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Pulse Shaping and Shortening by Spatial Filtering of
an Induced-Phase-Modulated Probe Wave

A. Dreischuh, E. Eugenieva, and S. Dinev

Abstract—All-optical deflection and spatial filtering have been
used to theoretically model pulse shortening and shaping. Good
agreement is obtained with the experimental results of other
authors. Pulses with a shortening coefficient of the order of 10,
special forms as super-Gaussian, triangular-like, and pairs of
pulses with an adjustable peak-to-peak ratio are obtained.

I. INTRODUCTION

MANY fields of modern optics (e.g., high-speed op-
ical nonlinear fiber optics, time-resolved spectroscopy)
specially shaped optical pulses are desired [1], [2]. In re-
cent years, a variety of techniques for pulse shaping have
been developed. One of these techniques includes pro-
grammable pulse shaping of femtosecond optical pulses
using a spatial filter mask [3]-[6] or a multielement liquid
crystal modulator [7] to manipulate the spatially dispersed
optical frequency components. Alternative approaches
employ intracavity self-phase modulation and temporal
pulse shaping in a grating pair compressor [8]-[10], Bragg
selectivity of volume holograms [11], or cross-phase-
modulation-induced compression of probe pulses by pump
pulses [12]. The approach of Kobayashi ez al. {131, [14]
involves a high-speed electrooptic element to deflect and
phase-modulate the light passed through, followed by a
spatial filter.

The spatial effects of the cross-phase modulation in an
optical Kerr-like medium (induced focusing [15]-[17],
self- and induced deflection [18]-[20]) are studied exten-
sively, both theoretically and experimentally. These phe-
nomena originate in the induced refractive index change
along and across the nonlinear medium and beam cross
section, respectively. Recently, the two-beam interfer-
ence technique has been used for the observation of
beams’ self-deflection in a three-dimensional Kerr me-
dium [21]. Intensity-dependent self-deflection, combined
with far-field spatial filtering, is used for picosecond laser-
pulse shortening. This result has stimulated the present
analysis.

In this paper we analyze theoretically the spatio-tem-
poral evolution of a probe beam/pulse, when a pump and
probe wave copropagate in a nonlinear medium with an
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initial angular deviation and/or off-axial separation. With
this base, we show that a simple spatial filtering of the
deflected probe wave can lead to the generation of optical
pulses with a special shape and to a reduction of their
duration. Good agreement is found with the experimental
results of Barthelemy et al. [21].

II. THEORETICAL ANALYSIS

Let us consider the following arrangement (Fig. 1).
Two beams/pulses, the pump at wavelength A, and the
probe at A, enter a planar nonlinear medium of length Ly,
with an initial off-axis separation ry and/or initial angular
deviation 8. Without loss of generality [19], the nonlinear
medium is considered to be resonant and self-focusing. A
slit placed at a distance Ly behind the exit of the nonlinear
medium performs a spatial filtering of the deflected phase-
modulated probe beam.

Generally, the pump and probe beam/pulse evolution is
described by the nonlinear equations
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where Vg, and B, , are the group velocities and the
group-velocity dispersion coefficients for the respective
waves, o, , = 1/(2k, ), k, , are the corresponding wave
numbers, and k**™ and kKP™ are the nonlinear coefficients
for self- and induced-phase modulation (SPM and IPM,
respectively), related to the nonlinear refractive indexes

n¥™ and nf™
K™ = nPTk,/[2ng,], KP™ = niP™k/[2n,].

The four-wave frequency mixing terms in (1) could be
neglected, since they are not phase matched in the inter-
action geometry considered [19].

Because of the limited computing resources available,
we solved (1) using a modification of the split-step Fou-
rier method, assuming a planar nonlinear medium with a
diffraction-nonlimited coordinate r and neglecting the
group-velocity mismatch and the group-velocity disper-
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Fig. 1. Interaction geometry considered (NLM—planar nonlinear medium
of length Ly, , placed at a distance L,; \,, \,—wavelengths of the interact-
ing pump and probe waves; J—initial angular probe beam deviation).

sion. The latter two assumptions enable us to treat time
as a parameter at the expense of failing to adequately de-
scribe the physical picture of input pulses in the femto-
second time domain. More precisely, Ly, and L, should
be much smaller than the dispersive length L, = rf o
| B35, and the walk-off length L,, = (12 + 72)'%/|V ;' -
Vg‘p'|. In view of the above restrictions, the femtosecond
response of the media with an electronic nonlinearity
(e.g., inert gases) could be regarded as instantaneous.
Each pulse was divided into 4N slices, each having du-
ration 7. = 7, ,/N. The minimum slice number required
(N = 50) was obtained from both energy conservation and
the reproducibility of the results against increasing N
twice. As a consequence, the initial temporal delay 7,
could be involved adequately if 7, = M7ry;.., where M is
integer. For simplicity 7 = 7, = 7, is assumed.

A. Qualitative Picture of the Process
The input waves are assumed to be Gaussian in both

time and space:
—2 exp j — _,2 2a
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where A; are the slowly varying field amplitudes, a, and
a, are the beam’s radii, and the spatio-temporal coor-
dinate system is taken to be connected with the pump.
Fig. 2 shows the probe-wave intensity distribution in both
time and space at the exit of the nonlinear medium. The
parameters considered are Ly, = 6 cm, Ly = 94 cm, q,
= 0.1 cm, aj/a, = 0.4, ro/a, = 0.4, 7, = 0, An =
1/2nf™|4,|* = 5.5 - 107, wavelengths A, = 248 nm and
A; = 264.4 nm and the nonlinear medium is Xe at 1 atm.

Yp(r, x =0, 1) = A exp {—

(2b)
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Fig. 2. Spatio-temporal intensity distribution of the probe beam/pulse at
the output of the nonlinear medium.

In a resonant medium if A\; + A, is near a two-photon
resonance, A, and \, being far from single- and two-pho-
ton resonances, one can ignore the pump beam/pulse self-
action. Accounting for the pump beam diffraction only
simplifies considerably the calculations and reduces the
computing time required. Generally, the nonlinear ab-
sorption and energy flow, enhanced by a two-photon res-
onance, could lead to distortions of the interacting wave
profiles. In the starting equations (1), the four-wave-mix-
ing terms are omitted, since they are not phase matched.
In addition, the nonlinear absorption (proportional to
{14,0/*|450|*}"" is expected to be low in a pump/probe
approximation.

Our attempt to precisely model the experimental results
of Barthelemy et al. [21] in CS, revealed input intensities
several times higher than those causing self-focusing in-
stabilities. The two-beam interference pattern used in [21]
experimentally allows stabilization of this effect, but is
very difficult to model. The parameters of our model, in
spite of the resonant interaction, allow a nearly quantita-
tive comparison with the experimental data.

The interplay between diffraction and probe-beam de-
flection inside the nonlinear medium does not signifi-
cantly change the intensity distribution straight at the exit
of the medium (Fig. 2). Only a small spatial asymmetry
near the pulse center can be observed. The picture changes
completely when the probe wave passes a distance Ly =
94 cm after the exit of the nonlinear medium (Fig. 3). The
spatial oscillatory behavior of the beam at a fixed local
time is a manifestation of the spatial analog of the optical
wave breaking recently observed [19]. At synchronous
pump- and probe- pulse propagation, it is natural to ex-
pect a maximum probe-beam deflection near the common
pulse center. As seen from the figure, the spatial oscilla-
tions are also most pronounced near the pulse maximum.
This is to be expected, since the maximum pump intensity
in this area induces the highest phase shift on the probe
wave. The eventual temporal delay can modify the tem-
poral symmetry of the probe wave. Intensity dependent
probe-beam deflection and optical wave breaking can also
be expected at coincident but angularly deviated beams at
the nonlinear entrance face (ro(x = 0) = 0, 3 # 0). Fig.
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Fig. 3. Intensity distribution of the probe beam/pulse propagated 94 cm
from the exit of the nonlinear medium. Note the formation of spatial wave
breaking near the pulse center.

4 shows the transverse distribution of the central part of
the probe pulse (local time ¢t = 0 and 7, = Q) at & = 0.5°
(curve 2), 1° (curve 3), 1.5° (curve 4), and 2° (curve 5).
Curve 1 corresponds to a perfect axial and angular align-
ment of both beams. As seen, the modulation depth of the
oscillatory probe-beam wing as well as the intensity of the
maximum deviated peak increase with &.

The physical idea to achieve pulse shaping and short-
ening of the probe pulse is to transmit only a portion of
the high-speed optically deflected probe beam/pulse
through a spatial filter (e.g., slit). The proper initial angle
¢ between the beams is to be found, as well as the opti-
mum beam diameters and off-axial distance, the initial
temporal delay between pulses, slit dimension, and posi-
tion in order to obtain the desired pulse form and dura-
tion.

B. Numerical Analysis

As a first step, we have modeled the probe pulse, re-
sulting from a spatial filtering of the deflected probe beam
(later called ‘“signal’’). Synchronous pulse propagation is
assumed and the model parameters are a, = 0.1 cm,
aja, = 0.4, An™ = 1.1 - 107%, Ly, = 6 cm, and free-
space propagation length L, = 94 cm. Under these con-
ditions, the slit could be regarded as being placed in the
far field. The particular values of L, and the slit width are
necessary to determine the conditions under which the en-
ergy efficiency (compression coefficients, respectively) are
calculated. It should be pointed out that the center of
gravity of the deflected probe wave and the peak of the
beam/pulse do not coincide [22]. In our view, a simple
imaging in the focal plane of a lens is not suitable for
achieving the actual far-field probe beam profile in front
of the slit.

Fig. 5 plots the signal power versus /7, at ¢ = 0
and ro(x = 0)/a, = 0.4 (dashed curves), as well as at
¢ = 1.5° and ro(x = 0) = O (solid curve). Centering a
100-um slit at the maximum deviated peak of the probe
wave (local time ¢ = 0), the signal transmitted (curve 1)
has a super-Gaussian (SG) form (power of the super-
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Fig. 4. Transverse intensity distribution of the deflected beam at ¢ = 0,
initially coincident pump and probe beam centers [ro(x = 0) = 0] and
different angular deviation 8. 1—¢ = 0°,2—8 = 0.5°,3—9 = 1°,4—-9¢
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Fig. 5. Signal pulses obtained by the spatial filtering for zero [ro(x = 0)
= 0] (1) and nonzero (r¢/a, = 0.4) (2) offset between the centers. A 100-
pm slit is centered at the maximum deviated peak at local time ¢+ = 0.
Curves 3, 4—the same, centering the slit at the maximum probe beam de-
viation for local time |¢f| = t,/4. Insert: intensity distribution of the de-
fiected probe beam (local time ¢ = 0) in front of the slit, corresponding to
pulses 1 and 2.

Gaussian m 2). The signal obtained at ¢ = 0 and
ro(x = 0)/a, = 0.4 (curve 2) is approximately 4.7 times
shorter than the input probe pulse. This result is in a good
agreement with the experimental value of 5 of Barthelemy
and co-workers [21], achieved via spatial filtering of a
self-deflected beam in a nonresonant Kerr medium by 30
ps input pulses. As seen from Fig. 5, an initial angular
deviation ¢ (~1.5°) instead of an initial off-axis dis-
tance, may lead to a significant (2.25 times) increase of
the signal peak power. The insert in Fig. 5 shows the
transverse signal intensity distribution of the probe pulse
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central part (local time ¢ = 0) just in front of the slit. The
dashed lines indicate the corresponding probe beam axis
in the linear regime of propagation. The comparison is in
agreement with the observation in [21] that the greater the
deflection, the narrower the transmitted pulse, and that
the beam deviation reaches its maximum with the pump
pulse intensity and then returns to its initial value (see
also, Fig. 3). It should be pointed out once more that the
detailed comparison with [21] is difficult due to the com-
plicated highly elliptical pattern of the beam used there to
form a spatial soliton. The intensity in the interference
fringes along the great axis of the ellipse could only be
approximately determined. Nevertheless, the nonlinear
deflection angle in our model is 4 mrad, in reasonable
agreement with the result of Barthelemy et al. of dd =
ngAn/® = 4.2 mrad [21].

From our point of view, the approach introduced in
[21] has a large potential for pulse shaping and shorten-
ing. Several possible schemes will be analyzed in the fol-
lowing.

At 7, = 0, the leading and the trailing edges (local times
t # 0) are deflected symmetrically, but less than the cen-
tral part of the probe pulse. Placing the same slit closer
to the probe beam axis in the linear regime, one can select
two identical pulses from the less-deflected probe beam
parts. Such pulse pairs are plotted in Fig. 5 with a dashed
curve (rg(x = 0)/a, = 0.4, ¥ = 0) and a solid line
(rotx = 0) = 0, ¢ = 1.5°) curve. The 100-um slit is
centered at the maximum deviation for a local time |¢| =
7,/4. Again, the regime with an initial angular deviation
seems more attractive for achieving higher signal intens-
ities. All curves in Fig. 5 are normalized to the SG at &
= 0°. The energy efficiency of this scheme at the 100-gm
slit is 1.8 percent (respectively, 4.8 percent for ¢ = 1.5°)
for the SG pulses and 1.6 percent (respectively, 4.0 per-
cent at ¢ = 1.5°) for the twin pulses. Our calculations
have shown that for the SG pulses, the signal power en-
ergy increases and the signal rise and fall times reduce
with increasing the slit width up to 1 mm (energy effi-
ciency of approximately 13.2 percent). These values are
comparable to the 15 percent energy efficiency reported
in [1], [4], but the square optical pulses generated have
rise and fall times below 100 fs and a duration below 1
ps. An advantage of the technique analyzed in the present
work is that no initial femtosecond pulses are needed.
Shortening starting from longer pulses, an adjustable short
pulse, or pulse pair formation could be obtained in the
picosecond and subpicosecond ranges. Opening the slit
wider results in approaching the initial Gaussian pulse
shape. (Note that this is probably due to the neglect of the
group-velocity dispersion and requires further analysis at
initial pulse durations of less than 10 ps). In the genera-
tion of twin pulses, the slit should be kept reasonably nar-
row in order to achieve higher values of the peak-to-val-
ley contrast. In the case considered, at a 500-um slit, the
two-peak formation practically transforms in a smooth,
more or less rectangular pulse.

At a nonzero initial delay 7,, the physical picture be-
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Fig. 6. Evolution of the super-Gaussian signal pulses versus initial pump-
to-probe pulse delay 7,:a — 7, = 0, b = 7, = 0.57,, ¢ — 7, = 7,. Solid
curves—zero offset ro(x = 0) = 0 and noncollinear beams ¢ = 1.5°, dashed
curves—offset ro/a, = 0.4 and collinear beams.

comes more complicated. The probe pulse symmetry (see
Fig. 3) at a local time ¢t = O is lost. Nevertheless, this
offers another possibility for probe pulse shaping and
shortening via spatial filtering of the deflected probe wave.
Fig. 6 shows the pulses, potentially obtainable at
74 = 0.57; (curve b) and 7, = 7, (curve c) by fixing a
100-pm slit at the transverse position of the maximum de-
viated probe peak at 7, = 0. For comparison, the signal
pulse shapes at 7, = 0 are also presented (curve a). The
respective dashed lines represent the case ro(x = 0)/a, =
0.4, 8 = 0, the solid lines correspond to ry(x = 0) = 0,
? = 1.5°. All curves are normalized to the peak power
of the SG pulse at # = 0 and ro(x = 0)/a, = 0.4. The
comparison shows that an initial angular deviation is pref-
crable in order to achieve larger peak powers (respec-
tively, energies). With increasing 7, the pulses become
asymmetric, approaching triangular form. However, as
expected, increasing 7,, the peak power energies tend to
decrease. An initial delay 7, will also change the double-
peaked symmetric pulse formation from Fig. 5. Fig. 7
shows the signal pulse shapes, obtained numerically with
rox = 0)/a, = 0.4, ¢ = 0° and a 100-um slit placed at
the maximum deviation for local time |z| = 7,/4. Curve a
corresponds to 7, = 0 (see Fig. 5, the dashed curve), curve
b corresponds to 7, = 7,/4, and curve c corresponds to 7,
= 7, This figure indicates the possibility of achieving
pairs of pulses with durations considerably shorter than
the initial one, and with an adjustable ratio of their peak
powers. Such pairs of pulses may be potentially applica-
ble in studying soliton-soliton interactions and in pump
and probe schemes. Qualitatively similar behavior was
found in the case of initially centered but angularly
deviated pump and probe beams.

Furthermore, we tried to numerically find the maxi-
mum probe pulse shortening, e.g., the minimum achiev-
able signal pulse duration after the spatial filtering of the
deflected probe wave. Our analysis shows that at 7, = 7,,,
the optimum initial delay is 7, = 7,. This may be attrib-
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Fig. 7. Evolution of the twin pulses into signal pulse pairs with adjustable
peak power ratio. Collinear beams ¢ = 0 and offset ro/a, = 0.4; slit =
100 ym. Curvea — 7, = 0; curve b — 7, = 7,/4, curve ¢ — 7, = 7,.
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Fig. 8. Signal pulse narrowing at 7, = 7,. Solid curves—d = 1.5°, ry =
0; dashed curves—d = 0, ro/a, = 0.4; 1—slit 300 um, compression 11.8
times, energy conversion 5.1 percent; 2—slit 300 um, compression 20,
energy conversion 2.1 percent 3—slit 100 um, compression 15, energy
conversion 1.7 percent 4—slit 100 pm, compression 22, energy conversion
0.7 percent.

uted to the strong intensity variations of the Gaussian tem-
poral pulse shape assumed at local time ¢ = 7,. Naturally,
for sech- or other types of input pulses the optimum delay
may appear to be different. Fig. 8 plots the signal shapes
expected after a slit centered at the maximum devia-
tion of the probe at probe local time ¢t = 0 for 7, = 7,
(7, = 7). The solid curves correspond to ¢ = 1.5° and
perfect initial centering of both beams at the entrance face
of the nonlinear medium. The dashed curves are calcu-
lated at ro(x = 0)/a, = 0.4 and zero initial angular devia-
tion. Curves 1 and 2 correspond to a slit width of 300 um,
and respectively, curves 3 and 4 correspond to a slit width
of 100 pm. The signal pulses are 10-20 times shorter than
the input probe pulses. In all cases the signal duration
increases with an increase of the slit width. An initial an-
gular deviation instead of an initial off-axis distance seems
preferable in view of the enhanced signal peak power. All
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curves are normalized to the peak power of the signal at
¢ = 1.5° and a 300-um slit width. Qualitatively, the sig-
nal pulses have an oscillatory wing, resulting from spatial
optical wave breaking. These oscillations become weaker
as expressed by increasing the slit width because the pic-
ture is spatially integrated over the slit. The compression
coefficients and pulse shapes obtained are similar to those
predicted for a cross-phase-modulation-induced pulse
compression [12]. Characteristic for such pulses are some
ringing on the leading side and energy concentration near
the trailing side of the pulse.

III. CoNCLUSION

In conclusion, we have theoretically modeled the inten-
sity-dependent probe beam/pulse deflection with a sub-
sequent far-field spatial filtering. The physical mechanism
consists of an induced refractive index change along and
across the nonlinear medium and beam cross-section, re-
spectively. Two configurations are considered—initially
collinear propagation with a suitable off-axis beam dis-
tance and initially noncollinear beams with zero radial
offset. With this base, schemes for a probe pulse shaping
(super-Gaussian of second power, triangular-like and pairs
of pulses with an adjustable peak-power ratio and peak-
to-peak distance) are proposed. Each of these signal pulse/
pulse-pairs has a duration less than the initial probe pulse
duration. At a suitably chosen initial pump and probe
pulse delay, a probe compression ratio of the order of 10
or more could be achieved. Good agreement with the ex-
perimental results of Barthelemy et al. [21] is obtained.

An inert gas (Xe) with a femtosecond response time of
the electronic nonlinearity and picosecond input pulses are
considered. If a Kerr-like nonlinear medium with a pico-
second response is used (about 2 ps for CS,), the phase-
modulation effect may not exactly reproduce the temporal
profile of the pump pulse and, therefore, should be care-
fully accounted for. Further considerations and higher
computer resources are required to analyze in detail the
possibility of such a pulse shaping and compression start-
ing from subpicosecond and femtosecond pulses, as well
as under a full cross-modulational coupling between the
two beams/pulses.
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