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Abstract. The formation of two-Dimensional (2D) odd dark
spatial solutions is analyzed pumerically at an initial heli-
cal dark-beam phase distribution. Experimental results are
presented for the first time confirming the existence of two-
dimensional optical even dark solitons (ring dark solitons).
Several aspects of the evolution of input 1D and 2D odd/even
dark beams are compared qualitatively.

PACS: 42.65

The theory of optical solitons has been extensively studied
since 1971 when Hasegawa and Tappert [1] pointed out the
existence of temporal solitons in Kerr media as a result of
a balance between Group-Velocity Dispersion (GVD) and
Self-Phase Modulation (SPM). The bright temporal solitons
arc applicable to optical communication systems and results
have been published in [2, 3]. Generally. the evolution of a
beam/pulse is described by the (3+1)-dimensional NonLinear
Schrodinger Equation (NLSE)
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where > is the longitudinal coordinate. «. y and ¢ are the
two transverse and the temporal coordinate. respectively.
k = 27/X is the wave number corresponding to the pulse
wavelength A, o is a constant reflecting the GVD. and the
term comprizing 7 = (2k)~! accounts for the spatial beam
diffraction in both transversc dimensions. The nonlinear term
in (1) involves the intensity-dependent medium refractive-
index correction ny | £ 2, leading to SPM. The behaviour
of the solitons depends on the relative sign of the nonlinear-
ity and diffraction/dispersion. The diffraction coetficient .3 is
always a positive one (i.c.. the diffraction tends to broaden
the becam only), whereas the GVD coefficient . depend-
ing on the refractive-index wavelength-dispersion ng(A). can
change its sign. As a consequence. self-defocusing media
could support dark spatial solitons only. while bright and
dark temporal solitons could both exist in the case of 11 < 0.
The one-Dimensional (1D) fundamental dark spatial/
temporal soliton is an anti-symmetric function of space/time

with an abrupt phase shift (phase step) of 7. and zero in-
tensity at its center [4]. This soliton is denoted as “dark odd
soliton". in contrast to the “dark even soliton’. which do not
have an initial phase shift. As a consequence. independent
from the background intensities. the even input formations
split at least into two odd dark solitons with a reduced con-
trast. cach one with its own phase shift (less than 7) [5,
6]. 1D Dark Spatial Solitons (DSS) were experimentally ob-
served in the form of dark soliton stripes [7]. The influence
of backgrounds of finite extent on their evolution character-
istics was studied in [8].

For the first time. the existence of stable dark 2D self-
supported beams was described in [9] on the conjecture that
solitons are analogs of linear guided waves. Optical Vortex
Solitons (OVS) were observed [11] and analyzed [12] by
Swartzlander and Law at nn~ < 0. The OVS is characterized
as a dark cylindrical beam with a 27 helical phase ramp. The
formation of a dark vortex core is known from the pioneering
analyses of superfluidity [13. 14]. Experimentally. OVS are
gcnerated by employing the modulational instability of 1D
DSS against a long-period transverse modulation (discrete
transverse phase retardation {11]).

Self-defocusing nonlincar media can support also dark
solitary waves with a ring symmetry. The existence of such
formation was predicted recently by Kivshar and Yang [15].
A general formula describing the internal dynamics of the
ring dark solitons was also derived.

The goal of the present analysis is to demonstrate ad-
ditional evidences that two-dimensional DSS (2D DSS) do
exist. We present numerical results on the generation of 2D
Odd Dark Spatial Solitons (2D ODSS). The initial conditions
considered (hyperbolic-tangent intensity distribution of a ro-
tational symmetry and a 2 helical phase ramp) enable us
to study the 2D ODSS formation in the absence of an ini-
tial 2D modulational instability. We present. up to our best
knowledge. the first experimental results confirming the ex-
istence of 2D Even Dark Spatial Solitons (2D EDSS also
called ring dark solitons). The terms 2D ODSS™ and 2D
EDSS" arc preferred instead of -optical vortex soliton™ and
‘optical ring soliton’. since:
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Fig. 1. Helical phase distribution for obtaining a = phase jump in an arbi-
trary radial dircction
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Fig. 2. Cross sections of the 2D input odd dark formation (dashed line) and
the self-supported 2D ODSS at = = S/ (solid line)

(i) The qualitative similarity in the evolution of the 1D
and 2D dark self-supported formations should be accompa-
nied with a terminological similarity:

(if) OVS and 2D ODSS seem to differ significantly only
in the early stages of their formation. The 2D DSS should
be stable solutions of the (2+1)-dimensional NLSE [16]
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which can be solved numerically.

Our modelling of the nonlinear evolution of the 1D and
the 2D input dark formations is based on solving (2) for
continuous-wave (CW) or quasi-CW beams. The numeri-
cal procedure used is a 2D generalization of the split-step
Fourier method [17]. The 1D version of this method is fre-
quently used for modelling of nonlinear optical processes in
optical fibers.

In order to ensure adequate initial conditions for the gen-
eration of a 2D ODSS [11. 12]. a 2D spatial phase distribu-
tion, shown in Fig. 1. should be imposed on a plane wave
front. Characteristic of this phase distribution is the = phase
shift in each radial direction (localized at the soliton center).
This distribution could be predicted intuitively by adding
a rotational symmetry to the transverse phase distribution

Fig. 3a-d. Characteristic evolution stages of 4 2D EDSS obtained experi-
mentally: (a) ditfraction compensated by the medium nonlinearity: (b) first
saliton ring: () initial stages of a second soliton ring; (d) two soliton rings

of a ID odd dark soliton [18]. On the basis of numerical
simulations. we proved that it is adequate in two spatial di-
mensions. We analyzed the evolution of an initial intensity
dip of the form (written in cyvlindrical coordinates):

L 200 =00 = Ao Boo) tanh(r /)

X explidr. 21 . =7+ 3/2)]/2 , 3)

with a phase distribution
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and a super-Gaussian background profile
I3y = exp {—(1',/"151'0)@ (&)

along a self-defocusing (1> < 0) nonlinear medium. In (3-
5). 1 and - are the radial and azimuthal coordinate, respec-
tively. and 11 is an odd number. The known initial condition
for the 1D case could be reproduced by omission of the co-
ordinate y in (3-5). In order to avoid a dip-to-background
interaction. the half width at I/e level of the background
beam is chosen to be 13 times larger than the width of the
dark formation.

Figure 2 shows a radial cross section of the input (z =
0y 2D dark odd formation (dashed line). The solid curve
demonstrates the 2D dark beam shape at / = 57y, where
Lxp = (kn~ 477" s the characteristic length of beam self-
action (nonlinear length). As usual for dark solitons. Ly, de-
pends on the background intensity. The shape of the resulting
2D dark formation as well as its phase portrait closely repro-
duce the initial distributions given by (3-3). The smoother
wings (Fig. 2) indicate that the input 2D hyperbolic-tangent
profile (assumed in 2D) slightly differs from the exact one
for the 1D case. Nevertheless. this approximation [ 14] seems
reasonable [11]. Tt is interesting to note that the background
intensity (A7) required for obtaining a 2D ODSS is found
to be V2 times higher than the respective value in the 1D



Fig. 4a—f. Comparative numerical results on the evolution of 1D (a, b, ¢y and 21 «d. e, £ even input dark ~oliton formation. The characteristic lengths for
diffraction compensation (b, ¢) and first soliton pair/ring formation (¢, ) are mentioned in the text

casc. This was mentioned for the first time in [11] [com-
ment after (2)]. Physically, these numerical results could be
attributed to the higher diffraction in two spatial dimensions
as compared to the diffraction in onc dimension.

Exceeding more than twice the background intensity for
the fundamental 2D ODSS results in an evolution of the
input single odd dark formation into an on-axis fundamental
2D ODSS and a diverging “gray” {ringe. This behaviour.
known for the 1D odd dark solitons [18]. strongly supports
the statement that 2D ODSS should really exist. Mutual 2D
dark soliton attraction and repulsion. known for 1D bright
solitons, was observed too during our numerical simulations
and will be discussed elsewhere.

As a second step, we modelled numerically and observed
experimentally the evolution of 2D Even Dark formations
(2D EDSS). Similarly to the 1D EDSS. the absence of an
initial spatial phase modulation results in a splitting of the
input dark formation into a diverging gray ring. In the first
analysis [15] these formations are called “ring dark solitons’.
The initial conditions we described by (3. 5) at & = const. 2D
EDSS are easily produced experimentally by imposing 2D
amplitude masks in front of the nonlinear medium (ethanol
slightly dyed in red). For the purpose of a comparative ex-
perimental analysis, the masks consisted of dots (2D) and
stripes (1D) of equal diameters/widths ranging from 50 to
250 pm. A copper vapour laser source (P = 4W) was used

to produce the buckground signal. required for a background
self-defocusing in the thermal nonlincar medium. This tech-
nique is routinely used for generating ot 1D dark spatial
solitons (dark soliton stripesi |7. 19. 20|. The evolution of
the input dark formations is recorded by a CCD video cam-
era and a frame-grabber.

Four characteristic pictures are observed experimentally
by increasing the intensity — 2D dark formation with a
diffraction compensated by the nonlinearity (Fig. 3a). dark
(“gray’) ring with a center intensity higher than the back-
around level (Fig. 3b). dark ring with a central dark dot
(Fig. 3¢) and two coaxial dark rings (Fig. 3d). In order to
avoid the CCD camera saturation. Fig. 3d was recorded with
a neutral density filter placed directly n front of the CCD
array. Our numerical simulations confirm that. after the first
ring formation. the center intensity should be expected to be
higher than that of the background. The interference lines re-
sulted from cuvette input and output faces and were difficult
to avoid. Nevertheless. the results form Fig. 3 are indicative
for the modulation stability of the 2D ODSS.

The comparative numerical simulations in one and two
spatial dimensions (Fig. 4) show that. in qualitative agree-
ment with experiment. the input even dark formations (Figs.
4a.d: Z =0) do split along the nonlinear medium. forming a
pair of stripes (1D ODSS): Fig. 4c (at / = 7.66 L~ ) or a 2D
dark ring formation (2D ODSS): Fig. 4f (at Z = 7.0/x1).
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It should be pointed out that the initial diffraction com-
pensation (Figs. 4b.e) and the subsequent spatial splitting
(Figs. 4c.f) take place earlier (i.c., at shorter distances in
the nonlinear medium) for the 2D even input dark forma-
tions (at ./ = 2.33Ly.) as compared to the 1D dark ones (at
7 = 2.67Lyp). In consistence with the 1D results of other
work [18], our numerical results showed the existence of
phase jumps (less than x) across 1D dark pairs. In the nu-
merical results, we observed similar phase jumps across the
2D dark ring formation. Opposite phase changes across the
2D EDSS ring are experimentally observed and will be dis-
cussed clsewhere. The transverse velocity of the 2D EDSS
exhibits a similar behaviour but it was found to be higher
than that of the 1D EDSS. These results are well-pronounced
indications for the existence of the 2D EDSS.

In conclusion, we have shown first experimental results
confirming the existence of 2D even dark spatial solitons
(ring dark solitons [15]). The generation of 2D ODSS 1is an-
alyzed numerically. Several aspects of a qualitatively similar
nonlinear evolution of input 1D and 2D even/odd dark beams
are discussed. From a practical point of view. 2D ODSS
could be used to form 2D single-mode optical waveguides
with nonlinear claddings [9. 11]. Two dimensional EDSS
may appear to be useful for all optical manipulation of
light, directing, switching and multiplexing/demultiplexing
of channels for transmission of optical information in bulk
media. The intensity dependence in the evolution of both
types of 2D formations discussed may allow real-time re-
configuration of these nonlinear devices to be achieved.
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