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Abstract

Vortex motion in ordered structures is analysed numerically in the frame of the 2D nonlinear Schrodinger equation.¨
Ž .Analogies with superfluid dynamics are presented. It was found that coherent interaction of optical vortex solitons OVSs

leads to vortex motion, which can be adequately described by the Kelvin law in superfluid dynamics for large offsets
between the OVSs. Cancelation of motion in some spatial configurations of vortices and vortex lattices is observed. The
possibility to steer the motion of vortex ensembles is discussed. q 1998 Elsevier Science B.V. All rights reserved.

PACS: 42.65.–k; 42.65.Sf; 42.65.Tg; 42.65.Wi

1. Introduction

ŽThe concept of wavefront-dislocations edge, screw, or
.mixed edge-screw , along which the phase is undetermined

and the field amplitude is zero, was introduced in the wave
w xtheory by Nye and Berry 1 . The point phase dislocations

Ž .in two dimensions are also called vortices. Vortex forma-
w xtions are known from works on superfluid dynamics 2,3

w xand quantum mechanics 4 , but they are a subject of
w xrecent interest in optics 5,6 , especially for the generation

w xof optical vortex solitons 7–10 .
Optical vortices are characterized as localized intensity

dips with two-dimensional screw phase dislocations, im-
posed on a bright background beam. From the mathemati-
cal point of view, such screw phase profile is described by

Ž .the exp imw multiplier, where w is the azimuthal coordi-
nate and m is an integer number whose sign determines
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the direction of the dislocation. The counterclockwise di-
Ž .rection is denoted as a positive Topological Charge TC .

Beams with such helical phase profiles can be generated in
w xlasers with large Fresnel number cavities 11 , by using

w x w xhelical phase plates 12 , laser mode converters 13,14 , by
w xcomputer generated holograms 15,16 or as a result of

instabilities of dark soliton stripes in Nonlinear Media
Ž . w xNLM 17–19 .

In a linear regime of propagation the optical vortex
retains its phase portrait and the dark core does broaden,
whereas in the absence of a helical phase distribution a
Poisson spot does appear in the far-field power-density
distribution. In the presence of defocusing nonlinearity the
optical vortex can evolve into a two-dimensional spatial

Ž .Optical Vortex Soliton OVS . For the first time the exis-
w xtence of stable OVSs was predicted in Ref. 20 and

w xexperimentally demonstrated in Ref. 8 . The interest to-
ward these self-supported dark beams is motivated by their
inherent ability to induce gradient optical waveguides in
the defocusing NLM. They can serve as steerable ‘‘con-
duits’’ information carrying beamsrpulses and seem at-
tractive for all-optical switching applications. The OVSs

w xare found to be stable in a scalar nonlinear system 20 and
unstable under perturbation when polarization of the beam
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Žis taken into account except for beams with circular
. w xpolarization 21 .

It was found that as a result of the free-space propaga-
tion of an array of optical vortices nested in a smooth
background beam, their relative position does depend on
the mutual disposition of the TCs within the ensemble
w x22–26 . When a pair of vortices with equal TCs is consid-
ered their relative positions as well as their positions
within the host beam, are invariant upon propagation and
vortices move rigidly. In contrast, a pair of vortices with
opposite TCs attract each other. They can collide and

w x w xannihilate 22 . It was shown 23 , that in a linear regime
amplification vortices are restless and move continuously.

When a pair of vortices propagates through a self-de-
focusing NLM, the vortices evolve into 2D dark OVSs and
they can be forced to rotate around the beam centre up to
1808. This rotation can be controlled by the beam intensity
andror material nonlinearity because both of them are able
to alter the wavefront curvature thus modifying the relative

w xposition of the OVSs at the output plane 16 . This be-
haviour can be used for constructing rotary switches able
to link an input port to an array of output ports.

Topological-stable patterns consisting of identically-
charged vortices are modeled on the basis of the complex
Ginzburg-Landau equation with space-dependent coeffi-

w xcients 27 . It is shown that the gradients of the complex
coefficients can counterbalance the repulsion between the
vortices, but spatial instability is claimed for spatially-in-
dependent coefficients.

Ž .The Nonlinear Schrodinger Equation NLSE could be¨
considered as a special kind of Ginzburg-Landau equation

w xwith spatially-independent coefficients. It is shown 25,28
that for large intervortex separation the dynamics of vor-
tices satisfying the cubic NLSE correspond to point vortex
dynamics in an ideal two-dimensional fluid.

In this paper we investigate the evolution and robust-
ness of ensembles of optical vortices and prove the possi-

Ž .bility to stabilize in space ordered structures of OVSs in
homogeneous and isotropic bulk Kerr self-defocusing non-
linear media. Indications for the possibility to achieve an
all-optically controlled switching are found, when an array
of input ports is rotary linked to an array of output ports.
The eventual all optical control of the ensemble evolution
may open the way toward future parallel switching devices
based on OVSs. However we will not discuss the particu-
lar technical aspects.

2. Numerical analysis and tests

The evolution of dark subbeams imposed on a bright
background beam in self-defocusing NLM is described by

Ž .the 2q1 D NLSE:

E A 1 1 22i q = Ay A As0 , 1Ž .H
E z 2 L LDiff NL

for the slowly varying amplitude A of the electric field,
where

E 2 E 2 1 E E 2 1 E 2
2

= s q s q qH 2 2 2 2 2r E rEj Eh E r r Ew

is the transverse Laplacian and j ,h r ,w are theŽ . Ž .Ž .
Ž .dimensionless Cartesian polar coordinates, normalized to

Ž .the dark beam radii. In Eq. 1 , L and L are theDiff NL

corresponding diffraction and nonlinear lengths. The latter
are equal for a soliton mode of propagation.

Further to our previous analyses on incoherent OVSs
w xinteractions 29 , presently we are interested in investigat-

ing the evolution of coherent superposition of such soli-
Ž .tons. Eq. 1 is solved numerically by means of a 2D

generalization of the split-step Fourier method with a grid
mesh expanded over 2048=2048 points. In order to en-
sure conditions, under which undesired interaction between
the axially offset OVSs and the finite background beam is

w xnegligible 30 we consider the vortex ensemble as im-
posed on a super-Gaussian beam of HWHM more than 20
times larger than the minimum of the OVS radii:

12B r sexp y rrw , wG20 . 2Ž . Ž . Ž .

When multiple vortices are imposed on the same back-
ground beam the initial field is considered as a product of

Ž Ž .the core functions of each vortex see for example Eq. 19
w x Ž . w x.in Ref. 25 or Eq. 4 in Ref. 26 . Exact-form solution

for the core function does not exist but a convenient
approximation used in our simulations is given by a tanh

Žprofile, which has a well defined core size see for exam-
Ž . w x Ž . w x.ple Eq. 2 in Refs. 25,26 and Eq. 6 in Ref. 31 . In

practise a beam with such core function can be formed
with good accuracy using computer-generated holograms
w x15,16 .

In order to proof the fidelity of our numerical proce-
dure, we consider first the known nonlinear motion of a

w xpair of OVSs 9,16,25 along the NLM. The coherent
interaction of vortices, resulting in a pure nonlinear motion
w x Ž9 when vortices are imposed on a plane wave back-

.ground should be distinguished from the vortex motion at
w x Žthe focused background beam 16 when the Guoy shift is

.responsible for rotation of the OVSs with equal TCs .
In both situations mentioned above and in agreement

w xwith Refs. 9,16,25 , rotation of OVSs of equal TCs is
observed, in contrast to the case of opposite TCs. In the
second case a well expressed saturation of the rotation
velocity with increasing input intensity is found.

ŽIn the case of a pure nonlinear rotation when back-
.ground beam focusing is absent we did not observe any

saturation of the rotation speed versus input intensity. It is
w xfound 9 , that vortex motion in this case is very similar to

w xthe vortex motion in superfluids 2 , where the nonzero
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Ž .Fig. 1. Polar plot of the OVS pair of equal TCs rotation angle
Žversus normalised nonlinear propagation path-length solid circles

– Ds10.0, ms1; open circles – Ds10.0, ms2; stars –
Ds7.5, ms1; squares – Ds5.0, ms1; triangles – Ds2.5,

.ms1 . Solid curves – best fits.

Žvelocity caused by the presence of other additional vor-
.tices is given by the Kelvin law:

m = r yrd r Ž .j i ji
sg . 3Ž .Ý 2d z < <r yrj/ i i j

Ž .In Eq. 3 , r are the spatial positions of the vorticesi, j
Ž .in the x, y plane and m are vortex TC vectors in thej

Ž .direction perpendicular to the x, y plane. g is a scale
Ž .coefficient in units of dimensionless length .

In Fig. 1 a polar plot of OVSs rotation angle u versus
normalized the nonlinear propagation path-length for dif-

< <ferent offsets r yr at equal TCs is presented. The openi j

circles presents the generalized case of interaction of vor-
tices with TC ms2. It is clearly seen that the rotation in
this case is twice faster than for the case of interacting

Ž .unit-charged vortices of the same separation solid circles .
In all cases this rotation possesses a constant angular
velocity.

The main feature in the propagation of OVSs with
w xhigher-order TCs is their instability. It was found 32 that

Ž .multi-charged vortices in the framework of the NLSE are
metastable, i.e. they possess soliton features but they are

w xunstable under the influence of perturbation 1,31–34 and
do decay into vortices with unit circulations.

The detailed analysis of the observed rotation con-
firmed that the OVS motion is adequately described by Eq.
Ž .3 , which in the practical case of a vortex pair of equal
TCs is transformed to the relation:

du 2m
sg , 4Ž .2d z D

where D is the mutual offset between the two vortices, and
Ž .m stands for their TCs assumed to be equal . To match

the rotation of the OVSs to the rotation of the vortex lines
Ž Ž . Ž ..in the superfluid dynamics Eqs. 3 , 4 we obtained that

wthe scale coefficient g should be equal to 0.97 dimension-
x Ž Ž .less lengths . If the angle u in Eq. 4 is measured in

w x .degrees gs55.4 deg = dimensionless lengths . In this
way the superfluid theory describes quantitatively well the
motion of the OVSs. Deviation from this dependence

Ž .could be observed for small offsets D-5.0 between the
OVSs, which exerts the presence of polynomial depen-

Ž .dence of higher order on D in the denominator of Eq.
Ž .4 .

For pairs of vortices with opposite TCs, no rotation
along the NLM is observed. The only motion is the shift of

w xthe vortex pair away from the background beam centre 9 .
Such a characteristic behaviour was observed in our test
experiments, when the background beam with dark sub-

Žbeams nested in generated by computer synthesized holo-
.grams passed trough a cell, containing thermal self-de-

Ž .focusing NLM ‘nujol’, Merck . The measurements were
performed with an experimental setup similar to that de-

w x Ž w x.scribed in Ref. 35 see also Ref. 8 but with holograms
w xfor generating the optical vortices 16,26,33 .

3. Vortex motion and stabilization of vortex ensembles

When a coherent superposition of more than two OVSs
is considered, the detailed analysis of the numerical data
presented bellow indicates that symmetrical structures con-
sisting of N OVSs with equal TCs always rotate around
the geometrical centre of the ensemble. This behaviour is
well described by the superfluid dynamics approximation
Ž Ž ..Eq. 3 . Substituting the geometrical parameters of differ-

Ž .ent symmetrical structures in Eq. 3 one can obtain the

Ž .Fig. 2. Plot of the ordered OVS structure of equal TCs rotation
Žangle versus normalised nonlinear propagation path-length circles

correspond to the vortex pair, triangles to the triangular form
ensemble, squares to the square form ensemble, stars to the

.hexagonal form ensemble . The offset between the neighbouring
OVSs is Ds7.5. Solid curves – superfluid dynamics approxima-

Ž . Ž .tion given by Eqs. 4 – 6 .
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Ž . Ž . Ž . Ž .Fig. 3. Grayscale images of the linear structure of three OVSs; a at zs0L ; b , c at zs10L , for different topological charge TCNL NL
Ž . Ž .of the central OVS: b m sy1, c m sq1. The offset between the side-lying vortices is Ds10.0. For better visualisation 6.25% ofc c

the all computational area is presented.

following relations for the angular velocity of such struc-
tures:

du 3m
sg , 5Ž .2d z D

for OVSs situated in an equilateral triangle or in a square,
and

du 5m
sg , 6Ž .2d z 2 D

for OVSs situated in the apices of a hexagon.
In Fig. 2 we present the dependence of the rotation

angle u versus normalized nonlinear propagation path-
length z for ordered structures consisting of N OVSs: a
vortex pair, three vortices disposed in an equilateral trian-
gle, four vortices ordered in a square and six vortices
forming a hexagon. All OVSs are assumed to be of unit
circulations. The distance between each two neighbouring
vortices is Ds7.5. One can find a good agreement with

Ž . Ž . Ž .Eqs. 4 – 6 solid lines in Fig. 2 . The linearity of the
dependence shows that the velocity of the rotation is
constant. However, when the plane wave background beam
Ž Ž ..Eq. 2 is not wide enough, it is found that the depen-

dence of the angular velocity durd z on the nonlinearŽ .
path-length decreases monotonically, due to the back-
ground beam self-broadening, influencing the intensity

w xdependent phase distribution 30 . This fact is responsible
for the deviations of the numerical points from the super-

Žfluid dynamics approximation solid lines calculated by
Ž . Ž .. ŽEqs. 4 – 6 at the larger propagation distances z)
.8 L . The simultaneous reverse of the sign of the TC ofNL

all OVSs results in a change of the direction of the
ensemble rotation only.

Our further analyses are directed toward the investiga-
tion of stable ensembles of OVSs, when they are formed at

Žrelatively large distances from one another fluid dynamics
.approximation . The simplest structure symmetrical in both

the TC distribution and the OVSs mutual disposition is the
linear one consisting of three OVSs, when an additional

Žvortex is nested in the middle of the vortex pair Fig. 3a;
.the offset between the side-lying vortices is Ds10.0 . If

Ž .the TC of the central ‘‘control’’ OVS is opposite to the
TCs of the other ones, one can observe clockwise rotation

Ž .up to an angle of us128 at zs10L Fig. 3b . It isNL

qualitatively the same rotation, like in the case of a vortex
Žpair of Ds10.0, but in opposite direction where us118,

Ž . Ž . Ž .Fig. 4. Grayscale images of the vortex ensemble consisting of three OVSs situated in equilateral triangle; a at zs0L ; b , c atNL

zs10L and for m sy1 and q1 respectively. The offset between the neighbouring OVSs is Ds10.0. For better visualisation 6.25%NL c

of the all computational area is presented.
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Ž .Fig. 5. Grayscale images of the same ensemble pattern like in Fig. 4 but with TC of the central OVS with magnitude of two; a at
Ž . Ž .zs0L ; b , c at zs10L and m sy2, q2 respectively.NL NL c

.see Fig. 1 . Alternating the TC of the central vortex to be
equal to the TCs of the other two, one can observe
accelerated counterclockwise rotation. The angle of rota-

Ž . Ž .tion is found to be u zs10L s308 see Fig. 3c ,NL

which is about three times larger than the angle of rotation
of the vortex pair. In summary, the velocity of rotation of a
vortex pair is opposite to that of a vortex ensemble, when
the vortex with m sy1 is nested in the centre of the pairc

and is three times smaller than the angular velocity of a
vortex ensemble with the TC of the central vortex m sc

q1. In this way the above results are in good agreement
Ž .with Eq. 3 , describing the vortex motion in the frame of

w xfluid dynamics 2 .
In the next step in the analysis we attempted to stabilize

the rotation of an ensemble of three OVSs forming an
equilateral triangle. As mentioned, such an ensemble ro-

Ž .tates axially Fig. 2, triangles along the nonlinear path of
Ž . Ž .propagation in agreement with Eqs. 3 , 5 . Imposing an

additional fourth OVS of an opposite TC at the centre of
Ž .the ensemble Fig. 4a we succeed to cancel the rotation

Ž .Fig. 4b during the propagation. The symmetry of this
structure, results in simultaneous suppression of the motion
within the ensemble. In the absence of an outer circular
boundary, the equilibrium frequency of the 2D point vor-

Ž Ž .tices forming such an ensemble is zero see Eq. 7 in Ref.
w x.24 . Substituting the parameters of the considered config-

Ž .uration in Eq. 3 one can obtain that the velocity of each
vortex is zero, independent of the particular offset D. The
latter was proved numerically. In all cases, for different
separations between OVSs numerically simulated, no rota-
tion and movement of the OVSs within the ensemble is
observed. Only the self-defocusing of the finite extent
background beam results in weak increase of the distances
between the dark beams. These results could be regarded
as additional evidences for the similarity of the motion of
the OVSs and vortex lines in hydrodynamics. We tested
the stability of this configuration by changing the position
of one of the vortices by 0.2 D. No rotation in the unad-
justed structure is observed, and slight movement of the
vortices, pronouncing the tendency for restoring the en-
semble symmetry is present only.

Ž .When the vortex in the ensemble centre Fig. 4a has
the same TC as the other three OVSs, the rotation speed
was found to increase significantly but the relative disposi-

Žtion of the dark beams remains undisturbed Fig. 4c, where
Ž . . Ž .m sq1, u zs10L s198 . If the central ‘‘control’’c NL

Ž .OVS has a higher TC Fig. 5a one can force either
Ž Žclockwise rotation Fig. 5b, where m sy2, u zsc

. .10L s178 or counterclockwise rotation of an in-NL
Ž Ž .creased velocity Fig. 5c, where m sq2, u zs10Lc NL

.s398 . These data agree qualitatively well with the analyt-
w x Ž Ž ..ical results from Ref. 24 Eq. 7 , in which the rotation

reversal of the ensemble leads to a sign-change of the
pattern equilibrium frequency.

Generally such an interaction configuration may appear
useful for future switching applications based on OVSs.
The real utilization of devices based on vortices of higher
TCs seems to be embarrassed by their decay into vortices

Ž .with unit circulations Figs. 5b, 5c and probably will be
restricted to potential short distance high capacity switch-
ing applications.

Further we considered a more complicated configura-
tion, namely four OVSs situated in the apices of a square.

Fig. 6. Grayscale images of the same ensemble pattern like in Fig.
Ž .4 but with TCs of the vortices with magnitude of two; a at

Ž . Ž .zs0L ; b evolution ensemble of a at zs10L . A patternNL NL

similar to that of the infinite hexagonal lattice is formed. For
better visualisation 6.25% of the all computational area is pre-
sented.



( )D. NesheÕ et al.rOptics Communications 151 1998 413–421418

Such configuration is referred to as an ‘‘optical leopard’’
w x23 , when it consists of alternating positive and negative
charged vortices. The nonlinear evolution of this configu-

w xration is well described in Ref. 9 . It has been found there
that if such an ensemble is considered as consisting of two

Ž .vortex pairs with zero total TC , after some nonlinear
propagation distance the two effective pairs exchanged

w xtheir ‘‘partners’’. In this way it has been shown 9 that the
coherent interactions of OVSs is elastic. In our investiga-
tion we consider the nonlinear propagation of four vortices

Ž .with equal TCs. As seen in Fig. 2 squares such an
ensemble rotates continuously and the angle of rotation is

Ž .described adequately by Eq. 5 . We succeed to control
this rotation by positioning an additional OVS at the
ensemble centre. When the ‘‘control’’ OVS, nested in, is
of a TC opposite to that of the other four ones, counter-

clockwise rotation at an angle us48 is observed at zs
10L . The increase of TC of the central OVS to y2NL

Ž .results in a clockwise rotation reversed in direction at an
Ž .angle us68 at zs10L , in spite of the decay of theNL

central OVS due to modulational instability. When the
central OVS has a TC equal to that of the other four ones
Ž .i.e. m sq1 , accelerated counterclockwise rotation atc

us258 occurs after nonlinear propagation path-length zs
10L . When the TC of the central OVS is m sq2, theNL c

Žcounterclockwise rotation becomes even stronger us338

.at zs10L . Again, breaking of the central OVS intoNL

OVSs with unit circulation occurs.
In order to find other stable configurations of OVSs,

different from these presented in Fig. 4b, we investigated
the nonlinear propagation of more complicated ordered
systems. A pure hexagon ordered ensemble, consisting of

Table 1
Schemes and brief descriptions of all OVS interactions discussed in Section 3 and their characteristic behaviour. In the last row two
additional configurations are presented. All numerical simulations are made when the OVS ensemble is superimposed on a finite

Ž Ž ..super-Gaussian background beam at ws48.0 see Eq. 2 and at offsets Ds10.0
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OVSs of unit TCs, was found to rotate continuously with
Ž . Žan angle of rotation well described by Eq. 6 see also

.Fig. 2 and equal to 148 at zs10L and Ds10.0.NL

Decreasing of the rotation speed is reached when an OVS
with a TC opposite to that of the other OVSs, is nested in
the ensemble centre. In this case the angle of rotation was

Ž .reduced down to u zs10L s88 counterclockwise .Ž .NL

Further reduction of the rotation velocity is reached when
the ‘‘control’’ OVS with m sy2 is nested in the centre.c

In this way the angle of rotation is found to be minimal for
the hexagon-symmetrical configuration u zs10L sŽ .NL

Ž .38 counterclockwise . When the TC of the central vortex
is m s y3 the angle of rotation is againc

u zs10L s38, but the direction of the rotation isŽ .NL
Ž . Ž . w xreversed clockwise . According to Eq. 7 from Ref. 24 ,

the equilibrium frequency of an ensemble of point vortices
with the same spatial distribution and charges agrees nearly

Ž .quantitatively within 20% with the above data. Again,
breaking of the central multiple charged OVS into OVSs
with unit circulations was observed in the simulations.

All numerical results presented above are in good
agreement with the vortex motion described in superfluid

Ž .dynamics by Eq. 3 . Calculating the velocity of rotation
given by this equation we estimate that when the TC of the
central vortex is 0, 1, 2 or 3 the velocity is proportional to
5rD, 3rD, 1rD or y1rD, respectively, where D is the
distance between the neighbouring vortices. It is the same

Žrelation like the angles of rotation at zs10L which isNL
.148:88:38:y38 . In this way one could choose the desired

discrete rotation by positioning the properly charged ‘‘con-
Ž Ž ..trol’’ OVS calculated from Eq. 3 in the centre of the

ensemble. The difficulty in the applicability of these re-
sults is caused mainly by the break-up of the multiple
charged OVSs. One can construct a practically applicable
device when the nonlinear propagation path-length is
shorter than the characteristic length of the breaking of
these modulationally-unstable solitons. Otherwise the
‘‘control’’ OVS could not be used as an information
carrying channel.

The series of numerical simulations presented above
show only one stable and stationary symmetrical configu-

Ž .ration Fig. 4b . Following the analogy with superfluid
dynamics, for increased magnitude of TC of all the OVSs
in this configuration one can expect evolution into another

Ž .stationary configuration Fig. 6a . When higher order TCs
are nested in a similarly shaped ensemble, the stability
should be expected to be poor. Again break-up of the
OVSs with TC larger than unity should occur. One can
expect that after the complete decay of these OVSs, a
stable and stationary ensemble will be formed. In Fig. 6b a
grayscale image of such an ensemble consisting of OVSs
with TCs equal to two is shown. As seen, all multiple
charged OVSs have decayed into fundamental OVSs. The
interesting feature here is that the ensemble pattern in Fig.
6b is very similar to a piece of an infinite hexagonal
crystal lattice, consisting of positive and negative OVSs.
Following the physical intuition we came to the idea that
regular vortex lattices situated on a finite-background beam
can propagate stable and rigidly along the NLM. The
results of the investigation of the propagation of such a
kind of structures are presented in Section 4.

For better understanding of the results presented above,
all discussed OVS interactions within the ensembles and
some additional ones are summarized in Table 1.

4. Optical vortex soliton lattices composed on finite
background beams

Vortex lattices are known in fluid dynamics and they
w xwere found to exhibit elasticity and rigidity 2,24 . Some

results on the nonlinear propagation of vortices in the form
w xof OVS-lattices are presented in Ref. 7 . In this work the

main assumption is that an infinite squared vortex lattice is
superimposed on a planewave background. In contrast, in
our investigation we set a vortex lattice on a finite back-
ground beam and found some characteristic differences in
its nonlinear evolution.

Ž . Ž . Ž . Ž .Fig. 7. Grayscale images of the hexagonal vortex lattice; a at zs0L ; b , c at zs10L . b The lattice consists of vortices withNL NL
Ž . Ž .alternating unit TCs zero total TC and c the lattice consists of vortices with equal unit TCs. The offset between the OVSs is Ds5.0.
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Following the results presented in Fig. 6b we investi-
gate the nonlinear evolution of a hexagonal vortex lattice
Ž .Fig. 7a in a NLM. If it consists of neighbouring OVSs of
unit and alternatively changing TCs, it demonstrates well

Ž .pronounced stable nonlinear propagation Fig. 7b . Only
the background beam spreads due to the self-defocusing
nonlinearity, influencing the position of the outer-lying
OVSs. If the lattice is composed of vortices with equal

ŽTCs the whole ensemble rotates continuously at the angle
.us408 counterclockwise at zs10L ; Fig. 7c . In addi-NL

tion, the background beam was found to spread much more
intensively than in the case presented in Fig. 7b. The
spreading was also substantially stronger compared to that
of the smooth background-beam under the same self-de-

Žfocusing conditions i.e. when no OVSs are nested in the
.host beam . The beam intensity was found to decrease

Ž .rapidly to 0.4 I zs0 at zs10L .0 NL

Similar evolution is found for a square lattice of OVSs
superimposed on a finite extent background beam. When
all OVSs have equal TC ms1, the rotation of the lattice

Ž . Ž .at u zs10L s518 counterclockwise occurs with aNL

corresponding decrease of the maximum intensity of the
Ž .background to 0.4 I zs0 level at zs10L . On the0 NL

contrary, in the case with alternatively changed TCs
Ž .m s1 and zero total charge , no lattice rotation is
observed.

We tested the stability and elasticity of the lattices
Ž .composed of OVSs with total TC equal to zero by

shifting one of the OVS out of its equilibrium position.
Well expressed stability for all kind of lattices is observed.
Slight motion of the shifted OVS and its neighbours,
similar to the elasticity motion in a regular crystal lattice is
evident. Unfortunately, with the grid mesh used and the
maximum propagation path-length reached, we could not
surely prove the full elasticity of the OVS lattice. Because
of that we shifted a whole row of OVSs in the square-
shaped lattice. This test indicates much more clear OVS-
row movement and interaction-elasticity.

In conclusion to this section we have to note that
OVS-lattices with zero total TC, imposed on a finite-extent
background beam can be used for obtaining stable arrays
of induced waveguides. Such stationary vortex patterns
may also be found useful for suppressing the modulational
instability of the planewave background in media with

Ž w x.second order nonlinearity see for example Ref. 36 .

5. Conclusion

ŽQualitatively, the possibility to control and stabilize at
.least partially ensembles of OVSs against rotation and

translation by a proper choice of the topological charge of
a ‘‘control’’ OVS nested in the ensemble centre is proved
numerically.

w xSince the terms driving the OVSs motion 25 are the
intensity and the phase gradients, by choosing the interme-

diate distance between the OVSs and the width of the
background beam to be large enough, the only term re-
sponsible for the transverse motion accounts for the phase
gradient. In this way it is shown that the motion of the
vortex ensemble is adequately described by the Kelvin law
in fluid dynamics. On its basis relations describing the
vortex motion in regular ordered structures are obtained,
which depend on the positions of the vortices and their
topological charges. Small deviations from this relation are
obtained for larger propagation distances. They are caused
by significant spreading of the finite super-Gaussian back-
ground beam at these distances.

Positioning an OVS with a certain TC in the ensemble
Žcentre namely in the centre of the rotation, where the

.phase gradient appears to be zero influences only the
ensemble rotation and keeps the mutual OVS’s disposition
unchanged.

An extension of the vortex ensembles in regular lattices
is analysed. Lattices composed of OVSs with individually
alternatively changing TCs corresponding to a total TC
equal to zero, are found to be stable.
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