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Abstract

The interaction between two optical vortex solitons (OVS), formed on different background beams is analyzed
numerically. Analogous to the one-dimensional case, vector OVS seem obtainable [12]. The relative topological charges of
the interacting (off-axis) vortices are found to rule their propagation characteristics. Attraction is found in the case of equal
charges, in contrast to the opposite case, where repulsion is present.

1. Introduction

Optical vortices are characterized as two-dimen-
sional screw dislocations on a plane wavefront. They
can be nested in the output beams of slightly detuned
laser cavities with large Fresnel numbers [1]. The
unusual angular optical phase ramp could be pro-
duced experimentally by illuminating a proper
spiral-phase delay-plate [2] or by diffraction on com-
puter-synthesized gratings [3,4]. The existence of
such a dislocation requires that the amplitude of the
electric field becomes zero at the dislocation center.
From the mathematical point of view, the screw
phase dislocation is described by the multiplier
exp(im), where ¢ is the azimuthal coordinate and
m is an odd number ensuring a (m) diametrical
phase jump, which sign determines the direction of
the dislocation. The counterclockwise direction (m
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> 0) is known to be a positive *"topological charge™
(+m) [5]. In this paper we investigate formations
with topological charges of + 1. which determine the
+ 27 phase variance in the azimuthal direction.

The free-space propagation of a TEMy, laser
beam passed through a spiral phase-plate with a 27
phase ramp leads to a beam-reshaping into a helix
[6]. Multiple vortices of the same topological charge
are known to propagate linearly retaining their rela-
tive positions and their positions within the host
beam [4.7]. In contrast. vortices of opposite charges
attract each other [4.7]. which could lead to their
annihilation.

The first observations of optical vortices In a
self-defocusing medium. where the field propagates
as a soliton, as a consequence of the balance between
the diffraction and the nonlinearity. are reported in
Ref. [8]. Optical vortex solitons (OVS) are generated
presently by a phase mask of regions of uniform
phase retardation [8]. by initiating an instability of
one-dimensional dark soliton stripes with respect to
long-period perturbations [9]. The spatial guiding of
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a probe beam by an OVS is observed [8] and makes
reasonable novel all-optical guiding and switching
schemes to be analyzed.

Analyses on intcractions of OVSs in two trans-
verse dimensions along the nonlinear medium ((2 +
DD interactions) are already in progress. It was
shown numerically [5], that points and lines of phase
discontinuity can evolve in regular crystals of non-
linear vortices. Rotation of an off-axis vortex around
the beam axis should be expected too [5]. In a recent
experiment [10], rotation of a pair of off-axis OVS
with unit topological charge along a nonlincar
medium is observed. The sensitivity of the rotation
angle with respect to the background intensity could
allow a rotary all-optical switch to be constructed.

In this work we analyzed numerically different
interaction configurations involving OVSs, formed
on different backgrounds. In some cases (vector
OVS, composed of a pair of partial OVSs; radiation,
caused by on-axially interacting fundamental OVSs)
a complete qualitative analogy to the 1D case is
found [11,12]. Both attraction and repulsion between
axially offset OVSs are observed during the calcula-
tions. It is found, that the regime of interaction
depends crucially on the OVSs’ topological charges,
whereas the interaction strength is sensitive to the
cross-phase modulational (XPM) coupling between
the two beams.

2. Numerical model

The spatial self-action and the XPM coupling of
2D optical beams along the nonlinear medium are
described by the incoherently coupled Schridinger
equations

o : :
ia—§+5V2U+RU[!U|'+(r|V|‘]:0, (1a)

av 2 2
ia—§+gV2v+Rv[|vr+g|Ul-] =0,  (Ib)

where U(x, v, €) and V(x, y, ¢) are the slowly
varying beam envelopes, V2 =92/dx%+ d2/dy?>,
Ry y denotes the ratio between the nonlinear and the
diffraction lengths for each beam. The XPM coeffi-
cient o depends on the ellipticities of the beam
polarizations. Self-defocusing nonlinear media are

required for the formation of dark spatial solitons.
Therefore, R, . should be negative. For simplicity.
we assumed R, = —1. ie. equal diffraction and
nonlinear lengths for each beam. The nonlinear length
for the ith beam is inversely proportional to its
background intensity. Assuming equal initial HWle
for each dark beam we can scale the longitudinal
coordinate in units of diffraction length. All our
computer simulations are based on 2D generalization
of the split-step Fourier method expanded over 256
X 256 grid points. Under these conditions an axial
offset of A=10.5 between the interacting OVSs
(Section 3.3) corresponds to the separation between
the nth and (n + 2)th point of the grid.

3. Results and discussion
3.1. Vector optical vortex solitons

Its is shown in Ref. [12], that 1D optical vector
dark solitons should exist as bond states of pairs of
gray solitons coupled by XPM. Exact solutions of
Eq. (1) in 1D are found for o= 1. In order to check
the accuracy of our numerical routine. we modeled
this 1D interaction [12]. choosing the background
intensities 2 times lower than the required (due to the
existence of soliton constant {11.13]) for a fundamen-
tal 1D odd dark spatial soliton. In the absence of
XPM, each of these 1D dark beams was found to
evolve in an 1D odd dark spatial soliton (ODSS)
with a V2 times larger width. At o= 1 we observed
the proposed bond-state formation of two partial 1D
ODSS, called 1D vector soliton.

We modeled this situation in 2D with an initial
condition

U(E=0,r, ¢)=V(E=0.1.¢)
=B(r) lanh(‘/l_ r}yexp(ie¢),
(2a)

where the background B(r) has a super-Gaussian
profile:

B(r) = Aq exp| = 1(r/18)"]. (2b)

These assumptions follow the single optical vortex
approximation from Ref. [8]. The background inten-
sity for generation of OVS is V2 times higher than
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the required for achieving a 1D odd dark spatial
soliton (see the text after Eq. (2) in Ref. [8]). Physi-
cally, this result could be attributed to the higher
diffraction in two spatial dimensions as compared to
that in the 1D case. The multiplier V2 in the argu-
ment of hyperbolic tangent (Eq. (2a)) describes odd
dark beams with radii V2 times shorter than those,
required to form fundamental OVSs in the absence
of XPM. This is a strict 2D generalization of the
interaction configuration from Ref. [12].

At o= 1 we observed the formation of a vector
2D OVS composed of two partial OVSs of equal
topological charges. Fig. 1 shows two gray-scale
images of one of the two identical odd dark beams at
£=0 (Fig. 1a) and ¢=3 (Fig. 1b). Despite strong
background spreading both the intensity and phase
distribution remain unchanged in the dark beam area.
Because of the increasing computational inaccuracy,
as a consequence of background spreading, we have
restricted our simulations to £ = 5.5. Such a distance
of propagation seems satisfactory to conclude that a
vector OVS does exist. At this point the analysis of
Law and Swartzlander [14] should be referred. In
particular, the authors have found that the XPM may
destabilize all other modes except those with a circu-
lar polarization. Special attention to this problem will
be paid in Section 3.3.

3.2. Secondary dark ring solitons

If the background amplitude is not high enough,
the input 1D odd dark formation evolves into an 1D
odd dark soliton of increased width, corresponding to
the soliton constant. If the amplitude is higher, the
input 1D odd dark beam evolves into a fundamental
1D ODSS, generating a diverging pair of secondary
gray solitons [11,15].

In our numerical simulations we considered two
fundamental OVSs

U(£=0.r, ¢)=V({=0,r, ¢)
= B(r) tanh(r) exp(ip), (3a)

formed onto different background beams with
super-Gaussian profiles

B(r)=A4, exp[—%[r/lS]m]. (3b)

In the presence of XPM the evolution of each
beam is influenced by the second one. In a certain

Fig. 1. Gray-scale image of one of the partial OVSs from the
vector OVS (o =1) at the entrance § =0 of the nonlinear
medium (a) and at € = 2 (b).

sense, this coupling is equivalent to background
intensity enhancement of a single beam. Fig. 2
demonstrates the numerical results obtained by solv-
ing Eg. (1) with initial conditions. given by Egs. (3)
at o= 2. Because of their symmetry. the evolution
of both beams is complete identical. The input 2D
optical vortex (Fig. 2a) evolves in a 2D OVS cou-
pled to a second one on its own background. The
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Fig. 2. Splitting of a fundamental OVS, coupled to a second OVS
on a different background (o =2): (@) £=0. (b) £¢=4. The
evolution of the second beam is identical to that of the first one.

excessive ‘‘lack of enmergy’” (in view of the XPM
coupling and the dark beam radii) leads to the forma-
tion of a diverging (along the nonlinear medium)
gray ring. As the dark-ring diameter increases (Fig.
2b — ¢=4), the contrast reduces, due to the conser-
vation of the *‘lack of energy’’. In the phase domain,
the 77 jump at the center of each dark beam remains
undistorted by the XPM. Small (~ 7/5) phase jumps
in each diametrical slice of the dark ring were ob-

served. Therefore, this ring formation could be clas-
sified as an optical ring dark soliton [16] generated
from odd initial conditions (Eq. (3)).

3.3. Interaction benveen offset OVSs

It is shown, that in one transverse dimension. the
odd dark solitons, composing the vector dark soliton.
are strongly coupled due to their mutual trapping
[12]. In two transverse dimensions this type of inter-
action was modeled by solving Eq. (1) for the initial
field distribution as presented in Eq. (3). the center
of the second OVS being offset from the first one by
A along the x-axis,

U(x, y, E=0)=V(x+ 4, y.£=0). (4)

At A= 1.5 we observed reshaping and guiding of a
part of each background by the OVS superimposed
onto the other one. Due to the decreased dark beam
overlapping, an interaction between OVSs was not
clearly expressed. A part of the subsequent analyses
refets to the value A =0.5. Special attention should
be paid to the topological charges of the interacting
vortices.

Let us assume that o= 1. An interaction can
involve two offsct OVSs (Fig. 3a upper row) of
equal topological charges (Fig. 3a lower row). The
transverse phase distribution is presented as gray-
scale image, where white denotes ¢ = 2. while
black indicates ¢ = 0. In Fig. 3b the corresponding
transverse intensity (upper row) and phase (lower
row) distributions after propagation up to a distance
&£=13 are shown. The background self-action influ-
ences the phase distribution at larger r. The radial
asymmetry in the interaction of 2 OVSs at 1#0
leads to the formation of spiral structures on the
backgrounds around each of the dark beams. The
important effect, namely the change of 1 along the
longitudinal coordinate ¢, is much better expressed
in Fig. 4. Diametrical slices of the OVSs along the
x-axis (see Eq. (4)) are presented for £=0. up to
£=9. Because of their different backgrounds. the
question, do they pass through each other. or are
they reflected off each other is reasonable [17]. In
order to answer this question we plotted the intensity
slice of the initially *‘left’” vortex with a dashed line.
It is seen that both dark beams are overlapped at
£=3 and, thereafter, they reach maximum separa-
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Fig. 3. (a) Gray-scale images of the intensity (upper row) and
phase (lower row) distributions of off-axially interacting 2ID par-
tial OVSs with equal topological charges at £ =0(4=05. 0 =
1). (b) The same as (a) at & = 3.

tion at €= 6.5. Then, due to mutual attraction, they
overlap themselves at £ =9. This oscillatory behav-
ior repeats along the propagation. At this point one
should note, that in the linear regime of propagation,
optical vortices of equal topological charges, formed
upon a common background do not change their

relative positions. as well as their positions with
respect to the background [4.7].

Consequently, in contrast to the linear regime, an
attractive force between two OVSs with equal topo-
logical charges is present.

Let us consider the interaction between two OVSs
having initial offset A= 0.5 (see Eq. (4)) and o =1
(Fig. 3a upper row). The assumption of opposite
topological charges (Fig. 5a) was proven to change
generally the interaction. We investigate the nonlin-
ear evolution of both beams (coupled by XPM) up to
distance &= 3. at which they do overlap in the case
of equal topological charges (see Fig. 4). The inten-
sity distributions at &= 3 are presented in Fig. 5b for
both beams. The intensity profiles exhibit again spi-
ral structure on the background. but the most impor-
tant result, is that attraction between the OVSs with
opposite charges is absent (Fig. 6). It should be
noticed. however. that the linear propagation of opti-
cal vortices of opposite charges. localized on a com-
mon background, is known to lead to mutual attrac-
tion and, eventually, to collision and annihilation [7].

©

Fig. 4. Evolution of the transverse x-slices of the interacting
(o =1) offset OVSs with equal topological charges. An attraction
is clearly expressed.
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Fig. 5. (a) Gray-scale images of the phase distributions of off-axi-
ally interacting 2D partial OVSs with opposite topological charges
at £=0(A=05, o =1). (b) The same as Fig. 3a at opposite
topological charges and & = 3.2.

The assumption o=1 was made to retain the
closest possible similarity between the 1D results of
other authors [12] and the present ones in 2D. We
also have investigated the nonlinear evolution of two
OVSs having an initial off-axis separation A(¢=0)
= 0.5 in the case of o=2. The XPM becomes
stronger and the backgrounds do spread at shorter
distances (£=15). In the case of equal topological
charges, the OVSs overlap (at &= 2.5), pass through
each other and tend to overlap again at ¢ =5, instead
of £=3 and £=9, respectively (Fig. 4). The strong

—

oA 4
—10 -5 0 5 . 10
Transverse Coordinate

Intensity

Fig. 6. Evolution of the transverse x-slices of the interacting
(o =1) offset (4 =10.5) OVSs with opposite topological charges.
No attraction is evident.

nonlinear modulation forces the vector OVSs to radi-
ate the excessive ‘‘lack of energy’ in the form of
spiral structures on the background similar to those
in Fig. 3b (upper row). Nevertheless. phase jumps of
a low contrast (~ 77/5 or less) were observed to be
centered with respect to the minimum along each
diametrical slice. Again vortices of opposite topolog-
ical charges demonstrated repulsion.

The nontrivial result on the dependence of the
interaction of axially offset OVSs on their relative
topological charge was confirmed at various initial
offsets A(&=0) ranging from 0.5 to 3.75. The
discretization of A in units of 0.25 is a result of the
computing resources available (see Section 2). In
Fig. 7 we plot the dependences of the nonlinear
propagation path lengths £,. at which (within the
discretization used) attraction or repulsion becomes
evident for the first time versus A(€&=0). Triangles
and dots indicate the numerical data obtained at
o =2 and opposite, respectively equal, topological
charges. With squares we plot the same dependence
for OVSs of equal charges at ¢ = 1. Most probably
due to the reduced XPM coupling at o= 1, OVSs of
opposite charges were found not to change their
relative positions up to & = 3 (see Fig. 6). The curves
plotted in Fig. 7 represent polynomial fits of the data
numerically obtained. The optimal initial OVS offset
A(£=0), at which attraction /repulsion becomes ev-
ident after the shortest propagation path £, seems to
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Fig. 7. Nonlinear propagation path length &,. at which OVS
attraction /repulsion becomes evident. as a function of the initial
off-axial separation A (dots and solid line m= +1 and o =2:
triangles and long-dashed line m = —1 and o = 2: squares and
short-dashed line m= +1 and o = 1).
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Fig. 8. Energy density of the background peak formed by the OVS
through XPM versus nonlinear propagation path length ¢. (Solid

curves) m=+1, o =1; (short-dashed) m = +1, o =2 (long-
dashed) m= —1, o =2. The values of A(¢ =0) are given as a
parameter.

be within the range 1.5~1.75 at o = 2 (see the solid
and long-dashed curves in Fig. 7). The correspond-
ing short-dashed curve for OVSs of equal charges
propagating with o =1 seems shifted and the opti-
mal OVS-offset seems to be A(£=0)=2.0-2.25.
In our opinion this difference could not be attributed
to the numerical inaccuracies of the model and should
be further analyzed.

As shown in Ref. [8], the OVSs do obey guiding
properties. At a nonzero initial offset A between the
solitons their mutual attraction or repulsion is ac-
companied with the formation of spiral structures

. Velcher et al. / Optics Communications 130 (1996) 385-392 391

superimposed on the backgrounds (Fig. 3b. upper
row, and Fig. 5b). Each one of the OVSs starts to
redistribute the energy of the background of the
copropagating beam. In Fig. 8 we plot the evolution
of the peak energy density of the background beam
being guided by the OVS formed onto the other
beam versus the nonlinear propagation path length.
The solid curves refer to m= +1 and o= 1. the
short-dashed curves to m= +1 and o = 2. whereas
the long-dashed curves demonstrate the results ob-
tained for OVSs of opposite topological charges with
o= 2. The initial offset A(&=0) is used as a pa-
rameter. At a XPM strength ¢ = 1 the peaks formed
onto the backgrounds tend to grow initially (up to
£=1 for A =2) and. thereafter. their peak energy
density starts decreasing. Practically the same was
observed at opposite topological charges m= —1
and o= 1. As concluded in Ref. [14]. the XPM at
o =2 destabilizes the off-axial OVS propagation
mode for both types of topological charges. At m =
+1 (i.e. at mutual attraction) the peak guided by the
complementary OVS does grow initially saturating
approximately in the interval 0.8 < £ < 1.6, starting.
thereafter, to grow again (Fig. 8. short-dashed
curves). The existence of a plateau could be ex-
plained by the overlapping (at £ =1.2) of the beams
being mutually attracted and by the small amount of
energy to become guided additionally. When the
vortices pass through each other the energy density
of the peak formed starts to grow faster (Fig. 8.
short-dashed curves at A =0.5, 1 and 1.5 at £> 1.6).

Fig. 9. Intensity (a) and phase (b) portrait of one of the OVSs at a propagation path &= 8 corresponding to a saturation of the intensity of

the bright peak being guided.
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It is natural to expect that the peak will saturate at
each subsequent overlapping of the OVSs.

The behavior of those pairs of background beams
which appear to be guided by the OVS formed onto
the complementary beam is more dramatic at o= 2
and equal topological charges. This mode of propa-
gation corresponds to a mutual repulsion between the
OVSs. Therefore, each OVS will ‘‘see’” high-inten-
sity parts of the second background and it could be
expected to guide even more and more energy. The
long-dashed curves on Fig. 8 clearly express this
tendency. Saturation of the intensities of the bright
peaks could be expected too, since the reduced
OVS-overlapping (at an increasing A versus ¢)
should slow down their repulsion.

In Fig. 9 we plot the intensity (a) and phase (b)
portrait of one of the OVSs at ¢= 8. Qualitatively,
the portrait of the complementary OVS could be
obtained by inverting Fig. 9a and by reversing the
topological charge shown in Fig. 9b. These two
figures correspond to the case described above, i.e.
the saturation of the bright peak being guided by the
OVS formed on the second background beam. The
OVSs seen in the neighborhood of the bright peaks
become slightly deformed along the interaction axis.
Nevertheless, no reversal of their topological charges
is evident. This motivates us to denote the formation
of the bright spiral (at moderate propagation dis-
tances) and the bright peaks on the backgrounds as
parts of the backgrounds being guided by the OVSs.
In a certain sense (see Fig. 8) this behavior could be
referred to as a saturating modulational instability of
the backgrounds at an off-axis propagation of OVSs
under a relatively strong XPM.

4. Conclusion
We have shown numerically that in many aspects,

the interaction of optical vortex solitons, formed on
different background beams, is qualitatively analo-

gous to the interaction between 1D dark odd solitons.
The relative topological charge of the off-axially
interacting OVSs if found to be a key factor for
observing an attraction /repulsion between the dark
beams. Further analyses are required to obtain the
necessary conditions for generating a spatially stable
bundle of OVSs on a common background beam.
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