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Abstract. Guiding of multiple signal beams in an induced 
all-optical cable is studied theoretically. A balance rela- 
tion is derived for the interaction geometry and undis- 
torted propagation of bright elliptical signal beams nested 
in a single ring dark soliton. The numerical analyses show 
a remarkable misalignment stability of the parallel guid- 
ing scheme. 

PACS: 42.65 

The Dark Spatial Solitons (DSS) are self-supported inten- 
sity-dips imposed on background beams of high inten- 
sities [-1, 2]. The physical mechanism of their formation is 
based on the balanced counteraction of beam diffraction 
and self-defocusing. Both 1D and 2D DSS require a nega- 
tive nonlinear correction n21EI 2 < 0 to the medium refrac- 
tive index 

n = no + n21EI 2, (1) 

where E is the electric field amplitude of the background 
beam. The refractive index near the DSS center remains 
higher as compared to the refractive index in it's wings. 
Therefore, the DSS should obey spatial guiding proper- 
ties, similar to these of bright spatial solitons at n2 > 0 [3]. 
It is shown, that a short dark solitary wave can propagate 
undistorted in the otherwise forbidden anomalous disper- 
sion regime when it is coupled to a bright pulse in the 
anomalous dispersion regime [4] in the form of a sym- 
biotic pair I-5]. Bright optical pulses could be simulta- 
neously guided and compressed by dark solitons [6]. It 
was demonstrated recently, that a quasi-steady-state 
photorefractive spatial soliton can form a waveguide 
structure able to guide powerful beams at longer 
wavelengths [7]. The guiding feature of DSS has been 
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proved by the experimental investigation of optical vortex 
solitons [-8, 9]. Recently, the existence of 2D Ring Dark 
Solitons (RDS) has been predicted [-10, 1 ll.  2D RDSs are 
already generated at a pure amplitude modulation of the 
background beam at the entrance of the nonlinear me- 
dium [12, 13]. The analyses showed [11, 14] that the 
transverse velocity of the RDS along the nonlinear propa- 
gation path can be minimized by suitably chosen odd 
initial conditions (i.e. at diametrical 7r phase jumps 
centered at the zero-intensity points of the "black" ring). 

In this paper we present a theoretical study of an 
induced all-optical communication cable. The ring dark 
soliton guiding cable can be induced, in principle, instant- 
ly in any direction in a volumetric media, guiding multiple 
signal beams, which makes it attractive for the extreme 
high-capacity short-distance communications. A simple 
analytical relationship on the geometry of the guiding 
scheine is derived and balance conditions, including spa- 
tial profile, ellipticity and initial peak intensity are found 
for undistorted multiple bright beam propagation. A re- 
markable stability against misalignment of the signal 
beam with respect to the RDS is found. 

1 Variational analysis 

The physical mechanism underlying the guiding of 
a probe beam by a RDS (Fig. la) is the Induced Phase 
Modulation (IPM) 1-15] on the signal beam. In view of the 
weaker expressed transverse dynamics of the RDS at 
larger ring radii [10, 11, 14], such a dark ring could be 
approximated by an 1D odd DSS [1, 2] if the ring radius 
is rauch higher than the ring width (Fig. lb). Both dark 
formation and bright signal beam plotted on Fig. 1 are 
grayscale-coded. We will show that the 1D odd DSS 
forms a gradient planar waveguide of nonlinear cladding. 
Under suitably chosen balance conditions an elliptical 
beam can propagate undistorted along this waveguide. 
The higher diffraction along the short axis x of the ellipce 
could be compensated by the combined action of the IPM 
(at näM< 0) and the weaker Seil-Phase Modulation 
(SPM) of the bright signal (at nSf ~ > 0). The only SPM 
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Fig. la,  b. Simplified scheine analyzed: Ring dark soliton with 
a large radius (a) forming a curved waveguide is approximated by 
a dark soliton stripe (b) equivalent to a planar waveguide with 
a nonlinear cladding. The position of the elliptical signal beam is 
indicated too 

preserves for the elliptical signal beam diffraction spread- 
ing along the linearly diffraction nonlimited coordinate y. 
This situation could be realized, for example, if the doub- 
led frequency of the pump is on the blue side of a two- 
photon resonance, the doubled signal-ffequency-on the 
red side, whereas the sum of these frequencies is eren less 
blue-shifted from the two-photon transition [16, 17]. The 
strengths of the SPM and IPM could be varied indepen- 
dently by changing the pump- and signal detunings. An- 
other possible way to ensure these conditions is to use 
a nonlinear medium, in which the nonlinearities for the 
RDS self-action and IPM (e.g. photorefractive [7]) are of 
a different origin as compared to this for the signal SPM 
(e.g. electronic). 

The 2D nonlinear evolution of signal beam along the 
nonlinear medium is described [10, 11] by 

(2) 

where T, and ~p are the complex slowly-varying ampli- 
tudes of the bright signal beam and of the pump (1D dark 
soliton stripe) respectively, c¢ = (1/2k,), kz is the wave-num- 
ber of the signal wave,  kSPM(2s)...= nSPM(2s)k~/(2nos) and 
klPM(}~s) = nl2PM(2s;3.p)kj(2nos) accounting for the SPM 
and IPM respectively. 

We analyzed (2) by using the variational approach 
[18, 19]. Equation 2 could be considered as an Euler- 
Lagrange equation for the Lagrangian 

c = (,/2) L~,s ~z - '~: a~ j + LI axl + Oy j 

- kSPM(As)] ~Us]4/2 -- k'eM(~s; G)I ~12 I%1 ~. (3) 

In order to avoid the necessity to modify the Lagrangian 
according to the asymptotically nonwanishing back- 

ground of the RDS E20] we "inverted" the physical picture 
on the following way. The phase distribution induced by 
the dark soliton stripe (see Fig. lb) on the signal at 
nSPM(2;) < 0 should be the same as the phase distribution 
induced by a "bright" soliton stripe at nSPM(2v) > 0 [21]. 
Therefore, one can consider an elliptical Gaussian signal 
beam of the form 

'ex(x, y ,  z) - .~z, l x 2  ,21 
COs~(Z)C%(z) exp 2 2 2 as~co~x(z) as•COsy(Z ) 

x e x p B - - ~ ( p ~ x ( Z ) X  2 +p~y(z)y2); (4a) 

guided by a quasi-2D (inverted) Gaussian pump beam: 

7ip(x, y, z) Ap(z) x 2 " ~~~,~, E a~~o~A ['~~~2'~'q = exp 2 __~ exp 

(4b) 

It should be kept in mind, that the formation of a DSSs at 
nSP~t(2p) > 0 is unphysical. In (4a, b)As and Ap are the 
slowly-varying amplitudes of the signal and ("inverted") 
pump, respectively, COix and ~%, (i = s,p) are the nor- 
malized radii of the beams Em~x,y(z = 0 ) =  1], a~~,y are 
their initial physical radii at 1/e-level, and p~~,y are func- 
tions of the inverse radii of curvature of the respective 
wavefronts [p~x«(Z = 0) = 0 in a plane-wave approxima- 
tion]. Note, that the formal "inversion" of the 1D DSS 
(Fig. lb) requires a modification of it's phase distribution 
to a plane one. In the opposite case splitting of the "in- 
verted" pump should be expected [2]. 

Following the variational procedure [18,19] at 
e)p~(z) = 1 and pp~(z) = 1 we obtained the following sys- 
tem of ordinary differential equations for the normalized 
signal beam radii: 

d2(,Osx 4 ksPM()Q[ A~h 2 
dz  2 - :,2 4 3 2 3 2 tes asxCOsx ksasxO)sxC% 

d2(osy 4 kS '~G) lA I  = 

4CO~x k feM(2s; 2p) 1412a~x 
n 2 t.}2 ]3/2 

(Sa) 

(5b) 
- -  1 2  4 3 2 3 2 " dz  2 K s asyOOsy ksasy(Dsy(Dsx 

From the requirement for a diffraction-compensated 
propagation of the signal along the y-axis (O2co,y/¢?z 2 = O) 
we obtain the square of the signal field-amplitude required 

4(o2 
I&l 2 -  2 SPM " (6a) ksasrk (2s) 

The analogous requirement along the x-axis yields, that 

ki,M]Ap]2 ar~ (@x + as~)~/2 ( l + 1 )  
- z ä  ( ó b )  ksG~ _-2- . asx asy 

Diffractionless propagation of the pump along the x-axis 
can be expected if the diffraction and nonlinear lengths 
(Lf~¢/= kp ap2x and L§L = 1/(kSeM(2p)lApl2), respectively) 
are equal. Therefore, (6b) takes the form 

4 
[1 - (asx/asy)2] 2 = (aw/a~x)2[(avx/asx)2 + 1] 3 . (6c) 



For simplicity, in deriving (6c) kSeM(,)~p)= kSPM().s)= 
k*eM(2s; 2p)/2 is assumed. This equation allows to estimate 
approximately the initial relative dimensions a~~/a~y and 
apx/a~x of the pump and signal beam corresponding to 
a diffractionless propagation of an elliptical beam under 
SPM and IPM. 

2 Numerical results 

The simple relationship given by (6c) is derived under two 
important assumptions, which validity will be verified in 
the following: 
i) The RDS is approximated by an 1D dark soliton stripe; 
ii) The dark stripe at nS2PM(2p)<0 is analyzed as 
a "bright" one-dimensional spatial "Gaussian" soliton at 
ns2~M(,~p) > 0. 

The dynamics of the RDS is modelled on the base of 
the normalized Schrödinger equation 

8~gp 1 (  02 82 )  
i W + ~  ?~+b72 % 

1 
+ L~7~~~ (CJ%12 + 2lTsl2) t/'P = 0. (7a) 

The evolution of the bright elliptical signal beam (at 
nSeM(2s) > 0) located in a 2D RDS (at 
nSeM(2p)=--nSeM(2s) and nI2eM(2~;2v)=2nSVM(2p)) is 
studied by solving the (2 + 1)D nonlinear Schrödinger 
equation [see (2)] 

0 t/'ts 1 ( 8 2  82) 
~Vzz+~ ~ + ~  

(1%[ 2 - 2c17-'pl 2) % = o,  (7b) + 

where the dimensionless transverse spatial coordinates 
and t/are normalized to the shorter ellipce axis asx, LuL 

is the signal nonlinear length, L»~f~-the signal diffraction 
length along a~» and C = [Ap[2/[As[  2. According to (6c) we 
choose a~~ = apx = 1, asy = 1.85, iAp[ 2 = 1 and lAs[ 2 = 0.3. 
If desired, the normalized propagation distance Z/LD~fj- 
could be expressed in units of signal-beam diffraction 
lengths with respect to the larger ellipce-axis by multiply- 
ing it by a factor of (a~~/asy) 2. Dark odd ring of an initial 
radius R0 = 28.5 times the ring width ap~ is assumed in 
this work. 

Figure 2 plots a radial cross-section (Fig. la) of the 
RDS (dotted curve) and the signal beam (solid curve) 
nested within the ring. The 2D RDS is described by 

tpp = ApB(r)tanh [(r - Ro)/ro] exp(i~b), ro = apo, (8a) 

where 

B(r) = exp{ - (r/40) TM} (8b) 

is the super-Gaussian background beam. The signal is 
assumed to have an initial profile, given by 

= As sech [(x - Xo)/a,x] sech [(y - Yo)/%] • (8c) 

The corresponding coordinates of the signal beam center 
are (Xo, Yo), (x g + yô = R 2 at a perfect alignment of the 
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Fig. 2. Initiat radial intensity distribution of a RDS (dotted curve) 
and of an elliptical signal beam (solid curve) used for the simulations 
(asx = apx = 1, a~y = 1.85, IApl 2 = 1 and ]A,I 2 = 0.3) 

signal with respect to its' radial width), ~b(r) represents the 
phase portrait of the RDS [10, 11, 13]. 

The numerical procedure used is a 2D generalization 
of the beam-propagation method. Both dark and bright 
formation are discretisized over 1024 x 1024 grid points. 

At this point it should be noted, that at least three 
approaches to reduce the dynamics of the RDS does exist. 
First, the whole background could be suitably focussed. 
This focussing allows to extend gradually the distance, at 
which the RDS will become broader as initially El0]. 
Second, the RDS-divergence could be reduced by using 
a smoother dark ring of a larger radius Ro [14]. Third, the 
background within the ring only could be initially phase 
modulated as done by a focusing lens of an aperture Ro. In 
this case the RDS decreases initially its radius and there- 
after starts diverging with nearly the same transverse 
velocity as the unmodulated RDS. For example, if the 
radius of curvature of the phasefront within the ring is 
chosen to be twice the RDS radius Ro, the propagation 
distance, at which Ro becomes 0.4% higher its initial value 
is twice longer as compared to that in the unperturbed 
case. Although the latter results will be discussed in 
greater details elsewhere, further we will compare the 
signal evolution within a "frozen" and "dynamical" RDS 
by solving (7b), respectively (7a, b). 

The lower solid curve in Fig. 3 plots the evolution of 
the signal-beam peak intensity along the nonlinear me- 
dium up to a distance z/L»~ff = 35. In this calculation the 
RDS is treated as a static formation. As seen, the signal 
beam peak intensity oscillates periodically and decreases 
approaching an asymptotical value of 0.86 of it's initial 
value. This behavior could be attributed to both the 
tanh-radial profile of the RDS and the sech-profile of the 
signal beam assumed, as well as to the finite value of the 
RDS radius Ro (Ro-~ ~ refers to the 1D dark soliton 
stripe considered variationally). Therefore, the approxim- 
ate initial values of asx,y and apx = ro given by (6c) could 
be evaluated as reasonable ones. The lower dashed curve 
in Fig. 3 represents the evolution of the signal peak inten- 
sity influenced by the divergence and the contrast-reduc- 
tion of the RDS when its inherent dynamics is not to be 
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a diverging RDS 
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Fig. 4a, b. Evolution of the signal beam width along the 
longer (a) and the shorter (b) axis of the ellipce. The solid lines 
refer to the static RDS, the dashed ones-to a diverging RDS 

neglected. After a propagation distance of about 7.5L»~:: 
the signal intensity reduces significantly. 

For  circularly-symmetrical self-supported formations 
the intensity multiplied by the second power of the 
beam/pulse width is a constant. Although the signal-be- 
ams analyzed are elliptical ortes, the upper two curves in 
Fig. 3 plot Isa~xasy rs. z/L»~:: in the case of a nondiverging 
(solid curve) and diverging RDS (dashed). If the dynamics 
of the guiding RDS is negligible, the quantity Isasxa~y 
seems to conserve asymptotically as a result of the stabiliz- 
ation of the large-ellipce radius a~y (Fig. 4a, solid curve). 
The periodic oscillations are due to the oscillations in the 
short-ellipce radius asx (Fig. 4b, solid curve) in the RDS. 
The low-depth short-distance oscillations in I~asxasy (Fig 
3, upper solid curve) are caused by the finite numerical 
discretization resulting in a 0.4% inaccuracy in determin- 
ing the beam widths. For  comparison, the upper dashed 
curve in Fig. 3 plots the quantity I~a~xasy for the signal 
being guided by a "dynamic" RDS. Its significant increase 
should be attributed mainly to the increment of the signal- 
beam radius asy along the ring-arc, since asx increases 

relatively slower (Fig. 4b, dashed curve). It should be 
mentioned, that the signal beam evolution up to 7.5L»uz 
does not seems to be strongly influenced by the RDS 
dynamics. If larger distances of guiding are desired, the 
initial conditions in the generation of the RDS should be 
suitably manipulated. 

Figure 5 presents grayscale plots of the static RDS and 
the elliptical signal beam nested in at the entrance of the 
nonlinear medium (a) and after 36 diffraction lengths. For 
comparison, Fig. 5c presents the RDS and the signal beam 
at z = IOL»i:: at a negligible signal SPM. The signal 
becomes wider in radial direction, but continues to be 
guided by the RDS. Along the RDS-arc, however, the 
signal spreads significantly due to the diffraction. 

Let us assume, that multiple bright elliptical signal 
beams are to be guided by a single RDS (Fig. 6). From 
practical point of view the requirement for a negligible 
cross-talk between the information channels is an obliga- 
tory one. This mode of propagation can be realized at 
suitably chosen signal-beam ellipticity and signal peak- 
intensity. The spatial SPM should compensate for the 
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Fig. 5a-e. Grayscale images of the RDS and the bright 
signal nested in at the entrance of the nonlinear medium 
(a) and at z = 36Lni:: (b). For comparison the signal beam 
intensity distribution at z = IOLD~:: resulting from 
a negligible SPM is shown on (e) 

Fig. 6. Grayscale plot of 8 elliptical signal beams being guided 
simultaneously by a single static RDS up to z = 36LD~::. The para- 
meters of the simulation are the same as for Fig. 2. 

azimuthal  diffraction spreading. At a certain RDS radius 
R0 the higher number  of signal beams to be guided paral- 
lely (without a cross-talk) should require reduced elliptici- 
ties and, therefore, higher intensities of the signals. The 
numerical result in Fig. 6 refers to a simultaneous guiding 
(up to z = 36LDi::) of eight signal beams of sech-profiles 
and of ellipticities equal to 1.85 by a static RDS. Their 
initial peak-intensities are 30% of the background  inten- 
sity required for the dark soliton format ion (see also 
Fig. 2). As could be seen on Fig. 6, there is no cross-talk 
between the signal beams. 

An impor tan t  parameter  of this parallel guiding- 
scheme is the guiding stability against initial nonperfect  
alignments of the signal beams with respect to the RDS 
irradiance minimum. Figure 7 ,illustrates a remarkable  
stability of the guiding-scheme considered. The signal 
beam deviated initially at 0.9ro with respect to the RDS 
intensity-dip (Fig. 7a) remains well allocated in the dark 
ring at z = 30Loi::  (Fig. 7b) and continues to oscillate 

Fig. 7a-d. Misalignment stability of the guiding scheme: Initially 
deviated signal beam (a: offset-90% of the ring width) remains well 
allocated in (b: z = 30LDi::; e: z -- 32.5LDily; d: z = 35LD~::) 
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a round  the ring m i n i m u m  (Fig. 7d, z = 35LDilS) passing 
radially th rough  (Fig. 7c, z = 32.5LDfII). These results refer 
to the case of a negligible RDS transverse dynamics.  In 
general, the nonzero  t ransverse velocity of the R D S  could 
influence negatively the signal guiding-stability. Figure 
8 shows, however,  that  the offset of the signal beam 
(dashed curve) with respect to the RDS intensi ty-min- 
i m u m  (solid curve) does not  exceed 20% the soli ton radius 
at z/LD~Iy = 4 . 5  and decreases monoton ica l ly  up to 
z/LD~Iy = 10 even at significant changes of the s ignal -beam 
dimensions  (Fig. 4a, b, dashed curves). Nevertheless,  
a suitable man ipu la t ion  of the initial condit ions in the 
genera t ion of the guiding RDS would allow to preserve, at 
least partially,  for the s ignal-beam spatial-profile changes. 

In view of the above,  we believe, that  a parallel  guiding 
of mult iple signal beams by a RDS could be observed 
experimental ly.  F o r  this purpose  it is necessary to select 
a nonl inear  medium,  for which both nS21"m(2p) and 
nIzFM(2~; 2p) are negative, whereas nSe~t(2~) is positive. This 
requi rement  could be fulfilled in "proof-of-pr inciple"  ex- 
per iments  in resonant  nonl inear  media  [22], but  it's prac-  
tical applicabil i ty should be verified on the base of  suitable 
semiconduc to r -doped  glasses, glass-composi tes  [23, 24] 
or  photorefrac t ive  media  [7]. F o r  communica t ion  pur-  
poses signal pulses should be considered instead of beams.  
The  influence of the m e d i u m  group-veloci ty  dispersion, 
I P M  and S P M  on the signal pulse shape [25] should be 
a subject of  a separate  detailed analysis. 

Fur ther  da ta  on the reduct ion of the RDS transverse 
velocity by an appropr ia t e  change of the pa ramete r s  of 
R D S  and signal beams,  which would open the possibili ty 
for a mult i funct ional  shor t - range  high-capaci ty  c o m m u n -  
ication will be discussed elsewhere. 
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Conclusion 

We believe, we have p roposed  a practical  scheme for 
parallel  guiding of mult iple signal beams by RDSs.  Cross- 
talk-free signal guiding can be achieved as a result of  the 
compensa t ion  of the signal diffraction spreading by the 
S P M  and IPM.  The  initial s ignal-beam ellipticity required 
seems easily obta inable  by using semiconductor  laser 
sources. The  guiding stability with respect to the signal 
beam radial  misal ignments  f rom the RDS intensi ty-min- 
i m u m  is found to be relatively high. A future spatio- 
t empora l  analysis of this scheme could open the way 
practical ly applicable optical  communica t ion-cab le  to be 
constructed.  In view of the different scenarious of  the 
instabili ty dynamics  of the quasy-one-d imens iona l  da rk  
solitons [26], special a t tent ion should be paid  to the 
modula t iona l  stability of  the guiding RDS. 
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