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Generation and intrinsic dynamics of ring dark solitary waves
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Abstract. We present experimental results on the evo-
lution of ring dark solitary waves generated by computer-
synthesized holograms. The data obtained and the
detailed comparative numerical simulations show that this
approach ensures reproduction of the correct intensity
and phase portrait of the dark wave at the entrance of the
nonlinear medium. The transverse dynamics at both even
and odd initial conditions is studied and compared with
the theory and simulations.

PACS: 42.65.S, 42.40.J, 42.65.J

The Ring Dark Solitary Waves (RDSW) in bulk nonlinear
media are first introduced and described in the adiabatic
approximation of the soliton theory in the works of
Kivshar and Yang [1, 2]. In each diametrical slice of the
background beam, the dark formation appears in the form
of two intensity dips of hyperbolic-tangent profiles spaced
at twice the dark ring radius. The phase portrait of the
RDSW demonstrates pairs of abrupt n-phase shifts local-
ized at the intensity minima across the ring. Similar to the
one-dimensional and quasi-2D experiments described in
[3, 4], in the first experimental generation of RDSWs [5]
at a pure amplitude modulation at the entrance of the
nonlinear medium, pairs of diametrical phase-shifts (less
than n) within the dark ring are recorded [6]. The trans-
verse velocity of these 2D dark formations of ring sym-
metry was found [5] to exceed the velocity of the 1D gray
soliton stripes generated from even initial conditions (i.e.
at pure amplitude modulation). In view of the principle
possibility multiple signal beams to be guided parallely by
RDSWs [7], the improvement of their contrast and the
reduction of their transverse velocity is desirable. The
same seems to be valid also for the ring-shaped bright
solitons with topological charge introduced recently [8].

In this work, we present experimental data on the
amplitude and phase distribution across ring dark forma-
tions obtained by reproducing computer-generated

holograms, which ensure the adequate initial conditions
for the generation of RDSWs of an improved contrast. It
was found both experimentally and numerically that this
RDSWs does obey weaker transverse dynamics as com-
pared to the gray RDSW obtained at an initial pure
amplitude modulation. Further reduction of the trans-
verse velocity was reached by increasing the dark ring
radius with respect to its width.

1 Computer-generated holograms and reconstruction
analysis

Computer-Generated Holograms (CGH) have been used
[9—11] to ensure the required intensity and spiral-phase
distribution [12] of optical vortex solitons. The desired
CGH of an odd dark wave of a circular symmetry should
result from an interference between a reference plane wave
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represents the diametrical phase jump across the ring dark
formation. It is known that only the n-phase jump at the
entrance of the Nonlinear Medium (NLM) is able to form
a fundamental 1D dark soliton stripe (grid) [4]. This result
encouraged us to synthesize CGHs by pure phase modu-
lation of the object wave.

The interference pattern obtained by using the well-
known relation
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Fig. 1. Computer-generated hologram of a ring dark formation
obtained at a pure n-phase modulation in the object beam

Fig. 2. Overview CCD camera images of some of the diffraction
orders a) and zero and $1-st diffraction orders of two ring dark
formations b, c) of different radii reconstructed from different Com-
puter-Generating Holograms (CGHs)

Fig. 3. Experimental setup used in the phase measurements (M1,
M2, M3-mirrors; M4 and PZT-piezoceramic mounted mirror; BS1,
BS2 — beam-splitters; T1, T2, T3-telescopes; C1, C2 — beam-splitter
cubes; D — detector; F1, F2 — filter sets; CGH — computer gener-
ated hologram; ID — iris diaphragm; PC — personal computer;
CCD — camera)

is shown in Fig. 1. The spatial position of the circular
n-phase jump can be easily identified by the shift of the
interference lines in the central region. During the numer-
ical generation and reconstruction of the holograms of
this type with variable ring-radii R

0
an 1024]1024 grid-

mesh was used. The real CGHs, however, were produced
photolitographically at a grating period of 20 lm on
15]15 mm2 optical glass substrates.

Following the classification of the types of CGHs [13],
the discussed ones are of binary transmittance. At equal
widths of the transmissive and reflective stripes (Fig. 1) it is
shown analytically [13] that the even diffraction orders
(except this with m"0) should disappear. In our case, the
diffraction efficiency at first orders was estimated to be
8.5%, close to the 10% limit predicted [13], whereas the
diffraction efficiency in the even orders was negligible
(Fig. 2a). Fig. 2b, c demonstrate two ring dark formations
of different radii reconstructed from CGHs (in the $1-st
diffraction orders) and the zero-order transmitted beam.
Since the interference structure was quantized in two
discrete levels, an irreducible quantization noise is added
to the reconstructed wavefronts. According to [13], how-
ever, the mean square error is down to n/24.

In the first step of the CGH reconstruction analysis,
we measured the transverse phase shift of the ring dark
formation generated. Interference was obtained in
a Mach—Zehnder interferometer (Fig. 3) formed by a beam
splitter BS1, the mirrors M2 and M4 and the beam splitter
cubes C1 and C2. For a purpose of a controllable optical
path-length variation, a Michelson interferometer (BS2,
M3, M4) was built-in in its reference arm. The path-length
was changed by the piezoceramic transducer mounted
mirror M4 and sensed by the variations in the interference
pattern in the Michelson interferometer via the photo-
detector D. The telescope T2 was used to expand the
He—Ne laser beam over the hole aperture of the CGH,
whereas the iris-diaphragm ID placed 15 cm behind trans-
mitted only the first diffraction-order beam with the re-
constructed dark formation nested in. The telescope T1
was used to adjust the spatial frequency of the interference
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Fig. 4. Diametrical phase distribution of a ring dark formation
reconstructed from CGH (solid line). Dotted line — numerical result
obtained at z"45 ¸

D*&&
and R

0
/r

0
"14. Insert — Grayscale image of

one of the interference patterns used in the tree-frame method for
phase distribution retrieval

Fig. 5. Measured a) and simulated b) diametrical intensity distribu-
tion across the ring dark formation after a linear propagation over
z"45 ¸

D*&&
. (255 grayscale levels of the CCD array signal corres-

pond to the initial background intensity)

pattern at the detector plane, whereas the telescope T3
matched the reference and object beam cross-section. Two
filter sets F1 and F2 were used to avoid CCD-camera
saturation at a direct CCD-array illumination and to
control the interference pattern contrast. This arrange-
ment has made possible to record sets of three interference
pictures at known phase shifts (0, 2n/3, 4n/3) per exposure
and, thereafter, to reconstruct the 2D phase portrait of the
dark formation by the three-frame technique [14, 6].

In Fig. 4 we present the experimental phase distribu-
tion across a dark ring of 2 mm diameter reconstructed
form the CGH located 175 cm away from the CCD cam-
era. The grayscale image inserted shows the system of
interference lines used in this measurement. The arrow
indicates the direction, at which the phase distribution
evaluated is presented. Pairs of opposite phase shifts of
nearly n are clearly seen. In a small region in the right
wing of the curve, the phase was not adequately recon-
structed because of the absence of intensity modulation in
two of the frames recorded. Nevertheless, one can see
weak distortions in the abrupt phase changes at the phase
level denoted as zero and at the bottom of the phase step.
We attributed these deviations to a diffraction of the dark
ring.

The linear 2D evolution (diffraction) of optical beams
along their propagation path could be described in a natu-
ral way by solving the (2#1)-dimensional nonlinear
Schrödinger equation (NLSE) [1, 2]
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1024]1024 grid points. Closest agreement between the
experimental (Fig. 4, solid line) and numerical results
(dotted line) was found at z"45¸
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is the Rayleigh diffraction length. The
result indicates that the phase variations at the half-high
of the jump and at the phase-minimum results from the
unavoidable diffraction. This was confirmed by placing
the CGH 60 cm in front of the CCD camera. At this
location the agreement between the experimental and
numerical data was gradually better.

The ratio of the dark ring radius R
0

to the ring width
r
0

deduced from the phase measurement and from the
simulation agrees with the ratio measured directly by
blocking the reference beam in the interferometer. For
obtaining realistic profile of the intensity dip, we allowed
saturation of the CCD camera (Fig. 5a). As seen from this
slightly saturated experimental curve, recorded at 175 cm
CCD-CGH distance, sufficiently longer than the 15 cm
required for the CGH reconstruction, the 2D diffraction
does influence also the dark ring intensity distribution.
Assuming an initial hyperbolic-tangent profile of the dark
beam (1) and a super-Gaussian background beam of
a radius 5 times larger than R

0
the numerical simulation

of the initial distribution at z"45¸
D*&&

and R
0
/r

0
"14

(Fig. 5b) was found to show the similar fine modulation to
the observed experimental curve (Fig. 5a). The ‘‘saturation
level’’ in the calculation is indicated in Fig. 5b with
a dashed line.

Two particular conclusions could be drawn from the
CGH reconstruction and from the simulations: i) at suit-
able distances the binary transmittance holograms gener-
ated at a pure phase modulation reproduce the n-phase
jump encoded; ii) the intensity modulation of the dark ring
is adequately described by hyperbolic-tangent profile.

Therefore we believe that it is possible to provide
experimentally the conditions for the generation of ring
dark solitary waves in self-defocusing nonlinear media (i.e.
at n

2
(0) [1, 2]

2 Transverse dynamics of RDSWs

The experimental arrangement for measuring the evolu-
tion of RDSWs radius R

0
and width r

0
along the nonlinear
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Fig. 6. Experimental set-up used for measuring the RDSW dynam-
ics (Ar` — argon ion laser; M1, M2 — mirrors; CGH — computer
generated hologram; ID — iris diaphragm; T — inverted telescope;
NLM — nonlinear medium; P1, P2 — 90° prisms on a translation
stage; F — filter set; CCD — camera) Fig. 7. Evolution of the Ring Dark Solitary Wave (RDSW) radius

vs nonlinear propagation-path length in units of ¸
NL

(solid
line — initially ‘‘black’’ RDSW; dashed —‘‘gray’’ RDSW generated
from an even initial condition) The vertical line indicates the length,
up to which the numerical data could be compared to the experi-
mental ones in Fig. 8

Fig. 8. Experimental dependence on the RDSW radius along the
nonlinear medium (triangles — RDSW generated from a CGH;
rings — RDSW generated by an amplitude mask) and corresponding
fits

propagation path is shown on Fig. 6. The 514.5 nm line of
a multiline Ar ion laser of a power of 300 mW was used to
reconstruct the CGH and the diameter of the first diffrac-
tion order beam at the entrance of the NLM of length
5 cm was reduced to 200 lm by a telescope. A pair of
two identical prisms, one of them immersed in the non-
linear liquid (hydrocarbon oil ‘Nujol’-Merck, dyed
with SPC

16
6(NO

2
) to a molar concentration of

1.1]10~3 Mol) provides the possibility to couple the
background beam and the RDSWs out of the cuvette at
variable lengths of the nonlinear propagation path. Under
this conditions, the maximum nonlinear propagation
length inside the cuvette was limited to 3.2 cm and
the maximum nonlinear refractive-index change was
DDnNL

.!9
D"4.10~4. The eventual saturation of the CCD

camera located at 21 cm after the exit of the NLM was
prevented by suitable filter sets F (Fig. 6).

All further numerical simulations in this work are
based on solving the NLSE (3) by the split-step Fourier
method over 1024]1024 grid points under self-defocus-
ing conditions (n

2
(0) . The initially ‘‘black’’ RDSW at

the entrance of the NLM was modelled according to
(1a—b). In the nonlinear medium the longitudinal coordi-
nate z was naturally to be expressed in units of nonlinear
lengths ¸

NL
"(kDn

2
DA2

0
)~1, where A

0
is the amplitude of

the background beam B (r) .
As a first step, we compared the transverse dynamics

of ‘‘black’’ and ‘‘gray’’ RDSWs, the last one generated
from initially even conditions
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where B (r) is the super-Gaussian background beam. The
increase in the dark formation radius R

0
along the NLM

is plotted in Fig. 7 for both initially ‘‘black’’ (solid line) and
‘‘gray’’ (dashed line) RDSWs. In order to ensure equal ring
radii R

0
(z"0) and widths r

0
(z"0) in both cases, first the

formation of the ‘‘gray’’ RDSW from pure amplitude
modulation is simulated and, thereafter, the initial profile
of the ‘‘black’’ RDSW was generated. Since the experi-
mental conditions required imaging of the photolito-
graphycally produced amplitude mask (reflecting dot) on
the cuvette input face, initial diffraction over 3¸

D*&&
was

included prior to starting solving the NLSE. As seen

from the numerical results (Fig. 7), the ‘‘black’’ RDSW
radius does increase slower as compared to the radius of
the ‘‘gray’’ formation generated by a pure amplitude
modulation.

Qualitatively the same behaviour was found in the
experimental results presented in Fig. 8. Since ¸

NL
"¸

D*&&in the simulation in Fig. 7 and ¸
D*&&

+4 mm in the NLM
(due to the presence of telescope T in Fig. 6) the vertical
dashed line in Fig. 7 indicates approximately the NLM
length, up to which the data available from the experiment
are comparable to the numerical results. Again it is evi-
dent, that the initially ‘‘black’’ RDSW reconstructed from
the CGH (Fig. 8, closed triangles) does obey a reduced
transverse dynamics as compared to the initial ‘‘gray’’
RDSW (open circles). The inclusion of the initial diffrac-
tion in the model seems to describe adequately the initial
stage of the ‘‘gray’’ RDSW evolution (Figs. 7, 8, dashed
curves), but does not further influence the transverse
velocity of these ‘‘gray’’ formations.
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Fig. 9. RDSW radius R
0

vs normalized nonlinear propagation dis-
tance z at different values of R

0
/r

0
D
z/0

(solid curves — analytical
results following [1], dashed — numerical solutions of the nonlinear
Schrödinger equation)

Fig. 10. RDSW radius R
0

measured at the CCD-camera plane vs
nonlinear propagation path length ¸ at R

0
(z"0)"12.5 lm (lower

curve) and R
0
(z"0)"85 lm (upper curve) at the entrance of

nonlinear medium. The bars indicate the measured values of the ring
width r

0

As a second step we analysed both numerically and
experimentally the dynamics of RDSWs of equal widths
r
0
and different radii R

0
, generated with odd initial condi-

tions. Fig. 9 presents numerical results intended to clarify
as far the analytical results on the RDSW radius R

0
vs

z obtained in [1] match the solution of the NLSE. The
radial spreading of the initially black RDSWs obviously is
faster for dark odd rings of reduced radii R

0
. The

adiabatic approximation used in [1] is found to gradually
influence the small rings only, whereas at R

0
'6r

0
the

numerical results (dashed curves) are practically identical
to the analytical ones (solid curves).

The experimental results on the evolution of RDSWs
obtained with CGHs (Fig. 10) confirm that the larger
initially R

0
is, the weaker is the expressed dynamics of the

dark formation along the NLM. The bars in Fig. 10
present the measured ring-widths r

0
along the propaga-

tion path. The decrease of the width r
0

in the RDSW with
the smaller radius and the weak change of the curvature of
the dependence are results of both the higher transverse
velocity of this formation inside the NLM, and the diffrac-
tion from the side-lying exit of the cuvette to the CCD
camera.

3 Conclusion

In view of the above analyses we are convinced to state
that the reproduction of computer-generated holograms
of binary transmittance generated at a pure phase modu-
lation of the object wave are able to ensure adequate
intensity and phase distributions for the generation of
initially black ring dark solitary waves. These dark forma-
tions show a reduced dynamics as compared to the

RDSWs generated by an amplitude modulation of the
background beam. Further decrease of their transverse
velocity is reached by increasing the RDSW radii.
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