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Modulational instability of multiple-charged optical vortex solitons under saturation
of the nonlinearity
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We present a linear analysis and numerical simulations of the instability of optical vortex s¢itgSs of
arbitrary topological charge. They show a rich variety of instability scenarios depending on the type of
perturbation. The saturation of the nonlinearity is shown to be able to slow down the decay of multiple charged
dark beams at an intermediate evolution stage and to prevent their ultimate decay into charge-1 OVSs. This
concept is experimentally verified by the observation of a partial decay of a triple-charged OV beam and by
comparing this dynamic with the behavior of OV beams of topological charge4, 2, 3, and 4.
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[. INTRODUCTION m-fold charged screw dislocation, the addition of a small

Recently, much attention in nonlinear optics has been ateoherent pedestal at the reproduction of the CGH gives rise
tracted by the dark spatial solitof®SS$ and, in particular, to its splitting inm dislocations of charge [l16]. A theoret-
by the optical vortex solitonsOVSs [1-3]. At the phase- ical and experimental study on the propagation and decay of
singularity point arising from a screw-type phase distribu-highly charged optical vortices in a medium with an aniso-
tion, the real and the imaginary parts of the field amplitudetropic nonlocal nonlinearity can be found fia7]. Even for
are zero(i.e., also the field intensily As a result of the @n isotropic non_llnearlty, the vortex dynamics of the nonlin-
compensation of diffraction and nonlinearity in a self- €& wave equation shows that OV beams of change>2
defocusing nonlinear medium, the odd dark beam forms af'® topologically unstableL8]. The suppression of the trans-
OVS. From a mathematical point of view the screw-type"€'S€ instability by saturating the no.nllnearﬁaa allowed us
phase profile is described by an expg) multiplier, where recently to generate stable O\./SS W'th.TCS “F"“.?“ [19].
¢ is the azimuthal coordinate. The integer numbreis de- In order to identify clearly their formation, stability and de-

i : T cay are undoubtfully distinguished. This has led to the in-
fined as the topological charg&C), whereas its sign is de- .- . : .
termined by the direction of the dislocation, triguing observation of a partial decay of threefold charged

) } . . . OVS into double- and single-charged OVSs. The latter mo-
Optical vortices appear in speckle fieldd, as modes in g g

) _ tivated us to perform the present instability analysis.
ring resonators with beam rotatdés|, and can be born when

a beam with a smooth wavefront passes through a Gaussian-

like lens [6]. Optical vortices can also be produced by II. THEORETICAL MODEL

computer-generated holograt®GHSs [7,8], by spiral phase The propagation of (2 1)-dimensional cw optical beams
plates[9], and by specially configured blazed gratin@6]in  in a nonlinear medium is described by the generalized non-
the submicrometer and millimeter wavelength region. Seviinear Schrdinger equatio{GNLSE) [20],

eral effects have been discovered in recent years that promise

interesting applications for OVSs: An optical transistor effect 2 2
was found in the guiding efficiency of the gradient wave- —i2k0n0§—+ —+t—|E+ k3f(|E|>)E=0, (2.1
guide induced by an OV§L1]. The sum-frequency genera- Z \ax= ay

tion of light beams with screw-type phase dislocations offers
the possibility to create vortices of different T¢2] and ~ Wherek, is the vacuum wave number amg is the linear
provides new opportunities to construct an optical processoféefractive index of the mediunt(x,y,2) is the slowly vary-
Regardless of the potential applications, the generation dhg complex electric field amplitude, arfd|E|?) describes
metastable OVSs of TChn|=1 and the investigation of in a general form the nonlinear contribution to the refractive
their modulational sensitivity is of increasing importance. index

OVSs were first generated by using discrete “spiral”-
type phase maskgL3] and by modulational instability of n?(x,y,|E[?)=n3(x,y) + f(|E|?). (2.2
one-dimensionallD) dark beam$14]. However, the use of
CGHs[7]is more precise and practiddl5]. In the case of an  |n particular[1,21],

011|E|2,
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for Kerr-law, two-level saturable, and competing cubic- d=d exdi(Qr—02z)],

quintic nonlinearity @;a,<0), respectively. With the sub-

stitutiong(|E|?) =(—ko/[2Nn0]) f(|E|?), Eq.(2.1) can be re- of Eq. (2.8) exist when the transverse spatial frequetity
written in cylindrical coordinates which are natural for and the longitudinal wave numbér of the perturbation si-
analyzing the evolution of OVSs. Accounting explicitly for multaneously satisfy the conditions

the topological chargen of the OV beam,

2 2 2.1 2 2 'BQZ
E(rlz):U(r,z)exqim(P), (24) (_ZQwB) +IBQ [2U09 (UO)_BQ ]+T:0;
the GNLSE is of the fornj22] Bw , , B3
(@—Zﬂwﬁ)T+Q[2uog’(U0)—,BQZ]+ —=0.
U 19 & pm? 5 2.1
i—+B FE+E)U_7U+9(|U| )Uu=0 (2.10

(2.5 The result given by Eq. (210 refers to the
(2+1)-dimensional case of nonlinear cw beam propagation.
with 8= —kqy/(2n,) being a negative constant. The 2D lin- It generalizes the known results for the 1D GNLEE] and
ear stability analysis presented in this section is similar to thdor the 1D NLSE(see, e.g/[1,2]). A formal transition to one
(1+1)-dimensional model of Kivshar and co-work¢B3].  transverse dimension can be done by neglecting the terms
Equation (2.5) has an exact solution of the fortd(r,z) containing (1¥)9/or and 12 in Eq. (2.5 and by interpret-

=Uy(r,z)el'“"~k21 provided ing r as the single transverse coordinate. In this case the
conditions given by Eq(2.10 become simpler and the criti-
m? cal transverse spatial frequency of the perturbafiqp, is
k= Bw?—g(Ud)+ B—z (2.6
r 2
, 2Ug )
. . chit: g/(UO)- (2-11)
The last term in Eq(2.6) introduces a TC-dependent correc- B

tion to the wave number. It is show&0] that the transverse . . . L2 .
(azimutha) phase gradierit, along with the intensity gradi- " |2nstab|llty region appears apg’(Ug)>0 [ie., at
entV, (|E|?) rules the OV propagation dynamics. The opti- f’(U9)<O]. For Q<Q, the |n|t.|aIIy small perturbaqon
cal equivalent of the fluid paradigm saj20] that the vortex ~amplitudea(r,z) grows exponentially and a modulational
trajectory(and stability is affected by all other sources bf ms_,tablllty dev_elops. In cher Wo_rds, the modulational sensi-
andV | (|E|?) but not by itself. Because of the discontinuity {vity grows with the critical spatial frequendy ;. Return-

of the phase distribution at the OV beam axis, the infinitelyind to the 2D case of interest in this work, we obtain

large values ok do not have a physical meaning. This agrees (1 + 2U§g’(U§)][w2+ m2ir?]

with the interpretation ih20] that at the center of the vortex 2 _
crit

corek, should be viewed as a local average valué pfin k+g(Ud)
the vicinity of the core. ) 5 o oo
Further we look at a small-amplitude solution of the [l = (Ko /ng) Ut (Ug) [l +m/r?]
GNLSE in the form (Ko/2no)[1—f(U3)]
U(r,z)=[Uq(r,z) +a(r,z)Jeliler -kr.az+ o2} (2.12

2.

@ It should be noted tha®,;; remains inverse proportional to
wherea?<U3 and®(r,z) are the unknown perturbation am- the radial offset from the OV beam axis. Within the vortex
plitude and phase, respectively. Substituting &47) in Eq.  core (and especially in the vicinity of the phase singularity,
(2.5), accounting for Eqs(2.6), and keeping the linear terms i.e., atr—0) there are no rays with infinite wave numbers
of the perturbation amplituda we obtain the following sys- [20,24]. Therefore (. must remain a quantity of finite val-
tem of equations: ues within the core. For the second and third saturation

model given in Eq(2.3), |f'(U2)| and Q. are decreasing
B functions of the intensity. This confirms the general conclu-
T(“’+ Pp)+ 3(1)”} =0, sion[1,3] that the saturation of the third-order nonlinearity is
(2.9 able to suppress effectively the modulational instability.

a,+2B(w+P,)a,+(Upt+a)

a m2 From Eq.(2.12 it is obvious that the increase of the Ti¢
-d,(Up+ta)+p|a,+ —r+—2 leads to higher values for the critical transverse spatial fre-
ror quency of the perturbatiot).;; and, therefore, to an en-
hanced modulational sensitivity. In order to provide a frame-
—(Unta)+(20®. +P2) | +2U2aq' (U2 =0. work to interpret an intriguing experimental o_bservat(eae
(Uota)+(2od, ) 0ag'(Uo) [19] and Sec. I we will formulate the following problem:

Under which conditionsif any) can a chargea OVS decay
Within this linear instability analysis, nontrivial solutions  into a single- and anni—1)-fold charged OVS. This does
makes sense, of course, far=3 or more. Intuitively, a
a=apexfi(Qr—02z)], perturbation with a transverse spatial frequeficgatisfying
(2.9
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FIG. 2. Near-field self-deflectiody of a half-cut Ar'-laser
beam after a nonlinear propagation path length of 10(squares
and fit of the typeAy~U3/(1+U3/UZ,)® (solid curve. This fit is

FIG. 1. Experimentally recorded decay stages for OV beamsepresentative of the nonlinear contribution to the medium refrac-
with different TCs. Dashed circle: partial decay of triple-chargedtive indexf(U3) [see Eqs(2.2) and(2.3)] and for its first derivative
OV beam at a perturbation causing complete decay of a charge-# (U3). (S-beam area at the entrance of the NLM.
beam.

plained by the saturation of the nonlinearity, which sup-
the relationQ) ¢;if > Q%> Q il m_1 is able to initiate a decay presses effectively the DSS instability. As a result, the per-
in the mentioned way. The interval of perturbation frequen-turbation can be critical for an OV beam with TC three
cies remaining noncritical for single- and twofold charged OVSs.
The further increase of the perturbation results in a complete
[1/r—(kO/nO)USf’(Ué)](Zer 1)/r? decay into three single-charged OVSs. It is interesting to
(ko/2ng)[1— F(U2)] 13 note (second column of frames in Fig) that such a pertur-
00 0 bation is still noncritical for OVSs of charden|=2. On the
other side, fofm|=4 the OV beam decays and the cores of
the individual single-charged dark beams appear well sepa-
rated. The complete decay is observed at approximately the
same perturbation that caused only a partial decay of triple-
charged OV bean(Fig. 1, first column of frames
. EXPERIMENTAL CONDITIONS Another measurement is done in order to estimate quan-

The OV beam is created by illuminating a photolito- titatively the saturation intensitysatz(ué)sat. The laser

graphically fabricated CGH of binary tyggrating period of ~Peam(without an OV nested inis cut in half by a knife edge
20 um) with an Ar'-ion laser beam =488 nm). The and is then imaged near the entrance window of the cell. The

diffraction efficiency at first order is 9%. The first-order near-field beam deflection is measured by direct illumination

background beam with the OV is focused on the entrance dff the CCD camera located 1.5 cm behind the 10 cm long

the NLM [ethylene glycol dyed with DODCI(Lamb- NLM (Fig. 2, squargs The same scheme was used by
dachromg to reach an absorption coefficient of Swartzlander and co-workers to study the self-bending effect

=0.107 cmt]. The NLM is aligned in the object arm of an in metal vaporg25] and in experiments on dark spatial soli-
interferometer, whereas the zero diffraction order beanton formation26]. The best szigmoidal fisolid line) yields a
(without phase singularitypasses through the reference armSaturation power oPg,=S(Ug)sa=27(x1) mW (Sis the
(see Fig. 1 in[19]). The interference pattern is projected mpu't beam cross sectipnThis value is not sensitive to th'e
directly on a CCD array of a resolution of 1a3m. particular saturation model. At the maximum self-deflection
The pictures shown in Fig. 1 are recorded at a nonlineaVe estlmate_(see_[25]) that the largest nonlinear correction to
propagation path length of 6 cm, Bt=72.5 mW, and atthe the refractive index of the medium reached d&pa
same(for the different TCoffsets of the focusing lens with =10"° (£15%). In the notations used in our theoretical
respect to its central alignment. The center of thdold ~ analysis(see Sec.)l f(Ug) is equal toAn [Fig. 2, solid
charged OV beam can be easily recognized as the poifiurve; see also Eq$2.2) and (2.3]. The dashed curve in
where m neighboring interference lines converge into one.Fig. 2 presents the first derivativé (U2), the values of
The coexistence of displaced phase dislocations with TCwhich are necessary in evaluating the critical transverse spa-
m|=2 and|m|=1 as a result of an intentionally caused tial frequency(Q. [Eq. (2.12]. The procedure described
decay of a triple-charged OV beam is clearly sébe frame allows us to calculate the power/intensity dependence of
in the dashed circle in Fig.)1A similar picture is recorded at (), for OVSs with different TCSFig. 3). It is worth noting
equal but opposite misalignment of the focusing lens, whicithe following.
indicates reproducibility. In view of the theoretical model (i) Since a single-charged OVS is generated at a power
presented in the preceding section, these pictures can be exigher thanPsatz(SUS)Sat (denoted in Fig. 3 by a vertical

2 _
crit™

will be evaluated later for the particular experimental condi-
tions under which partial decay of the triple charged OV
beam is observed.
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- . - lution stages of the vortices and the fact that each initial pure
i ' 4 phase(or amplitude perturbation develops inevitably both
161 e amplitude and phase modulation motivated us to carry out
1 3 s extended numerical simulations based on the GNIB&
;-3 (2.1]. The latter is solved by a two-dimensional beam propa-
;o gation method over 10241024 grid points. The background
— beam used is of a super-Gaussian form and has a full width
oy, at half maximum(FWHM) of rgg, which is 45 times larger
] W than that of a single-charged OVS. For a better visualization,
| — 1 W the results presented below show some 0.55% of the total
1 4 1 area of the computation window only. In the gray-scale
% A é phase images, white and black denote phases of 0 and 2
0 10 20 30 " 40 50 respectively. The position of an OV beam is given by the
SU 2 (mW) point around which the phase increases monotonically from
0 0 to 2.
FIG. 3. Power dependence of the critical transverse spatial fre-
quency of the perturbation for different TCs at radial offsets d,,0
and 0.3y (solid and dashed curveBom the vortex axis. Vertical
dashed line is the saturation power measusst Fig. 2. The ar-

<

12_. N

_(emY)
N ,

crit

Q

A. One-dimensional perturbations

In our preceding numerical analysg29], we observed

that multiple-charged OVSs lose their identity and decay af-
rows indicate the possible interval of perturbation frequencies foter collision with a ring dark solitary wavéRDSW). Be-

which the triple-charged OV beam decdy#<Q; (M=3)]into  cause of its nonzero transverse velod®@], at sufficiently
single- and double-charged OVEH)>¢i(m=1,2)]. large propagation distance this wave penetrates into the OVS

) _ core and initiates an unavoidable instability due to the)(1/
dashed lingand the soliton constant and background beanyenendence in the critical spatial perturbation frequdcy
power increase with the TC19], only the right-hand-side (2.12: see also Fig. B In order to keep the freedom of

part of the curves in Fig. 3 should be considered in evaluaty,rying independently its initial position, period, and con-
ing the OVS modulational stability. The left ones mdmatetrast, we preferred to start the simulations with the one-

the OV beam critical perturbation frequency in weakly andgimensional, initially pure amplitude modulation of the type
moderate nonlinear regimes.

(ii) The critical frequency,; is different for perturba- a(z=0)=agcogk(x+A)},
tions initiated at different radial coordinates The solid
curves in Fig. 3 correspond to=rq,, the dashed ones to d(z=0)=0,
r=0.3roy. At a fixed input power it is seen that the critical

frequency increases as the perturbation approaches the ovhere 2m/ke[0.1,2]rgs. The results obtained confirmed
beam axis. It is easy to shdwee Eq(2.12)] that for pertur-  that the modulational instability growth rate strongly de-
bations arising at a distance shorter than,; P€nds on the positiod, at which the perturbation is initi-
=[(Ko/No)U3E" (U211, Q. is always a positive and fast ated,_and decreases with increasing the satt_Jration. In the rest
growing function of the power/intensity abOVSU%)sat- The Of this section the data refer to a saturation paramster
OVSs are extremely sensitive to modulations. For our ex= /1sa=0.6.

perimental conditions .;; is 20 um and equals the CGH
grating period.

(|||) There exists an interval of transverse pel’turbation fre- In order to keep the Correspondence between the present
quencies according to Eq2.13. The black arrows on the gjmylations and the theoretical mod@ec. 1) as close as

right side of Fig. 3 are intended to visualize this interval possible, the radial and azimuthal perturbations considered
quantitatively for|m|=3 and a perturbation at=0.4r o .

- _ have the form
Since a perturbation of frequen€y<<Q.; (m=3) starts to
grow exponentially, the triple-charged dark beam decays.

(4.1)

B. General form of the radial and azimuthal perturbation

a(z=0)=agexpime)expi(Kr—Ne¢)},
However, the critical frequencieQ.;; (m=1,2) are lower (4.2
than Q and an intermediate stabilization of the decay at ®(z=0)=dyexpli(Kr—Ng)},
OVSs with charge$m,|=1 and|m,|=2 is possible.

whereK and the integeN denote the radial and azimuthal
wave numbers of the perturbation, respectively. Before dis-

cussing the two particular cases of pure amplitude and pure
The analysis presented in Sec. Il is based on linearizeghase perturbations, it is worth noting that neither of them

equations for the evolution of radial perturbations to the am+emain “pure” at the later stages of the evolution.

plitude and phase of the soliton. Generally, the perturbations Case 1 K=0, N#0 (initial azimuthal perturbation In

can also depend on the azimuthal angle ie., a Fig. 4, we have plotted the number of the screw-type phase
=a(r,e,z), ®=®(r,p,z). Unfortunately, such an ansatz dislocations clearly identified at a nonlinear propagation dis-
and the subsequent linearization result in partial differentiatancez=5Ly, as a function of the azimuthal wave number
equations for the perturbation amplitudes, which should bé\. It was found that the instability of thex+fold charged OV
solved numericallf27,28. The necessity to study later evo- beam is observed only in a finite region of values\ofFor

IV. NUMERICAL SIMULATIONS
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z 3 FIG. 6. Azimuthal perturbation: seemingly partial decay of an
0 L L L . . . OV beam with TCm=3 into steering OV beam pair with TGa
1 2 3 4 5 6 7 8 - - -
Azimuthal perturbation period N =2 andm=1 (z=4Ly).

FIG. 4. Number of the screw phase dislocations distinguished 315Iete and substantially more strongly pronounced. The satu-
z=>5Ly, vs azimuthal perturbation wave numtir(solid line, N ration (even when twice as high as the experimentally esti-
=m). mated value ofs=0.6) was not able to cancel for the

OVSs with TCsm=2 and 3, it terminates di=4 and 6, topological instability, but reduced it effectively. The initial

) . P perturbation of the background beam, however, corresponds
respectively. No upper instability limit versdéwas reached to a (single long-period azimuthal modulation forcing the
for the fourfold-charged OVSs at the highest azimuthal Waves\, beam to steer on the backgroufe,31]. Because of
r)umper of the perturpatiqm_maxz8 in .th.e simulationsthis this, atz=4L,, the phase dislocations witth=1 andm
limit is p_osed b_y the f'de“ty.m. recognizing clearly the screw =2 are considerably offset from the center of the computa-
phase d|slocat|pns at remaining _hlghl_y Qverlapped OV'bearﬂon window. The same mechanism seems to complete later
cores. The straight linan=N in Fig. 4 is mtendfad toaccen- 5, 10L ) the seemingly partial decay into three single-
tuate on the three most important features: At azimutha harged OV beams, two of them with still highly overlap-
wave numberdN less than or equal to the T@, the OVSs ping cores '
decay topologically intom vortices with unit circulations ) _ : : .

(Fig. 5, first row. At N=m+1, new pairs of phase disloca- Case 2K#0, N=0 (radial perturbatioh In this case the

. ; . theoretical model given in Sec. Il should be valid at the
tions are borr(Fig. 5, seconq rojv The h|ghe.r the TC.:’ Fhe initial stage of the evolution of the perturbation. At the later
larger the number of the vortices creatsde Fig. 4. This is

P ) i tages, however, we observed an intriguing dynamics
astrong |nd|ca_t|on for the mcrease_qf the OVS modqlatlona trongly influenced by the creation of coaxial RDSWs. Their
sensitivity at higher TCs. The transition from topological de-

. i . ; repulsive m | interactiofB82], the gray initial condition
cay (and creation of new dislocationsto topological epulsive mutual interactio[82], the gray initial conditions

(metastability at increasetil seems abrupt, thus indicating a of their generation, and the saturation of the nonlinearity

) . > . resulted in negative initial transverse velociti€30,33.
Z;axmum of the instability growth rate &>m-+1 (see Fig. While decreasing their radii, their contrast increases and the

. . I radial phase variation at the RDSW becomes stefgi®sut
Making use of the perturbatiofEgs.(4.9)] in its general 5 75 gtz=5LN,_; Fig. 7(b)]. The initially decayed and still
form, with m=3, N=1 we observed the seemingly partial highly overlapped single-charged OV beaffig. 7(a)] ex-

decay shown in F'g'. 6. The clzond|t|.qns of this simulation perience an increasing radial repulsion from the RDSW and
correspond to a relatively low instability growth rate. In the

. : . artially recover the multiple-charged st4féig. 7(b)]. This
absence of saturation of the nonlinearity, the decay was Cong'artial decay and recovering appears periodically {ap to

z=10L ) with a period of approximately[2, . The results

presented in Fig. 7 are obtained at an initially pure amplitude
radial perturbation of the type [a(z=0)

=ay expime)cosKr), ®(z=0)=0]. The perturbation in the
general form given by Eg4.2) at K#0 andN=0 corre-
sponds to initial amplitude and phase radial modulations.
Due to the substantially lower RDSW transverse velocity in
this case we observed a decay, however the OV beam cores
remained highly overlapped up to L1} .

FIG. 5. Phase portraits of decayed OV beams with topological
chargesm=2 (left column and 3 (right column for azimuthal FIG. 7. Radial perturbation: Initial partial decay of a triple-
perturbation wave numberl=m (upper row and N=m+1 charged OV beanta) (z=3L,,) and subsequent recoverifith)
(lower row). z=5Ly.; (c) z=9L ]
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proaches the radial one. The influence of the nonzero azi-
muthal wave numbemN, however, is not negligible. At
2m/K~rpgs/10 we observed at least 12 screw phase disloca-
tions (almost the highest number, which is clearly identified
within the discretization used

V. CONCLUSION

~ FIG. 8. Spiral perturbation: decay of triple-charged OV beam  \ye derived a general expression for the critical transverse
into 9 (a) and 3 (b) OV beams with overlapping cores at5Ly. gpatial frequencyf); for arbitrary charged OVSs imposed
and 2m/K=rgc/10 and 27/K=2rgg, respectively. to a radial perturbation in a saturable local nonlinear media.
Case 3 K#0, N#0 (spiral-type perturbation In this ~ The results confirm that saturation is able to suppress the
case the perturbations have both radial and azimuthal conftodulational instability. If an instability is initiated, it can
ponents and show up as spirals starting from the OV-bearfesult in a partial decay of the highly charged OV beams.
center. The results presented below refer to an OV beanhhis concept is supported by experimental evidence. The
with a topological chargen=3 andN=6, i.e., to a meta- measurement of the seturatlon |nten5|ty aIIowe(_j.an estima-
stable, at an initial pure azimuthal perturbatieee Fig. 4, tion of O for the particular experimental conditions. The
triple-charged OVS. However, the combined action of radianumerical simulations based on the GNLSE showed a rich
and azimuthal perturbations forces the dark beam to decayariety of instability-evolution scenarios depending on the
At a radial perturbation period of 2/K~rgg/5, three new type of perturbationazimuthal, radial, or mixed The pos-
OV-beam pairs are born at=5L,, [Fig. 8a] and the total sibility Fo observe the .part|a_1l decay as shown in Flg._l under
number of the dislocations becomes nine, while the total T¢aturation of the nonlinearity is confirmed for two different
remains conservedi34]. The six identically charged OV types 'qf perturbations, both ensuring relatively low initial
beams form an outward lying hexagon and the three nevpstability growth rates.
oppositely charged phase dislocations remain offset, but still
Ioca_ted near t_he bea_m axis. Atrﬂ(%ZrBG_the_ strength o_f ACKNOWLEDGMENTS
the instability is considerably lower, resulting in a decay into
three single-charged OV beairffSg. 8b)]. No new pairs of A.D. would like to thank the Alexander von Humboldt
phase dislocations are born. Foundation for financial support and the opportunity to work
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