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Abstract. A four-frame technique for interferogram analy- 
sis is used to measure the transverse phase distribution of 
nonlinearly split 2D dark beams. Pairs of diametrical 
phase shifts within each ring are retrieved from the experi- 
ment. This result is one of the tests required to denote the 
formations observed as ring dark solitons. 

PACS: 42.65 

In view of their potential applications in all-optical guid- 
ing and switching devices, the dark optical solitons are 
a subject of extensive theoretical and experimental ana- 
lyses [1]. One of the tests [2] used to identify the dark 
spatial soliton is the characteristic phase profile of the 
electric field near the irradiance minimum. The existence 
of a phase step (of ~r) localized at the dark-beam centre can 
lead to the generation of a fundamental odd dark soliton 
[2, 3]. In the absence of such phase step, the 1D dark beam 
splits into two diverging "gray" odd beams, each one with 
its own phase shift less than n [1, 4]. Recently, the genera- 
tion of a periodic array of 1D dark spatial solitons from 
two plane waves with an internal angular offset is reported 
[5]. The presence of an adiabatic amplification in the 
medium of negative third-order nonlinearity is shown to 
be important for clean soliton generation. 

The physical picture becomes more complicated in 
two transverse dimensions. The Optical Vortex Solitons 
(OVS) generated [6,7] could be characterized as dark 
cylindrical beams with an on-axis 2~c helical phase ramp 
[8]. In the first analyses [6, 7], OVS are generated utiliz- 
ing the modulation instability of soliton stripes against 
long-period modulation. Pairs of OVS are obtained by 
computer-generated holograms [9]. In recent analyses it 
is proposed that self-defocusing nonlinear media can sup- 
port also dark solitary waves with ring symmetry [10, 11]. 

In this work we show experimental evidences on the 
existence of pairs of opposite diametrical phase shifts 
across nonlinearly split 2D even dark beams. The numer- 

ical simulations carried out showed a good qualitative 
agreement to the experiment. 

1 Numerical simulations 

The longitudinal nonlinear 2D evolution of the input dark 
beam is described by the (2 + 1)-dimensional nonlinear 
Schr6dinger equation (NLSE) [10, 11]: 

,~Tz + f i  ~7~x2 + E + k n 2 t E I 2 E = O ,  (1) 

where the term comprising fi = (2k) -1 accounts for the 
beam diffraction and n21EI 2 is the intensity-dependent 
medium refractive-index correction leading to a back- 
ground-beam self-defocusing at n2 < 0. We analysed the 
propagation of an input intensity dip of the form [4] 

E(r, qo, z = O) = AoB(r) [1 - m sech(r/ro)] exp (ico) (2a) 

superimposed onto a background beam of a super-Gaus- 
sian profile 

B(r) = exp [ - (r/15ro)16], (2b) 

where m is the depth of the modulation. 
As a first step let us consider what kind of a nonlinear 

evolution of the input 2D even dark formation should be 
expected in an experiment. The numerical procedure used 
for solving (1) is a 2D generalization of the beam-propaga- 
tion method in a transverse grid of 256 x 256 points. 

The phase front is assumed to be plane 
[ c0(r, cO, z = 0) = 0] at the entrance of the nonlinear me- 
dium. Fig. 1 plots the transverse intensity (Fig. la) and 
phase (Fig. lb) distribution of the dark beam at z = 5LNL. 
The nonlinear length LNL is related to the background 
intensity Io via LNL = (kIn2tIo). The input beam (2a) 
evolves in a diverging ring of a reducing contrast. Further 
(along the z-axis) an undesired ring-to-background 
interaction was observed. The interaction is a conse- 
quence of the finite transverse dimensions of the back- 
ground beam (due to the finite numerical discretization) 
which prevents two or more dark rings to be achieved at 
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When two 2D plane waves with unit amplitudes and 
suitable chosen phase differences interfere, they could 
form a pattern of parallel interference lines. A cross sec- 
tion of such an interference line is plotted on Fig. 2 
(dashed line). Let us assume that one of the waves involved 
in the interference has the intensity and phase distribu- 
tion, shown on Fig. 1 (b and a, respectively; z = 5LNL). As 
a result, the interference pattern should be expected to 
change its shape, and the numerically simulated result is 
plotted on Fig. 2 with a solid line. The peak and the valley 
near the maximum of the unperturbed pattern result from 
the phase shifts across the ring dark soliton. Qualitatively, 
the interference line reshapes and shifts slightly. 
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Fig. la, b. Transverse intensity (b) and phase (a) distribution of 
a nonlinearly evolved 2D even dark beam at z = 5LNL 
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Fig. 2. Comparison between the transverse interference pattern of 
two 2D plane waves (dashed line) and the pattern obtainable with 
one of the waves replaced by the nonlinearly evolved (z = 5LNL) 
wave from Fig. la, b 

higher intensities. For this reason we restricted our calcu- 
lations to z = 5LNL. The phase portrait (Fig. lb) of the 
dark ring (Fig. la) is a consequence of a nonlinear evolu- 
tion in a medium with n2 < 0. A reduced refractive index 
(and, therefore, a decreased phase) corresponds to the high 
intensity parts of the background. Pairs of diametrical 
phase shifts can be seen across each diametrical slice of the 
dark ring. As mentioned, this 2D behaviour has an 1D 
analogue in the evolution of the 1D even dark spatial 
solitons into a diverging pair of 1D odd solitons [1,4]. 

2 Experimental results 

The experimental arrangement for measuring the trans- 
verse phase shifts of nonlinearly split 2D even dark beams 
is shown on Fig. 3. Interference was obtained with 
a He-Ne laser beam (50 roW) entering a Mach-Zehnder 
interferometer (M1, M3, M4, M6, M7) with a Michelson 
interferometer (M2, M5, M7) build-in in its reference 
arm. The input 2D even dark formation was achieved by 
illuminating an Amplitude Mask (AM), consisted of re- 
flecting dots (diameters ranging from 50 to 250 l~m, photo- 
litografically produced). The nonlinear splitting of the 
dark beam was achieved by focusing onto the entrance of 
the NonLinear Medium (NLM). The last one is 5 cm 
quvette containing ethanol, dyed to absorb ~ 14% of the 
input power (i.e. [AnNI~I = IndI0 < 10-3). This technique is 
routinely used for generation of 1D dark spatial solitons 
in thermal (Kerr-like) self-defocusing nonlinear media 
[24 ,  6, 7]. Variable phase delay between the object and 
reference beams of the Mach-Zehnder interferometer is 
introduced by moving the mirror M7 and sensed by the 
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Fig. 3. Experimental setup (M1, M2, M4: beam splitters; 
M3, M5, M6: mirrors; MT: mounted mirror; (PZT): piezoceramic 
transducer; AM: amplitude mask; L: focusing lens; NLM: nonlinear 
medium; Fh  linear-gradient variable filter; D: detector; PC-AT: 
compatible computer) 
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Fig. 4. Grayscale image of the nonlinearly splitted 2D input dark 
formation from the object arm of the Mach-Zehnder interferometer 
(Fig. 3). Lines A and B indicate the directions at which the diametri- 
cal phase distributions shown in Figs. 6 and 7 are evaluated 

a b 

c d 

Fig. 5a-d. Two of the four interference pictures [at phase shifts ~r/2 
(a) and 3~z/2 ( e)] used or reconstructing the object 2D phase portrait 
and the corresponding numerical simulations (b) and (d) (Fig. 1) 

detector D (namely, the pattern in the Michelson inter- 
ferometer). This arrangement, known as four-frame tech- 
nique, allows to record a set of four interference pictures at 
known phase shifts (0, 7c/2, ~, and 37c/2) per exposure and 
therefore to reconstruct the wavefront in the object arm 
[12]. 
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Fig. 6. Diametrical phase distribution of the ring formation from 
Fig. 4, retrieved from the set of closely spaced interference patterns 
(Fig. 5a, c) 

Figure 4 presents a grayscale image of the nonlinearly 
split 2D input even dark beam. Two dark rings are clearly 
seen, in contrast to the numerical simulations on Fig. la, 
restricted to five nonlinear lengths because of the above- 
mentioned reasons, where a single ring is present. Never- 
theless, qualitatively similar behaviour of the interference 
!ine-structure recorded by a CCD-camera (Figs. 5a, c) and 
the numerically modelled (Figs. 5b, d) pattern could be 
observed. The interference lines are distorted, which is an 
indication (Figs. 2) for the existence of phase shifts in the 
object arm of the interferometer. It was proven experi- 
mentally that those phase changes have their origin in the 
nonlinear evolution of the input 2D even dark beam. 

Applying this four-frame technique for interferogram 
analysis [12], we reconstructed the phase portrait of the 
ring formation from Fig. 4. Most easily and correctly the 
phase distribution is evaluated along a diametrical slice of 
the rings, parallel to the interference lines (i.e., at a nearly 
constant phase background). Figure 6 plots this phase 
distribution (in units of ~) expanded over approximately 
64 pixels of the CCD array used (512 x 512 pixels). These 
shifts of about 0.4~ are clearly seen across the outer ring 
(marked by vertical dashed lines). Phase changes with 
a reduced contrast could be observed across the inner 
ring, but it was difficult to determine their position and 
magnitude. In our opinion, this problem arises primarily 
due to the curvature of the interference-line set used 
(Figs. 5a, c). We repeated the procedure with other sets of 
interference lines. The most representative result 
(Figs. 7a, b) was obtained by shifting a single broad (about 
three times the outer-ring diameter) interference line. The 
transverse phase portrait of this line and the phase cha- 
nges, due to the presence of the dark-ring structure are 
visualized on Fig. 7a. Changing the CCD-camera posi- 
tion, the transverse resolution was enhanced about twice 
as compared to that on Fig. 7a. Phase shifts of about 7r/2 
are reconstructed (Fig. 7b) within the outer ring (marked 
by long-dashed lines). Within the inner ring (marked by 
short-dashed lines) the phase was found to change itself in 
~/5 of magnitude. These values agree qualitatively to the 
diametrical ~-jump at the OVS's centre. It should be 
mentioned, that the 1D even dark formation splits into 
pairs of 1D odd dark beams (each one with its own phase 
shift) and the soliton constant (the square of the product of 
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Fig. Ta, b. Diametrical phase distribution of the ring formation, 
retrieved from a transverse slice of a single broad phase-delaying 
interference line (see text). Vertical dashed lines indicate the positions 
of the outer and inner dark ring intensity minima 

the width  and  the peak  da rk  i r radiance)  conserves  for each 
beam of the pair .  In  the 2D case, however,  the spl i t t ing of 
the even da rk  fo rma t ion  results in a diverging "gray"  r ing 
of a decreas ing sol i ton con t ras t  [10, 11]. Therefore,  a corn- 

p l ica ted  long i tud ina l  evolu t ion  of the 2D phase  d is t r ibu-  
t ion could  be expected.  

3 Conclusion 

In conclusion,  we would  like to note,  tha t  the observed 
phase  shifts across  nonl inear ly  split  2D even da rk  beams  
should  be regarded  as a conf i rmat ion  of the sol i ton na ture  
of the r ing da rk  solitons.  In o rder  to retain a te rminologi -  
cal s imi lar i ty  to the 1D case, these fo rmat ions  could  be 
cal led also 2D even da rk  spat ia l  soli tons.  
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