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2-D Asymmetric Induced Phase Modulation:
Spatial and Spatio-Temporal Aspects

N. Goutev, A. Dreischuh, S. Baluschev, and S. Dinev

Abstract— A multidimensional generalization of the Fresnel-
Kirchhoff theory for analyzing the far-field pattern of a probe
beam/pulse, passing trough a thin nonlinear medium is developed.
The experimental results obtained agree qualitatively with the
theoretical predictions. It is shown that the asymmetric induced-
phase modulation offers the possibility for a simultaneous shaping
and shortening of probe pulses.

[. INTRODUCTION

HE SELF-PHASE MODULATION (SPM) and induced-
phase modulation (IPM, XPM) originate in the
(self)induced refractive index change in the nonlinear
media. Self-bending of a nonuniform laser beam due to a
nonuniform medium refractive index change [1] is observed
with beams incident on nonlinear media at certain angles [2].
In a later work, a self-deflection of an asymmetrical (spatially
filtered) beam in a resonant nonlinear medium [3] and bulk
Kerr material [4] are observed experimentally in agreement
with the theory. The IPM, however, makes the physical
picture more complicated because of the possible mutual
temporal delay and/or the eventual axial offset between the
beams/pulses. In the spatial domain, an induced focusing
of optical beams in an off-axis geometry, occurring in self-
defocusing nonlinear media is proposed [5] and confirmed
experimentally [6], [7]. It is shown theoretically, that the
conditions, under which induced beam-deflection can occur,
depend also on the interaction geometry and induced focusing
may occur under self-focusing conditions too [81, [14]. The
intensity-dependent self-deflection, combined with a far-field
spatial filtering could be used for picosecond laser-pulse
shortening [4]. This result indicates, that the IPM should be
analyzed carefully in more than one transverse dimension.
The aim of this paper is to show that the 2-D spatial
or spatio-temporal experimental-data acquisition (theoretical
modeling, respectively) may lead to results quite different
from those obtained in a 1-D experiment (theory) in space
or time separately. The theoretical model developed and the
experiment performed strongly support this statement. The
angular-spectral intensity distribution of a beam/pulse with
an asymmetric induced phase modulation (AIPM) should be
considered as a source of potential experimental inaccuracies.
On the other hand, a simple far-field spatial filtering should
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lead to a simultaneous pulse shaping and shortening of the
transmitted signal.

II. THEORETICAL MODEL

In order to describe the evolution of AIPM beams/pulses
in a dispersive linear medium we develop a model, which
is a multidimensional generalization of the Fresnel-Kirchhoff
theory [9]. In an infinite isotropic linear medium, the optical
field amplitude could be expressed as a superposition of plane
waves [9]

E(ry.zt) = / ’ / - / E(ke ky.w)
40‘\:p {[(1“1‘ - ,uﬂ} dky dky dw. (1)

where k = (k. ky, k) is the wave-vector. w is the angular
frequency and k. k,. k..« satisfy the dispersive equation
(2a)

b= [Py = k2 - k)P

r = My
and

Fw) = nlw)lw/c). (2b)

In (2b). 3(w) is the wave-number and n(w) is the medium
linear refractive index. The function E(k,. k,, w) represents
the initial amplitude angular-frequency field-distribution and
could be obtained by a Fourier-transformation of E(x,y, z=
0, t).

Let us consider an optical field with a narrow angular-
frequency spectrum localized around (A, ky.w) = (0,0, wp).
In this case, neglecting the third and higher order terms, the
Taylor-series expansion of the dispersive equation (2a) yields:

ko =30+ AV Aw + 377 A%)/2 = 2+ K1/(250). (3)
where
-jé”) -

3w n=0.1.2 )

are the nth derivatives of the wave-number at the center
frequency wo. Substituting the reduced dispersive equation (3)
in (1) one can obtain

E(x.y.z.t) = exp {i(Joz — wot)} / /
CE (k. ke + AW
Cexp {113V AL/2 — ilk2 + k1/(2802))
cexp {i(kpr + kyy — du7)} dhe dhy dAw,
(%)

0018-9197/95504.00 © 1995 IEEE



GOUTEV et al.: 2-D ASYMMETRIC INDUCED PHASE MODULATION: SPATIAL AND SPATIO-TEMPORAL ASPECTS

where 7 =1 — ﬁ(()l)z is the temporal coordinate in a coordinate
frame, moving at a group velocity Vi, = 1/ ﬁén. It is
convenient to introduce the slowly-varying amplitude (SVA)
E(Ia Y, 2, T):

E(z,y,2,t) = E(x,y,z.7) exp {i(Boz — wot)}.  (6)

Rewriting (5) in terms of E(z.y.z.7) and it's angular-
frequency spectrum E(kz,ky, Aw) one obtains the result

» “+00 +o0 +oc
E(x,y,%f):/ / / E(x0.90,0,70)
J =00 -0 -0
(

W To— T,Y0 — Y: 70 ~T<,Z) d'TO dyo dTO:

(7
where
W(zo— T,90 — y,T0 — T:2)
— (2m) 3 (2m/(—iz05 ) ¥ 2m o/ (i2)]
exp { B2l =737 )
+(zo — x)* + (3o — y)Q]} ()

can be referred to as a linear dispersive-medium transmission
function. Equation (7) should be considered as a multidi-
mensional generalization of the Huygens—Fresnel integral [9]
for optical fields under SVA approximation. In the rest of
this section we analyze the particular case of a Fraunhofer
diffraction. Let us assume that in the input plane z = 0 the
optical field is localized in a spatial region of a transverse
dimension (2a) and in a temporal region of an extent 2A7. In
this case the infinite integration space could be restricted to an
integration within the intervals [—a. a] x [~a, a] X [~ AT AT].
According to (7), for all the points of coordinates (r.y.2.7)
which simultaneously satisfy the conditions z > a, y > 4,
7> Ar, the slowly-varying field amplitude E has the form:

E(z,y,2,7)

= C(2) exp {i(B/22)[(7/(~BoBs) + 25 + w6}
+a +a +AT

/ / E(20,¥0.0.70)
—a —a —AT
exp{—i(Bo/2)[ro7/(— BB + Tox + you}
dl‘o dyo dT(), (9)

where

C(z) = (2m)~3[2m [ (—izB5 )2 (2w B0/ (i2)].

Because of the assumed spatio-temporal localization of the
optical field in the plane z = O, the limited integration
space could be expanded to infinity. This form of (9) is a
generalization of the Fraunhofer diffraction integral [9].

Further, we will discuss two particular cases of a Fraunhofer
diffraction involving a monochromatic input optical field (2-
D spatial configuration) and an optical field of a translation
symmetry (2-D spatio-temporal configuration).
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A. 2-D Spatial Configuration

In the case of a monochromatic input optical field, the SVA
field-amplitude does not depend on time. Accounting for this
fact in (9), at a second plane with a nonzero z coordinate, the
corresponding field-distribution has the form

E(z,y.z)=(2m 72[27,‘30/(1';)] exp{[i3o/(22))[ed + vel}
. / E&'(Io.yo.O)

)
/.
-exp{[—i80/z][zox + yoy)} dro dyo. (10)

which, in the angular domain, is related to the distribution

Blkaky) = (2m) /j [ Ewow0)

cexp{—ilkero + kyyo} dro dyo. (1)

B. 2-D Spatio-Temporal Configuration

At a translation symmetry of the input optical field in z-
direction, the SVA field-amplitude does not depend on the
z-coordinate. At a second plane located at z # 0,

Ely.z.7) = (273 (i) [/ (= 3712
. exp{zﬂo/(’_?:)[(Tg/(—30~3(<)2)) +u3l}

- -+ -
/ E(y0.0.70)

cexp{—i3o/z[707/(= 3 .3((,2)) + yoyl}

dyo d7o. (12)

which is related to the angular-frequency field distribution:

- -
E(Aw. ky) :(zﬂ)-?/ / E(yo.70.0)
cexp{—i[kyyo — AwTo]} dyo dro.  (13)

L. 2-D ASYMMETRIC INDUCED-PHASE MODULATION

A. Spatial Aspects

Let us consider the following interaction configuration
(Fig. 1). Two laser beams (a pump and a weak non-self-acting
probe one) enter a nonlinear medium of thickness 1 with an
initial off-axis separation Ay. Both beams are assumed to be
mutually incoherent, Gaussian and are focused to equal beam
waists. The nonlinear medium is assumed to exhibit a third
order nonlinearity with a local and instantaneous response.
The far-field pattern could be observed on a screen, placed at
a distance L behind the exit of the nonlinear medium. If the
medium length [ is much less than both the nonlinear and the
diffraction lengths, the beam shapes remain nearly constant
inside the nonlinear medium [10]. Therefore, at the entrance
face and within the medium of length /, the square of the pump
(E,) and probe-field (E) amplitudes could be described by:

|Ep[2 = |EQF exp {-2ri/a’} (142)
o[ =|EJ exp {=2r*/a’}. (14b)
where 12 = (y — Ay)? + 2% and r? =y + z2. Because
of its low intensity, the probe field does not cause nonlinear
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Fig. 1. Analyzed interaction configuration.

effects itself. The probe beam experiences an asymmetric
phase modulation

2
Ad, = )\—WlAns. (152)
only as a result of the refractive-index correction
Ang = 271?‘\1]}32]2 exp {—2r3/a’} (15b)

induced by the pump. In (15) ni">(As:),) is the nonlinear
refractive index of the medium at the probe wavelength A,
and may have a resonance character versus A,. At the exit of
the medium the signal field-amplitude could be written as

E, = EY exp {-2r?/a?} exp {idés}. (16)
The 2-D angular probe beam field distribution (13b) could be
obtained by a Fourier transformation of (16).

At this point it is convenient to introduce the parameter NV,
defined as the maximum phase shift A¢P** divided by (27).
Physically, NV is the number of the far-field interference fringes
of the probe beam at an on-axis interaction. The dimensionless
coordinates Tg, Yo, 70, E and 71 used in the numerical
simulations corresponded to the respective spatial coordinates
normalized to the beam radii (assumed to be equal). Similarly,
the dimensionless angular coordinates @, &, are introduced
with a normalization to the angle of diffraction aig

(17a)
(17b)

Q

0y = oy /agig = kpa/(27)
ay =ay/ad;3 = kya,/(27r).

In the above notations, the angular probe beam distribution
(11) takes the form

N +0 +oo
B(az, ) = / Ezo. 30)

-exp{—i2n(@:70 + @Yo} dT dy.  (17¢)

where
E(Ty, 7o) = E? exp {75} exp {iAds}. (17d)
Ap, =27 N exp {—273}, (17e)

and could be evaluated by a 2-D Fourier-transformation.
The typical 2-D far-field angular distributions of the probe
beam obtained numerically are shown on Fig. 2(a)-(c) at .V =
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Fig. 2. (a) Two-dimensional probe beam far-field cnergy distribution at
on-axis beams. (b} y,/a = 0.4, and (¢) y../a = 0.8, N = 3.5

3.5. Fig. 2(a) corresponds to Ayg = 0 (i.e., on-axis beams).
The number of interference fringes is equal to the integer
part of V. Fig. 2(b) and (c) correspond to Ayp/a = 0.4 and
Ayo/a = 0.8. respectively. The obvious asymmetry of I (@,
@) is a result of the probe beam AIPM. The interference
fringes evolve in arcs. At a relatively small offset Ayg, the
number of arcs is equal to the integer part of N. At higher
off-axis separations (Ayp/a = 0.4) some of the arcs are of
reduced contrast [Fig. 2(b)]. Increasing the initial spatial beam
separation, the AIPM decreases due to the decreased effective
beam-overlapping. The probe beam wing-oscillations become
weaker and the central part of the beam grows [Fig. 2(c)]
approaching the undisturbed Gaussian spatial distribution. It
is essential to note, that the off-axial separation Ay breaks
the radial symmetry of the problem and the AIPM leads to a
modulation in the (@, Gy )-space.

Qualitatively. the results presented on Fig. 2(a)—(c) can be
explained in the following way. Each part of the phase-
modulated probe beam could be considered as a sequential
plane-wave propagating at an angle

a=2A_o/3

with respect to the initial axis of the probe beam. These
sequential waves interfere and minima (maxima, respectively)



GOUTEY eral: 20 ASYMMETRIC INDUCED PHASE MODULATION: SPATIAL AND SPATIO-TEMPORAL ASPECTS

e "
M1 T Bv= | v
P I.
Il Tabia | L
LA L
i HLM
— F "

] . probe beam - E fﬂs
ey TV 20
“: — - Em—— ] S—— f
e || losc -

Fig. 3. Expenmental sctup for ehserving a 2-D spatial optcal wave-breaking
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should be observed, If both beams wre on-axially aligned.
the probe-beam phase distnbution Mg, 1% symmetnical. The
interference pattern should consist of maxima in the form of
coaxial mings [Fip, 2(a)]. At an initial pump-to-probe axaal off-
set the phase distibution Adb, is asymmerrical. The sequenual
weaves [rom the less phase modulated probe-beam wing, which
contribute 1o the imterference maximuom, are weaker, In this
section of the probe-beam pattern, the interference maxima ane
of reduced intensity |Fig. 2(b}] and some interference fminges
break in arcs [Fig. 2{c)].

B, Experiniental Reaults

The experimental setup is sketched on Fig 1. Brefly, the
ouwtpul of a single-mode He-Ne lazer (P = S mW) was
gently Tocused and split into two parts with 4 variable pump
to-probe intensity ratio of at least 100, The pump clannel
comprized rranslation stage in order 1o adjust the beam off-
axis distance. Both heams (P00 < 25 mW) entered a 1-mm
quartz quivette filled with ethanol, shightly dyed with Nile
Blue (Lambdachrome). The quivette was mounted borirontally
in order to prevenl liguid's comvection. This combination
allowed a stromg (up o, = L5) thermel sell-defocusing on
the pump beam to be observed without & probe-beam self-
action. The 2-I spatial data acquisition was performed by
translatng a 1024 element hnear diode array (RETICON HL-
1024G) connected with a digital storage oscilloscope and a
PC-compatible computer. Let os define an effective laser beam
as a beam, which evolves in- and cutside a medium with & local
nonlinesr response m the same way, as compared to the beam
in the present (nonlocal) experiment, We meesured the number
of rings and the cuter ring diameter of the pump beam versus
pump power. The perfect Binearity of these dependencies is
indicative for the absence of saturation in the 5PM of the
pump and, therefore, of the probe-beam ATPM. Following
the aporesch from [11], {12], From the nonlinear deflection
angle 8% = 6,1 mrad, experimentally obtained at W = 5, we
deduced an effective pump/probe beam radius « = 500 pm
and an effective nonlinear tefractive index no = —1.1,10*
e W (e, An = nal = 31077 and (57 nax = 150 In order
1 achieve accurate nomerical results with & twe-dimensional
Fourier transformation of the modulated probe beam over 256
¥ 256 grid pints, we chose np to be L2 times lower than
the experimentzl value (i.e., N = 3.5). This scaling results in
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(2] [1:3]

Fig. 4. () Topalogy of the theorencally obtained 2-D probe-beam far-field
patiert al oi-axis beams [see Fig. 2all and (b} expenmentally oblained resuit.

a 1.4 times reduction of the numercally obtained nonlinear
deflection angle (8% = 4.4 nwad and (7 )yax = 11), but
does not affect the confidence of the numerical presented
resulLs,

Figs. 4ia), Sa), and 6la) are gray-scale images of the
thearetical results shown on Fig, 2. The circular symmetry of
the for-field patern in the case of on-axis beams [Fig. 4(a)],
a5 well as the probe-beam spatial oscillations due 1o the
AIPM [Figs. $a). &da}] are clearly seen, Fig. 4(b) shows the
experimental far-field probe-heam pattern obtained in an on-
axis geomelry and al a quivette input pump power of 23
mW, As expected, the picture 1s nearly circularly symimetric.
Because of the limited dynamic range of the linear diode array
omly the beam center and the cuter fringe are clearly displaved,
but, in fact, the number of fringes is five. A small ellipticity
is induced by the nonsqual heat-conduction conditions within
the guiverte. Fig. dib) plots the far-held probe-beam pattern
at an inital 130 g separation of the 300 pme-sized pump-
and probe beams (e, Jxpfo o= 0L32). Qualitatively, the
experimental picture [Fig. 3iby] is similar to the theoretical
prediction at Ay/e = 0.4 [Fig. 5(a)]. The higher visibility
of the probe-beam ares (Le. of the spatial oscillations due
to the ATPM) could be explaned by their comparable local
peak energy densities. Fig. 6ib) plots the same experimental
picture w0 Agyde = (L5 Qualitatively. it i comparable to
the predicted rar-feld probe beam pattern alb 2oy/a = L8
[Fig. f{a}]. The enhanced off-axis distance and the reduced
beam overlapping lead to a weakly distorted central part of
the probe beam dominating the oscillatory wings. Comparing
the 2-13 theoretical reseits [Figs. Ha) 3ta), and 6(a)) with
the experimental dara obained (Figs. 4ib). 5(b). and 6ib)] we
found a good qualitative agreement. (uantitative comparison,
however, is difficult 1o be dope due to the complicated two-
dimenstonal charscter of the interaction. limited dynamic range
of the dicde array. e, The main problem seems o be
that the thermal nonlinearity s nonlocal. whereas a localized
nonlinearity is assumed in the model developed (see Section
H-A). In principle, the nonlocality of the thermal experiment
can be overcome by using & lurger beam sice at hagher input
pavaers,

[n view of the good gualitative agreement between the theo-
retical predictions and the experimental resules we believe that
the 2-D model developed in Section I1 describes adequately
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(a) ()

Fig. 5. (a) Topology of the theoretically obtained 2-D probe-beam far-field
pattern at y,/a = 0.4 {see Fig. 2(b)] and (b) experimental result at Yo/a =
0.32.

(a) (b)

Fig. 6. (2) Topology of the theoretically obtained 2-D probe-beam far-field
pattern at yo/a = 0.8 [see Fig. 2(c)] and (b) experimental result at Yofa =
0.5.

the AIPM in a nonlinear medium of local and instantaneous
nonlinearity.

C. Spatio-Temporal Aspects

Further, we analyze in more details the situation depicted
on Fig. 7. Two laser beams/pulses focused with a cylindrical
lens into a spot of a high ellipticity enter a cubic nonlinear
medium with a mutual temporal delay A7 and/or an initial off-
axis separation Ay. Because of the translation symmetry, the
evolution of the intensity distribution in one spatial dimension
could be neglected. Under the assumptions made in Section
III-A, the square of the pump and probe field amplitudes are
considered to be of the form

|E,|? =|E2? exp {-2yi/a’} exp {—272/A?). (18a)
|E,)% = |E%|? exp {—2y%/a} exp {=272/A*}. (18b)
where At are the pulse durations (assumed to be equal),
y1 =y — Ay,71 = 7 — Ar. The probe field amplitude at
the exit of the nonlinear medium is described by
E, = E? exp {~y*/a’} exp {—77/At*} exp {iA¢s},
(18c)
where
Ay = (2m /A )1{2n M E 12} (18d)

is the nonlinear part of the probe-beam phase profile in-
duced by the pump. The angular-frequency distribution of the
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Fig. 7. Interaction configuration with a simultaneous spatio-temporal
beam/pulse offset.

beam/pulse could be obtained by performing a 2-D Fourier
transformation of the form given by (13).

Introducing the dimensionless coordinates and angles as
done in Section III-A, the normalized probe-pulse frequency
Aw should be defined as S = Aw/(2m/At). The spatio-
temporal beam/pulse offset A\ could be introduced as follows

9 =2 2

A=Ay = A7, (19)

where the spatial offset Ay and the temporal delay AT are

normalized to the beam radius a and the pulse duration At,
respectively. A coordinate system rotation at an angle

v = arctg (A7/Ay) (20)
should lead to a new coordinate system (&, n) with an n-axis
crossing both the beam/pulse centers. The new coordinates (€,
n) correspond to complementary frequency coordinates (v,
vy,). The transition from the normalized frequency space (ay,
Aw) to the frequency space (v¢. ;) should be carried out with
a rotation at an angle v of the form

(21a)
(21b)

@, =ve sin (v) = vy cos (V)
Aw =y cos (L) — vy sin (¥).
The reason to perform this procedure is that in the Fourier
domain the probe wave amplitude E.(v¢.v;) could be written
in a form, analogous to that given by (17). Therefore, the nu-
merical results [Figs. 4(a). 5(a), and 6(a)] are also applicable in
the case of a simultaneous initial spatio-temporal beam/pulse
offset.

Let us consider ones again the typical asymmetric far-field
probe beam/pulse formation (Fig. 8), analogous, with regard
to the above remarks, to the 2-D far-field spatial probe-beam
pattern from Fig. 2(c). The angular-spectral characteristics
of an AIPM beam/pulse are clearly expressed. The pattern
consists mainly of components. satisfying the equation

a2/adg + (As)?/(27/A)? = A, 2

where ; are parameters depending on the AIPM magnitude.
The different frequency components have their maxima at
different angles. In the case of ultrashort (broad bandwidth)
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fn,
(

Fig. 8. Schema of the far-field spatial filtering by a slit.
pulses, this can lead to the formation of rings/arcs of different
“colors” in the far-field. Let us suppose, that the probe wave is
to be analyzed with spectral apparatus. e.g., a monochromator.
The entrance slit will transmit only a part of the beam/pulse.
At one and the same angular-frequency distribution different
slit positions will result in different spectra recorded. Hence,
the AIPM should be considered as a potential source of
experimental inaccuracies.

A far-field spatial filtering of this kind can be useful if
a simultaneous pulse shortening and shaping of the probe
wave transmitted is desired [10]. Due to the higher local
intensity it is naturally to expect. that the optical wavefront
distortions of the probe wave would be most pronounced near
the central part of the pump beam/pulse. In the leading and
trailing wings of the pump pulse the number of the probe-
beam interference rings/arcs and their radii would be reduced.
A slit placed in the far field would transmit only this part
of the probe wave, which would be more (or approximately
equal) deflected compared to the offset of the slit with respect
to the probe beam axis (Fig. 8). At temporally synchronized
pump and probe pulses and a nonzero radial beam offset
the slit would transmit a single pulse or pairs of pulses.
Their durations should be reduced as compared to that of
the incoming probe pulse. An eventual initial temporal delay
combined with an initial beam offset (in space) should offer
much wider possibilities for a simultaneous pulse shaping and
shortening [10]. Quantitative comparison of experimental and
numerical results on simultaneous probe-pulse shaping and
shortening in the nanosecond time-scale will be published
separately.

IV. CONCLUSION

In this paper, we analyzed the 2-D asymmetric induced-
phase modulation (AIPM) of a probe beam/pulse. A mul-
tidimensional generalization of the Fresnel-Kirchhoff theory
was developed for analyzing the 2-D probe beam far-field
pattern. It was shown that the physical picture of the AIPM
should be analyzed at least in two dimensions. A good
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qualitative agreement was found between the theoretically
predicted beam/pulse patterns and the experimentally obtained
ones. It was shown, that the AIPM should be considered as a
potential source of experimental inaccuracies but it offers the
possibility a simultaneous pulse-shaping and shortening to be
performed.
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