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Abstract 

We investigate numerically Optical Vortex Solitons (OVSs) with different topological charges (m) and show that they are 
characterised with soliton constants equal to the product of their topological charge and the soliton constant of unit OVS. 

The propagation characteristics for Irnl = 1,2,3 and 4 are investigated. We proposed an approximate analytical description of 
the field distribution, which was found to be adequate to describe multiple-charged solitons. The instability of these solitons 

is discussed and they were found to be unstable in the presence of a perturbation. 0 1997 Elsevier Science B.V. 

PACS: 42.65 
Keywords: Nonlinear optics; Vortex solitons; Topological charge 

1. Introduction 

Vortex structures are known long ago from works in 
superfluid dynamics [l] and quantum mechanics [2], but in 
the field of nonlinear optics, presented in the form of 
Optical Vortex Solitons (OVS), they are the subject of 
present interest [3-61. The scientists involved with solitons 

are interested on their peculiar properties, found to be 
useful for all-optical switching, guiding and trapping [3.7- 

9]. The OVSs are known to be stable particular solutions 

of the scalar three-dimensional nonlinear Schradinger 
equation (3D-NLSE) [lo], which describes the propagation 

of an optical beam through bulk nonlinear media in the 
presence of both nonlinearity and diffraction in two trans- 
verse dimensions. However, despite more than two decades 
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of intense research, most of the studies in the field of 

optical solitons were restricted to one-dimensional noniin- 
ear propagation, i.e. to temporal or spatial ID solitons 

[lo-161. In these cases the Inverse Scattering Method is 
applicable for solving the model equations [lo]. A number 
of applications of temporal solitons were investigated in 
connection to soliton based communication systems [ 171. 

As known for many nonlinear optical systems, the 

consideration of additional degrees of freedom such as 
new transverse dimensions does lead to extremely sophisti- 

cated dynamics of the processes. Consequently, one should 
expect that the existence of two-dimensional (2D) spatial 
optical solitons is not trivial. For instance, despite the 

counteraction of nonlinearity and diffraction, bright (with 
vanishing boundary condition) solutions of the 3D-NLSE 
are unstable in self-focusing Kerr media [ 181. The search 
for a stable solution directed to dark spatial solitons in 

self-defocusing media has led to the discovery of OVSs, 
which can be described as self-supported dark beams with 

screw phase dislocations at their centres. From the mathe- 
matical point of view, this screw phase profile is described 
by the multiplier exp(imcp), where cp is the azimuthal 
coordinate and m, called topological charge (TC), is an 
integer number, which sign determines the direction of the 
dislocation. The counterclockwise direction (m > 0) is re- 
ferred to as positive TC, whereas the clockwise direction 
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determines a negative one. Concerning the OVS field-dis- 
tribution, no exact analytical presentation is known, but 

asymptotic approaches are suitable to investigate the prob- 
lem [4,19,20]. 

It has been proven in a scalar approximation that OVSs 
are stable with respect to transverse perturbations [5]. 

Detailed analysis on different polarised vortices is pre- 
sented in Ref. [S] restricted to single-charged ones (m = 
+ 1). Computer-generated holograms appeared suitable for 

experimental generation of optical vortex solitons [7,9]. 
This way, the characteristics of single-charged OVSs are 

investigated. It was also observed that single-charged OVS 
could be generated as a result of modulational instability 

of dark soliton stripes [6]. Thus, one can conclude the 
fundamentality of such localised dark spatial formations. 
Probably because of this reason, most of the authors 

analysed single charged OVSs, neglecting the multiple- 
charged ones, which can be viewed as superposition of 
unit OVSs. Indications, that multiple-charged vortices 

(namely with m = 3) do not split into single-charged ones 

in a self-defocusing medium could be found in Ref. [21]. 
The aim of this work is to highlight the interesting 

properties of OVSs with topological charges higher than 
unity. For this purpose we used computer simulations to 
investigate the characteristics and instability of the multi- 

ple-charged solutions of the 3D-NLSE in a bulk self-de- 

focusing nonlinear medium. However we will accent to 
them only like a physical phenomenon and will not discuss 
the applicability of these structures. 

2. Vortices of the 3D-NLSE 

Taking into account the axial symmetry of the problem, 

the 3D-NLSE in cylindrical coordinates has the form: 

A-(Al’A=2, (1) 

where A is the complex slowly-varying electric field 

amplitude, and the negative sign of the last term accounts 
for the self-defocusing Kerr nonlinearity. As mentioned 
above, this partial differential equation has a stable solu- 
tion with non-vanishing boundary condition, called OVS 
and, according to Refs. 13,201, it closely matches the 
hyperbolic tangent profile, known to be the exact one for 
1D black solitons [22]. Hence, the approximate form of the 
fundamental OVS reads: 

A = &tanh(r/r,)exp(imcp), 

where a and I, are the vortex width and background 
intensity, respectively. There is a balance value of lo for 
the generation of such a 2D dark formation. The back- 
ground intensity required should be fi times higher than 
that needed for achieving a fundamental 1D black soliton 

of width a [3,20]. The product lea’, called soliton con- 

stant [22,23], is found to preserve its value along the 
nonlinear propagation path. If the initial background inten- 
sity 1, is higher than its balance value determined by the 
soliton constant, a part of the “lack of energy” is emitted 
in the form of a dark ring solitary wave [20]. This be- 

haviour is inherent to 1D black solitons and is one of the 
tests we use proving the soliton nature of multiple-charged 

optical vortices. The existence of a soliton constant at 
[ml > 1 along with the screw phase distribution are the 

most important characteristics of the spatial dark soliton 

propagation and will be discussed. 
As mentioned above, multiple-charged OVSs are math- 

ematically characterised by the multiplier exp(imcp), which 
provides linear (versus the azimuthal coordinate cp) vari- 

ance of the phase from 0 up to 2mn. It is natural to 
expect, that the vortices with Irnl > 1 do differ in shape 

from the single-charged ones (see Eq. (2)). We propose to 
approximate the initial transverse field-profile of the OVS 

with topological charge m by the function 

A,,,(r,cp,z = 0) = & tanhm( r/u,) exp( im cp), (3) 

written in cylindrical coordinates, where a, and 1, are the 
vortex width and the balance background intensity, respec- 
tively. By applying the criteria for identifying odd dark 

spatial solitons [22,23] we numerically demonstrate the 

existence of OVSs with topological charges (ml = k 2, + 3 
and f4 described approximately by Eq. (3). The 

multiple-charged vortex intensity and phase profile, the 
existence of a soliton constant and the interactions with a 
second dark solitary wave will be discussed in the follow- 

ing. 

3. Numerical procedure 

We solve numerically the 3D-NLSE written in a nor- 
malised form [24]: 

aA 
i-+- 

az 

LDiff = (4) 

where L,,, and L,, are the diffraction and nonlinear 
length [24], respectively; 5 and 71 are the transverse coor- 
dinates, normalised to the vortex radius a,; A is laser 
beam wavelength; n, and n, are the medium index of 
refraction and the nonlinear-index coefficient (n = no + 
n2 I, n2 < 0). The numerical procedure used is the 3D 
generalisation of the Split-Step Fourier Method [24]. In 
order to ensure vanishing boundary condition simultane- 
ously avoiding the dip-to-background interaction we im- 
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posed the initial distribution (Eq. (3)) on a seventh order 

super-Gaussian background beam, more than 20 times 
broader than the dark one 

B(r)=exp[-(T/M:)‘~], ua>20a,. (5) 

Thus, the initial condition used in our modelling reads: 

A,J r,~o,;: = 0) = aB(r)tanh”(r/cc,)exp(imcp). 

(6) 

The region of integration used in our calculations spans 

over 1024 X 1024 grid points and was confirmed to be 
suitable by doubling its size. The longitudinal coordinate z 

was normalised to the nonlinear length L,, throughout 

this work, since different dark beam profiles at a fixed 
width urn were used (see Eq. (6)) and, therefore, Lo,,, 

loses its usual physical meaning [24]. 

4. Results and discussion 

We used computer simulations in investigating the 

propagation of the dark beam proposed (Eq. (6)) through a 
self-defocusing medium. We chose a, = 1.0 and w = 20.0 
(see Eq. (6)) and for different topological charges m we 

looked for a stable regime of propagation. The results are 
shown in Fig. I. At the initial stage of the nonlinear 

evolution, each dark beam changes its profile and stabilises 
itself at a certain distance. The nonlinear propagation path 
length, after which the dark beam retains its transverse 
intensity distribution is denoted. No further changes were 

observed thereafter and the calculations were terminated at 

z = 30&r. Single-charged OVS is formed at I = IO&,, 

whereas fourfold-charged OVS stops to change its profile 
at - = 2OL,, (Fig. I). This difference should be attributed c 
to the obviously increased deviation between the initial 

field profile proposed (Eq. (3)) and the real one found to 
be self-supported along the propagation at a certain m. It is 

important to note that in the absence of an exact analytical 
solution even for single-charged OVS, the approximation 
given by Eq. (3) is reasonably close to the numerical 

results. 
For each m we kept (I,,, = 1 and succeeded to estimate 

the balance value of the background beam intensity I,,, 
required to form multiple-charged OVS. The criterion used 

was to estimate the threshold intensity above which a dark 
solitary wave is emitted away from the 0%. In Fig. I 
there are horizontal dotted lines intended to visualise the 
balance values of I,,,. The additional vertical dotted lines 

(at r = a,, = 1.0) make it easier to estimate qualitatively 

the differences between the intensity profiles for each m at 

fixed a,. Increasing the topological charge, the dark beam 

profile effectively becomes wider, and its wings steeper, 
resulting in a higher diffraction, needed to compensate for 
by the higher nonlinearity. 

In the case of vortices of topological charge m we 

considered the definition of a soliton constant 

E, = Q;,. (7) 

which corresponds to the usually used product of the 
square of the width and the peak dark irradiance in the ID 

Transverse Coordinate (arb. units) 
Fig, 1. A set of graphs, presenting radial intensity cross-sections of the initial profile and the stabilised along the propagation 

m-fold-charged OVS (see the text for details). 
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Table 1 

Numerically determined 

malised soliton constants 

m and soliton widths a, 

values of I, and the calculated nor- 

/Z, /E, at different topological charges 

m a, = 1.0 a, = 1.5 

Im Em /4 1, Em / 4 
1 5.8 1.00 2.45 1.00 

2 11.7 2.02 5.07 2.01 

3 17.7 3.05 7.78 3.18 

4 24.5 4.22 10.08 4.11 

case [22,23] and in two transverse dimensions at m = 1 [3]. 
The results obtained are summarised in Table 1, where two 

different initial dark beam widths a, are assumed. For 
each value of a, the numerically estimated value of the 

balance background intensity I, is presented along with 
the soliton constant (Eq. (7)) normalised to its value at 

m = 1. The perfect linearity seen in Fig. 2 (see also Table 
1) is indicative that the soliton constant for m-fold charged 

OVS is related to the constant for a single-charged OVS 

by the simple formula: 

E,=lm(E,. 

With circles and squares in Fig. 2 we marked the numeri- 

cal results for a, = 1 .O and 1.5, respectively. The minor 
relative differences within a 5% interval correspond to the 

inaccuracy in estimating I,,,. A comparison plot is inserted 
in Fig. 2 clarifying the main differences between the radial 

intensity profiles of m-fold-charged OVSs with a, = 1.0. 
Investigating the soliton constant for Irnl > = 1 we 

demonstrated that multiple-charged OVSs fulfil one of the 
important identification criteria mentioned above. Further 

we will concentrate our attention on the even-charged 

Fig. 2. Normalised soliton constant versus topological charge m at 

“rf? = 1 (open circles) and a, = 1.5 (open squares). The solid line 
presents a linear fit, corresponding to Eq. (8). Insert: Comparison 

plot of the intensity profiles of multiple-charged OVSs. 

o_~~---4-;+r.; k y- 
Transverse Coordinate (arb. units) 

II 

Fig. 3. Radial cross-sections of the input twofold-charged dark 

beam (solid curve) at high intensity background (I = 2.151,) and 

the formed OVS with emitted solitary grey ring (dotted curve) at 

- = 2OL,, ., 

OVSs, because of their unusual (at a first sight) phase 
distribution. In contrast to the odd-charged ones, they do 
not possess radial v-phase jumps. In the 1D case this 

phase singularity is a necessary condition for generating 
black solitons. The same is also valid for single-charged 

vortices, but even-charged ones were also found to be 
self-supported (when no perturbation of the background is 
present) in self-defocusing Kerr media. In our view the 

solitary propagation of multiple-charged OVSs could be 
attributed to the spiral phase distribution, rather than to the 

presence of radial n-phase jumps. 
In Fig. 3, in the particular case m = 2, we demonstrate 

that the increase of the background intensity (2.15 times) 

above its balance value does lead to emission of a dark 

ring solitary wave. Such a behaviour is well known in 1D 
[22] and for single-charged OVSs [20]. As expected, smaller 

than 7~ phase shifts across the grey solitary ring were 
observed. At the centre, a twofold-charged OVS of a 
slightly reduced width as compared to the initial one is 
formed. It was carefully checked that the measured width 

squared times the background intensity product is in an 
excellent agreement with the soliton constant for m = 2. 

Qualitatively the same results were obtained at higher 

topological charges. 

This analysis could not be considered as a complete 
one without the investigation of collisions between multi- 
ple-charged OVSs and the soliton stability. It is well 
known for both temporal and spatial 1D odd dark solitons 
that after the collision each soliton continues on its way 
unchanged, except for a temporal/spatial shift [15.25]. 
Since it is not obvious how to force two OVSs to collide 
without perturbing their common background beam, we 
analysed a slightly different [ 151 situation (Fig. 4a). A 
twofold-charged OVS is placed axially offset (A = 10) 

from an even (with a plane phase) dark beam. The latter 
one does evolve into a diverging grey ring solitary wave 
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[26]. The dark ring formed this way, increasing its diame- 

ter, collides with the OVS. In Fig. 4c we present a 

grayscale image of the initial transverse phase distribution. 

At the centre of the twofold-charged OVS one can see its 
characteristic spiral phase distribution, whereas at the even 
beam centre the phase remains unchanged. The light lines 

crossing the OVS centre are added for better visualisation. 
In Figs. 4b. 4d the transverse intensity and phase distribu- 
tions after the collision (,- = IO,&,) are presented. It can 

be seen that the twofold-charged OVS decayed into two 
OVS with unit circularity, although the topological charge 

remains conserved. 

In order to describe more accurately the instability of 
these structures we investigated the evolution of multiple 

OVS under a linear sinus-shaped perturbation of the plane 
wave background. Following the standard linear modula- 
tional stability analysis 15,271 we perturbed the field in Eq. 

(3) with 

6A,,, = 6A,, sin( K .L .x) exp( imcp), (9) 

where K, is the transverse wavenumber of the perturba- 
tion. Our analysis showed that multiple OVS are always 

unstable under action of a perturbation. The initial instabil- 

ity growth-rate is relatively weak for a small- and large- 
scale perturbation but increasing sufficiently when the 

perturbation exhibits a transverse scale comparable with 
the soliton size (cross section). It was found analytically 

that the (always imaginary) critical wavenumber of the 
perturbation K I ,cT is proportional to the OVS topological 
charge (nr). We found this result to agree qualitatively 

a b 

Fig. 4. Grayscale images of the intensity (a, b) and phase portraits 

Cc. d) of colliding twofold-charged OVS and a diverging grey ring 

solitary wave (a. c: ; = OL,,; b. d: ;: = IOL,,). On the phase 

portraits. black corresponds to cp = 0. whereas white to cp = 2~. 

( 19% of the full computational area is presented.) 

Fig. 5. Grayscale images of the intensity (a, b) and phase portraits 

(c, d) of threefold OVS imposed on perturbed background beam 

(a. c: ; = OL,,; b. d: : = IOL,,). Perturbation of transverse 

wavelength .4, = IO and amplitude &A,, = 0.1. (19% of the full 

computational area is presented.) 

with the numerical simulations. The corresponding results 
(when 11 L = 2r/K I ,cT = 10) for threefold-charged OVS 

are presented in Fig. 5. For better visualisation 19% of the 
full computational area is presented. In Figs. 5a, 5c the 
initial field distribution is presented. At ; = IOL,, (Figs. 

5b. 5d) one can see the well expressed breaking of the 
OVS into three vortices with unit circulations. The total 
topological charge remains conserved as well. 

In conclusion to this section we have to underline that 
multiple OVS should be treated as soliton-like formations 

in two transverse dimensions. They possess all the proper- 
ties known for 1 D spatial/temporal solitons (specific phase 
profile at the irradiance minimum, conservation of the 

product of the square width and the background intensity). 

but they are unstable under the action of perturbation and 
break up into vortices with unit circulations. 

5. Conclusion 

We have investigated numerically the characteristics of 

multiple-charged optical vortex solitons. Different intensity 
profiles were obtained corresponding to different topologi- 
cal charges. The soliton constant was found to increase 
linearly with OVS TC. The initial condition (Eq. (3)). 
proposed. was found to approximate with reasonable accu- 
racy the numerically obtained multiple-charged OVS pro- 
file. These results are fundamentally important since no 
analytical description is known even for single-charged 
ovss. 
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The OVS stability was found to be poor. This is why 
one can interpret a multiple charged structure as a nested 

set of helical waves representing single charged vortices. 
The location of the field zero is a result from destructive 

interference from all components of the background wave 
emanating from all regions of the beam. Since in a per- 

fectly uniform beam equal energy exists in all phase 

components of the background, in such conditions the 
position of the field zero remains static. However any 

perturbation of the background breaks these conditions and 

the zero is destroyed, and this results on decay of the 
multiply charged vortex into single charged components 
with multiple field zeros existing near the centre of the 

original vortex. 

In this way eventual applicability of these dark forma- 
tions seems to be restricted mainly to switching devices. 
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