (rE Z - xb'SP)2 ] ;< (A4) 
# + #  / L i f + #  / '  

where 
+oo 

/ sech2r  -- --qsech2Fr-r°(x)7 dr, (AS) /3= 
Lapwp(x)J L asWs(X) J 

- - oo  

+0o  

c =  f secU2[~]sech2[ r-%(x)] 
Laewp(x)J L as~s(X) J 

× sb [ r  - F r - L asws(X) J L~s~(z)  J dr. (A6) 

Unfortunately, the integrals have an analytical solution at small dis- 
tances between the beam centers only [ro(x ) << as~s(X), apwp(X)]. 
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