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Modulational instability of multiple-charged optical vortex solitons under saturation
of the nonlinearity

A. Dreischuh,1,* G. G. Paulus,1 F. Zacher,1 F. Grasbon,1 D. Neshev,2 and H. Walther1
1Max-Planck-Institut fu¨r Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany

2Department of Quantum Electronics, Sofia University, 5, J. Bourchier Blvd., 1164 Sofia, Bulgaria
~Received 4 December 1998; revised manuscript received 28 July 1999!

We present a linear analysis and numerical simulations of the instability of optical vortex solitons~OVSs! of
arbitrary topological charge. They show a rich variety of instability scenarios depending on the type of
perturbation. The saturation of the nonlinearity is shown to be able to slow down the decay of multiple charged
dark beams at an intermediate evolution stage and to prevent their ultimate decay into charge-1 OVSs. This
concept is experimentally verified by the observation of a partial decay of a triple-charged OV beam and by
comparing this dynamic with the behavior of OV beams of topological chargesm51, 2, 3, and 4.
@S1063-651X~99!09912-2#

PACS number~s!: 42.65.Tg, 42.65.Sf
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I. INTRODUCTION

Recently, much attention in nonlinear optics has been
tracted by the dark spatial solitons~DSSs! and, in particular,
by the optical vortex solitons~OVSs! @1–3#. At the phase-
singularity point arising from a screw-type phase distrib
tion, the real and the imaginary parts of the field amplitu
are zero~i.e., also the field intensity!. As a result of the
compensation of diffraction and nonlinearity in a se
defocusing nonlinear medium, the odd dark beam forms
OVS. From a mathematical point of view the screw-ty
phase profile is described by an exp(imw) multiplier, where
w is the azimuthal coordinate. The integer numberm is de-
fined as the topological charge~TC!, whereas its sign is de
termined by the direction of the dislocation.

Optical vortices appear in speckle fields@4#, as modes in
ring resonators with beam rotators@5#, and can be born when
a beam with a smooth wavefront passes through a Gaus
like lens @6#. Optical vortices can also be produced
computer-generated holograms~CGHs! @7,8#, by spiral phase
plates@9#, and by specially configured blazed gratings@10# in
the submicrometer and millimeter wavelength region. S
eral effects have been discovered in recent years that pro
interesting applications for OVSs: An optical transistor effe
was found in the guiding efficiency of the gradient wav
guide induced by an OVS@11#. The sum-frequency genera
tion of light beams with screw-type phase dislocations off
the possibility to create vortices of different TCs@12# and
provides new opportunities to construct an optical proces
Regardless of the potential applications, the generation
metastable OVSs of TCsumu>1 and the investigation o
their modulational sensitivity is of increasing importance.

OVSs were first generated by using discrete ‘‘spira
type phase masks@13# and by modulational instability o
one-dimensional~1D! dark beams@14#. However, the use o
CGHs@7# is more precise and practical@15#. In the case of an
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PRE 601063-651X/99/60~6!/7518~7!/$15.00
t-

-
e

n

n-

-
ise
t
-

s

r.
of

m-fold charged screw dislocation, the addition of a sm
coherent pedestal at the reproduction of the CGH gives
to its splitting inm dislocations of charge 1@16#. A theoret-
ical and experimental study on the propagation and deca
highly charged optical vortices in a medium with an anis
tropic nonlocal nonlinearity can be found in@17#. Even for
an isotropic nonlinearity, the vortex dynamics of the nonl
ear wave equation shows that OV beams of chargeumu>2
are topologically unstable@18#. The suppression of the trans
verse instability by saturating the nonlinearity@3# allowed us
recently to generate stable OVSs with TCs up tom54 @19#.
In order to identify clearly their formation, stability and de
cay are undoubtfully distinguished. This has led to the
triguing observation of a partial decay of threefold charg
OVS into double- and single-charged OVSs. The latter m
tivated us to perform the present instability analysis.

II. THEORETICAL MODEL

The propagation of (211)-dimensional cw optical beam
in a nonlinear medium is described by the generalized n
linear Schro¨dinger equation~GNLSE! @20#,

2 i2k0n0

]E

]z
1S ]2

]x2
1

]2

]y2D E1k0
2f ~ uEu2!E50, ~2.1!

wherek0 is the vacuum wave number andn0 is the linear
refractive index of the medium.E(x,y,z) is the slowly vary-
ing complex electric field amplitude, andf (uEu2) describes
in a general form the nonlinear contribution to the refract
index

n2~x,y,uEu2!5n0
2~x,y!1 f ~ uEu2!. ~2.2!

In particular@1,21#,

f ~ uEu2!5H a1uEu2,

n0n2uEu2/~11g2uEu2n2 /n0!,

a1uEu22a2uEu4,

~2.3!
m
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PRE 60 7519MODULATIONAL INSTABILITY OF MULTIPLE - . . .
for Kerr-law, two-level saturable, and competing cub
quintic nonlinearity (a1a2,0), respectively. With the sub
stitutiong(uEu2)5(2k0 /@2n0#) f (uEu2), Eq. ~2.1! can be re-
written in cylindrical coordinates which are natural f
analyzing the evolution of OVSs. Accounting explicitly fo
the topological chargem of the OV beam,

E~r ,z!5U~r ,z!exp~ imw!, ~2.4!

the GNLSE is of the form@22#

i
]U

]z
1bS 1

r

]

]r
1

]2

]r 2D U2
bm2

r 2
U1g~ uUu2!U50

~2.5!

with b52k0 /(2n0) being a negative constant. The 2D lin
ear stability analysis presented in this section is similar to
(111)-dimensional model of Kivshar and co-workers@23#.
Equation ~2.5! has an exact solution of the formU(r ,z)
5U0(r ,z)e[ i (vr 2kz)] , provided

k5bv22g~U0
2!1

bm2

r 2
. ~2.6!

The last term in Eq.~2.6! introduces a TC-dependent corre
tion to the wave number. It is shown@20# that the transverse
~azimuthal! phase gradientk' along with the intensity gradi-
ent ¹'(uEu2) rules the OV propagation dynamics. The op
cal equivalent of the fluid paradigm says@20# that the vortex
trajectory~and stability! is affected by all other sources ofk'

and¹'(uEu2) but not by itself. Because of the discontinui
of the phase distribution at the OV beam axis, the infinit
large values ofk do not have a physical meaning. This agre
with the interpretation in@20# that at the center of the vorte
corek' should be viewed as a local average value ofk' in
the vicinity of the core.

Further we look at a small-amplitude solution of th
GNLSE in the form

U~r ,z!5@U0~r ,z!1a~r ,z!#e$ i [vr 2k(r ,z)z1F(r ,z)] %,
~2.7!

wherea2!U0
2 andF(r ,z) are the unknown perturbation am

plitude and phase, respectively. Substituting Eq.~2.7! in Eq.
~2.5!, accounting for Eqs.~2.6!, and keeping the linear term
of the perturbation amplitudea, we obtain the following sys-
tem of equations:

az12b~v1F r !ar1~U01a!Fbr ~v1F r !1bF rr G50,

~2.8!

2Fz~U01a!1bFarr 1S ar

r
1

m2

r 2 D
2~U01a!1~2vF r1F r

2!G12U0
2ag8~U0

2!50.

Within this linear instability analysis, nontrivial solutions

a5a0 exp@ i ~Vr 2Qz!#,

~2.9!
e

y
s

F5F0 exp@ i ~Vr 2Qz!#,

of Eq. ~2.8! exist when the transverse spatial frequencyV
and the longitudinal wave numberQ of the perturbation si-
multaneously satisfy the conditions

~Q22Vvb!21bV2@2U0
2g8~U0

2!2bV2#1
bV2

r
50,

~Q22Vvb!
bv

r
1V@2U0

2g8~U0
2!2bV2#1

b2V3

r
50.

~2.10!

The result given by Eq. ~2.10! refers to the
(211)-dimensional case of nonlinear cw beam propagati
It generalizes the known results for the 1D GNLSE@23# and
for the 1D NLSE~see, e.g.,@1,2#!. A formal transition to one
transverse dimension can be done by neglecting the te
containing (1/r )]/]r and 1/r 2 in Eq. ~2.5! and by interpret-
ing r as the single transverse coordinate. In this case
conditions given by Eq.~2.10! become simpler and the criti
cal transverse spatial frequency of the perturbationVcrit is

Vcrit
2 5

2U0
2

b
g8~U0

2!. ~2.11!

An instability region appears atbg8(U0
2).0 @i.e., at

f 8(U0
2),0#. For V,Vcrit , the initially small perturbation

amplitude a(r ,z) grows exponentially and a modulation
instability develops. In other words, the modulational sen
tivity grows with the critical spatial frequencyVcrit . Return-
ing to the 2D case of interest in this work, we obtain

Vcrit
2 5

@1/r 12U0
2g8~U0

2!#@v21m2/r 2#

k1g~U0
2!

5
@1/r 2~k0 /n0!U0

2f 8~U0
2!#@v21m2/r 2#

~k0/2n0!@12 f ~U0
2!#

.

~2.12!

It should be noted thatVcrit remains inverse proportional t
the radial offset from the OV beam axis. Within the vorte
core ~and especially in the vicinity of the phase singularit
i.e., at r→0) there are no rays with infinite wave numbe
@20,24#. Therefore,Vcrit must remain a quantity of finite val
ues within the core. For the second and third saturat
model given in Eq.~2.3!, u f 8(U0

2)u and Vcrit are decreasing
functions of the intensity. This confirms the general conc
sion @1,3# that the saturation of the third-order nonlinearity
able to suppress effectively the modulational instability.

From Eq.~2.12! it is obvious that the increase of the TCm
leads to higher values for the critical transverse spatial
quency of the perturbationVcrit and, therefore, to an en
hanced modulational sensitivity. In order to provide a fram
work to interpret an intriguing experimental observation~see
@19# and Sec. II! we will formulate the following problem:
Under which conditions~if any! can a charge-m OVS decay
into a single- and an (m21)-fold charged OVS. This doe
makes sense, of course, form53 or more. Intuitively, a
perturbation with a transverse spatial frequencyV satisfying
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7520 PRE 60A. DREISCHUHet al.
the relationVcritum.V2.Vcritum21 is able to initiate a decay
in the mentioned way. The interval of perturbation freque
cies

DVcrit
2 5

@1/r 2~k0 /n0!U0
2f 8~U0

2!#~2m11!/r 2

~k0/2n0!@12 f ~U0
2!#

~2.13!

will be evaluated later for the particular experimental con
tions under which partial decay of the triple charged O
beam is observed.

III. EXPERIMENTAL CONDITIONS

The OV beam is created by illuminating a photolit
graphically fabricated CGH of binary type~grating period of
20 mm) with an Ar1-ion laser beam (l5488 nm). The
diffraction efficiency at first order is 9%. The first-orde
background beam with the OV is focused on the entranc
the NLM @ethylene glycol dyed with DODCI~Lamb-
dachrome! to reach an absorption coefficient ofa
50.107 cm21#. The NLM is aligned in the object arm of a
interferometer, whereas the zero diffraction order be
~without phase singularity! passes through the reference a
~see Fig. 1 in@19#!. The interference pattern is projecte
directly on a CCD array of a resolution of 13mm.

The pictures shown in Fig. 1 are recorded at a nonlin
propagation path length of 6 cm, atP572.5 mW, and at the
same~for the different TCs! offsets of the focusing lens with
respect to its central alignment. The center of them-fold
charged OV beam can be easily recognized as the p
where m neighboring interference lines converge into on
The coexistence of displaced phase dislocations with T
umu52 and umu51 as a result of an intentionally cause
decay of a triple-charged OV beam is clearly seen~the frame
in the dashed circle in Fig. 1!. A similar picture is recorded a
equal but opposite misalignment of the focusing lens, wh
indicates reproducibility. In view of the theoretical mod
presented in the preceding section, these pictures can b

FIG. 1. Experimentally recorded decay stages for OV bea
with different TCs. Dashed circle: partial decay of triple-charg
OV beam at a perturbation causing complete decay of a char
beam.
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plained by the saturation of the nonlinearity, which su
presses effectively the DSS instability. As a result, the p
turbation can be critical for an OV beam with TC thre
remaining noncritical for single- and twofold charged OVS
The further increase of the perturbation results in a comp
decay into three single-charged OVSs. It is interesting
note~second column of frames in Fig. 1! that such a pertur-
bation is still noncritical for OVSs of chargeumu52. On the
other side, forumu54 the OV beam decays and the cores
the individual single-charged dark beams appear well se
rated. The complete decay is observed at approximately
same perturbation that caused only a partial decay of tri
charged OV beam~Fig. 1, first column of frames!.

Another measurement is done in order to estimate qu
titatively the saturation intensityI sat5(U0

2)sat. The laser
beam~without an OV nested in! is cut in half by a knife edge
and is then imaged near the entrance window of the cell.
near-field beam deflection is measured by direct illuminat
of the CCD camera located 1.5 cm behind the 10 cm lo
NLM ~Fig. 2, squares!. The same scheme was used
Swartzlander and co-workers to study the self-bending ef
in metal vapors@25# and in experiments on dark spatial so
ton formation@26#. The best sigmoidal fit~solid line! yields a
saturation power ofPsat5S(U0

2)sat527(61) mW (S is the
input beam cross section!. This value is not sensitive to th
particular saturation model. At the maximum self-deflecti
we estimate~see@25#! that the largest nonlinear correction
the refractive index of the medium reached isDnmax
51023 (615%). In the notations used in our theoretic
analysis~see Sec. I! f (U0

2) is equal toDn @Fig. 2, solid
curve; see also Eqs.~2.2! and ~2.3!#. The dashed curve in
Fig. 2 presents the first derivativef 8(U0

2), the values of
which are necessary in evaluating the critical transverse
tial frequencyVcrit @Eq. ~2.12!#. The procedure describe
allows us to calculate the power/intensity dependence
Vcrit for OVSs with different TCs~Fig. 3!. It is worth noting
the following.

~i! Since a single-charged OVS is generated at a po
higher thanPsat5(SU0

2)sat ~denoted in Fig. 3 by a vertica

s

-4

FIG. 2. Near-field self-deflectionDy of a half-cut Ar1-laser
beam after a nonlinear propagation path length of 10 cm~squares!
and fit of the typeDy;U0

2/(11U0
2/Usat

2 )3 ~solid curve!. This fit is
representative of the nonlinear contribution to the medium refr
tive index f (U0

2) @see Eqs.~2.2! and~2.3!# and for its first derivative
f 8(U0

2). (S-beam area at the entrance of the NLM.!
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dashed line! and the soliton constant and background be
power increase with the TC@19#, only the right-hand-side
part of the curves in Fig. 3 should be considered in evalu
ing the OVS modulational stability. The left ones indica
the OV beam critical perturbation frequency in weakly a
moderate nonlinear regimes.

~ii ! The critical frequencyVcrit is different for perturba-
tions initiated at different radial coordinatesr. The solid
curves in Fig. 3 correspond tor 5r OV , the dashed ones t
r 50.3r OV . At a fixed input power it is seen that the critic
frequency increases as the perturbation approaches the
beam axis. It is easy to show@see Eq.~2.12!# that for pertur-
bations arising at a distance shorter thanr crit

5@(k0 /n0)U0
2f 8(U0

2)#21, Vcrit is always a positive and fas
growing function of the power/intensity above (SU0

2)sat. The
OVSs are extremely sensitive to modulations. For our
perimental conditionsr crit is 20 mm and equals the CGH
grating period.

~iii ! There exists an interval of transverse perturbation
quencies according to Eq.~2.13!. The black arrows on the
right side of Fig. 3 are intended to visualize this interv
quantitatively forumu53 and a perturbation atr 50.4r OV .
Since a perturbation of frequencyV,Vcrit (m53) starts to
grow exponentially, the triple-charged dark beam deca
However, the critical frequenciesVcrit (m51,2) are lower
than V and an intermediate stabilization of the decay
OVSs with chargesum1u51 andum2u52 is possible.

IV. NUMERICAL SIMULATIONS

The analysis presented in Sec. II is based on lineari
equations for the evolution of radial perturbations to the a
plitude and phase of the soliton. Generally, the perturbati
can also depend on the azimuthal anglew, i.e., a
5a(r ,w,z), F5F(r ,w,z). Unfortunately, such an ansa
and the subsequent linearization result in partial differen
equations for the perturbation amplitudes, which should
solved numerically@27,28#. The necessity to study later evo

FIG. 3. Power dependence of the critical transverse spatial
quency of the perturbation for different TCs at radial offsets 1.0r OV

and 0.3r OV ~solid and dashed curves! from the vortex axis. Vertical
dashed line is the saturation power measured~see Fig. 2!. The ar-
rows indicate the possible interval of perturbation frequencies
which the triple-charged OV beam decays@V,Vcrit (m53)# into
single- and double-charged OVSs@(V.Vcrit(m51,2)#.
t-
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lution stages of the vortices and the fact that each initial p
phase~or amplitude! perturbation develops inevitably bot
amplitude and phase modulation motivated us to carry
extended numerical simulations based on the GNLSE@Eq.
~2.1!#. The latter is solved by a two-dimensional beam prop
gation method over 102431024 grid points. The backgroun
beam used is of a super-Gaussian form and has a full w
at half maximum~FWHM! of r BG, which is 45 times larger
than that of a single-charged OVS. For a better visualizat
the results presented below show some 0.55% of the t
area of the computation window only. In the gray-sca
phase images, white and black denote phases of 0 andp,
respectively. The position of an OV beam is given by t
point around which the phase increases monotonically fr
0 to 2p.

A. One-dimensional perturbations

In our preceding numerical analyses@29#, we observed
that multiple-charged OVSs lose their identity and decay
ter collision with a ring dark solitary wave~RDSW!. Be-
cause of its nonzero transverse velocity@30#, at sufficiently
large propagation distance this wave penetrates into the O
core and initiates an unavoidable instability due to the (1r )
dependence in the critical spatial perturbation frequency@Eq.
~2.12!; see also Fig. 3#. In order to keep the freedom o
varying independently its initial position, period, and co
trast, we preferred to start the simulations with the on
dimensional, initially pure amplitude modulation of the typ

a~z50!5a0 cos$k~x1D!%,
~4.1!

F~z50!50,

where 2p/kP@0.1,2#r BG. The results obtained confirme
that the modulational instability growth rate strongly d
pends on the positionD, at which the perturbation is initi-
ated, and decreases with increasing the saturation. In the
of this section the data refer to a saturation parametes
5I /I sat50.6.

B. General form of the radial and azimuthal perturbation

In order to keep the correspondence between the pre
simulations and the theoretical model~Sec. II! as close as
possible, the radial and azimuthal perturbations conside
have the form

a~z50!5a0 exp~ imw!exp$ i ~Kr 2Nw!%,
~4.2!

F~z50!5F0 exp$ i ~Kr 2Nw!%,

whereK and the integerN denote the radial and azimutha
wave numbers of the perturbation, respectively. Before d
cussing the two particular cases of pure amplitude and p
phase perturbations, it is worth noting that neither of th
remain ‘‘pure’’ at the later stages of the evolution.

Case 1. K50, NÞ0 ~initial azimuthal perturbation!. In
Fig. 4, we have plotted the number of the screw-type ph
dislocations clearly identified at a nonlinear propagation d
tancez55LNL as a function of the azimuthal wave numb
N. It was found that the instability of them-fold charged OV
beam is observed only in a finite region of values ofN. For
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7522 PRE 60A. DREISCHUHet al.
OVSs with TCsm52 and 3, it terminates atN54 and 6,
respectively. No upper instability limit versusN was reached
for the fourfold-charged OVSs at the highest azimuthal wa
number of the perturbationsNmax58 in the simulations~this
limit is posed by the fidelity in recognizing clearly the scre
phase dislocations at remaining highly overlapped OV-be
cores!. The straight linem5N in Fig. 4 is intended to accen
tuate on the three most important features: At azimut
wave numbersN less than or equal to the TCm, the OVSs
decay topologically intom vortices with unit circulations
~Fig. 5, first row!. At N5m11, new pairs of phase disloca
tions are born~Fig. 5, second row!. The higher the TC, the
larger the number of the vortices created~see Fig. 4!. This is
a strong indication for the increase of the OVS modulatio
sensitivity at higher TCs. The transition from topological d
cay ~and creation of new dislocations! to topological
~meta!stability at increasedN seems abrupt, thus indicating
maximum of the instability growth rate atN.m11 ~see Fig.
4!.

Making use of the perturbation@Eqs.~4.2!# in its general
form, with m53, N51 we observed the seemingly parti
decay shown in Fig. 6. The conditions of this simulati
correspond to a relatively low instability growth rate. In th
absence of saturation of the nonlinearity, the decay was c

FIG. 4. Number of the screw phase dislocations distinguishe
z55LNL vs azimuthal perturbation wave numberN ~solid line, N
5m).

FIG. 5. Phase portraits of decayed OV beams with topolog
chargesm52 ~left column! and 3 ~right column! for azimuthal
perturbation wave numbersN5m ~upper row! and N5m11
~lower row!.
e

m

l

l
-

-

plete and substantially more strongly pronounced. The s
ration ~even when twice as high as the experimentally e
mated value ofs50.6) was not able to cancel for th
topological instability, but reduced it effectively. The initia
perturbation of the background beam, however, correspo
to a ~single! long-period azimuthal modulation forcing th
OV beam to steer on the background@20,31#. Because of
this, at z54LNL the phase dislocations withm51 and m
52 are considerably offset from the center of the compu
tion window. The same mechanism seems to complete l
~at z510LNL) the seemingly partial decay into three singl
charged OV beams, two of them with still highly overla
ping cores.

Case 2. KÞ0, N50 ~radial perturbation!. In this case the
theoretical model given in Sec. II should be valid at t
initial stage of the evolution of the perturbation. At the lat
stages, however, we observed an intriguing dynam
strongly influenced by the creation of coaxial RDSWs. Th
repulsive mutual interaction@32#, the gray initial conditions
of their generation, and the saturation of the nonlinea
resulted in negative initial transverse velocities@30,33#.
While decreasing their radii, their contrast increases and
radial phase variation at the RDSW becomes steeper@about
0.75p at z55LNL ; Fig. 7~b!#. The initially decayed and still
highly overlapped single-charged OV beams@Fig. 7~a!# ex-
perience an increasing radial repulsion from the RDSW a
partially recover the multiple-charged state@Fig. 7~b!#. This
partial decay and recovering appears periodically inz ~up to
z510LNL! with a period of approximately 2LNL . The results
presented in Fig. 7 are obtained at an initially pure amplitu
radial perturbation of the type @a(z50)
5a0 exp(imw)cos(Kr), F(z50)50#. The perturbation in the
general form given by Eq.~4.2! at KÞ0 andN50 corre-
sponds to initial amplitude and phase radial modulatio
Due to the substantially lower RDSW transverse velocity
this case we observed a decay, however the OV beam c
remained highly overlapped up to 10LNL .

at

l

FIG. 6. Azimuthal perturbation: seemingly partial decay of
OV beam with TCm53 into steering OV beam pair with TCsm
52 andm51 (z54LNL).

FIG. 7. Radial perturbation: Initial partial decay of a triple
charged OV beam~a! (z53LNL) and subsequent recovering@~b!
z55LNL ; ~c! z59LNL#.
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Case 3. KÞ0, NÞ0 ~spiral-type perturbation!. In this
case the perturbations have both radial and azimuthal c
ponents and show up as spirals starting from the OV-be
center. The results presented below refer to an OV be
with a topological chargem53 andN56, i.e., to a meta-
stable, at an initial pure azimuthal perturbation~see Fig. 4!,
triple-charged OVS. However, the combined action of rad
and azimuthal perturbations forces the dark beam to de
At a radial perturbation period of 2p/K'r BG/5, three new
OV-beam pairs are born atz55LNL @Fig. 8~a!# and the total
number of the dislocations becomes nine, while the total
remains conserved@34#. The six identically charged OV
beams form an outward lying hexagon and the three n
oppositely charged phase dislocations remain offset, but
located near the beam axis. At 2p/K'2r BG the strength of
the instability is considerably lower, resulting in a decay in
three single-charged OV beams@Fig. 8~b!#. No new pairs of
phase dislocations are born.

The limiting case 2p/K@r BG, i.e., atK→0, corresponds
to a transition to the limit of azimuthal perturbations d
scribed in case 1. In the other limit of 2p/K'0 the radial
perturbation period is very high and the perturbation

FIG. 8. Spiral perturbation: decay of triple-charged OV be
into 9 ~a! and 3 ~b! OV beams with overlapping cores atz55LNL

and 2p/K5r BG/10 and 2p/K52r BG , respectively.
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proaches the radial one. The influence of the nonzero
muthal wave numberN, however, is not negligible. At
2p/K'r BG/10 we observed at least 12 screw phase dislo
tions ~almost the highest number, which is clearly identifi
within the discretization used!.

V. CONCLUSION

We derived a general expression for the critical transve
spatial frequencyVcrit for arbitrary charged OVSs impose
to a radial perturbation in a saturable local nonlinear med
The results confirm that saturation is able to suppress
modulational instability. If an instability is initiated, it ca
result in a partial decay of the highly charged OV beam
This concept is supported by experimental evidence. T
measurement of the saturation intensity allowed an esti
tion of Vcrit for the particular experimental conditions. Th
numerical simulations based on the GNLSE showed a
variety of instability-evolution scenarios depending on t
type of perturbation~azimuthal, radial, or mixed!. The pos-
sibility to observe the partial decay as shown in Fig. 1 un
saturation of the nonlinearity is confirmed for two differe
types of perturbations, both ensuring relatively low initi
instability growth rates.

ACKNOWLEDGMENTS

A.D. would like to thank the Alexander von Humbold
Foundation for financial support and the opportunity to wo
in the stimulating atmosphere of the Max-Planck-Institut¨r
Quantenoptik~Garching, Germany!. This work was also sup-
ported by the Science Foundation of the Sofia Univers
~Sofia, Bulgaria!.
.

,

u.

tt.

.

v.

H.

oc.

t.
@1# Yu. S. Kivshar and B. Luther-Davies, Phys. Rep.289, 81
~1997!, and references therein.

@2# G. P. Agrawal,Nonlinear Fiber Optics~Academic, Orlando,
1989!.

@3# B. Luther-Davies, J. Christou, V. Tikhonenko, and Yu.
Kivshar, J. Opt. Soc. Am. B14, 3046~1997!.

@4# N. B. Baravova, A. V. Mamaev, N. F. Pilipetsky, V. V. Sh
kunov, and B. Ya. Zel’dovich, J. Opt. Soc. Am. A73, 525
~1997!.

@5# E. Abramochkin, N. Losevsky, and V. Volostnikov, Opt. Com
mun.141, 59 ~1997!.

@6# L. V. Kreminskaya, M. S. Soskin, and A. I. Khizhnyak, Op
Commun.145, 377 ~1998!.

@7# N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. Whit
Opt. Lett.17, 221 ~1992!.

@8# V. Yu. Bazhenov, M. S. Soskin, and V. M. Vasnetsov, J. Mo
Opt. 39, 985 ~1992!.

@9# M. W. Beijersbergen, R. C. P. Coerwinkel, M. Kristensen, a
J. P. Woerdman, Opt. Commun.112, 3217~1994!.

@10# G. P. Brand, J. Mod. Opt.45, 215 ~1998!.
@11# G. A. Swartzlander,Jr., D. L. Drugan, N. Hallak, M. O. Fre

man, and C. T. Law, Laser Phys.5, 704 ~1995!.
@12# A. Berzanskis, A. Matijous, A. Piskarskas, V. Smigleviciu

and A. Stabinis, Opt. Commun.140, 273 ~1997!.
.

@13# G. A. Swartzlander,Jr. and C. T. Law, Phys. Rev. Lett.69,
2503 ~1992!; see also G.-H. Kim, J.-H. Jeon, K.-H. Ko, H.-J
Moon, J.-H. Lee, and J.-S. Chang, Appl. Opt.36, 8614~1997!;
G.-H. Kim, J.-H. Jeon, Y.-C. Noh, K.-W. Ko, H.-J. Moon
J.-H. Lee, and J.-S. Chang, Opt. Commun.147, 131 ~1998!.

@14# C. T. Law and G. A. Swartzlander, Jr., Opt. Lett.18, 586
~1993!; V. Tikhonenko, J. Christou, B. Luther-Davies, and Y
S. Kivshar,ibid. 21, 1129~1996!.

@15# B. Luther-Davies, R. Powles, and V. Tikhonenko, Opt. Le
19, 1816~1994!.

@16# I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and M. V
Vasnetsov, Opt. Commun.103, 422 ~1993!.

@17# A. V. Mamaev, M. Saffman, and A. A. Zozulya, Phys. Re
Lett. 78, 2108~1997!.

@18# J. C. Neu, Physica D43, 385 ~1990!; 43, 407 ~1990!.
@19# A. Dreischuh, G. G. Paulus, F. Zacher, F. Grasbon, and

Walther, Phys. Rev. E60, 6111~1999!.
@20# D. Rozas, C. T. Law, and G. A. Swartzlander, Jr., J. Opt. S

Am. B 14, 3054~1997!.
@21# Z. Yovanovski and R. A. Sammut, Phys. Scr.57, 233 ~1998!.
@22# V. Tikhonenko, Yu. S. Kivshar, and V. V. Steblina, J. Op

Soc. Am. B15, 79 ~1998!.
@23# Yu. S. Kivshar, D. Anderson, and M. Lisak, Phys. Scr.47, 679

~1993!.



e
.

tt.

in

o-

m-

s,

s.

7524 PRE 60A. DREISCHUHet al.
@24# D. Rozas, Z. S. Sacks, and G. A. Swartzlander, Jr., Phys. R
Lett. 79, 3399 ~1997! †Ref. @10# and the comment after Eq
~3!‡.

@25# G. A. Swartzlander, Jr., H. Yin, and A. E. Kaplan, Opt. Le
13, 1011~1988!.

@26# G. A. Swartzlander, Jr., D. R. Anderson, J. J. Regan, H. Y
and A. E. Kaplan, Phys. Rev. Lett.66, 1583~1991!.

@27# W. J. Firth and D. V. Skryabin, Phys. Rev. Lett.79, 2450
~1997!.

@28# G. Molina-Terriza, J. P. Torrez, L. Torner, and J. M. Sot
Crespo, Opt. Commun.158, 170 ~1998!.
v.

,

@29# I. Velchev, A. Dreischuh, D. Neshev, and S. Dinev, Opt. Co
mun.140, 77 ~1997!.

@30# Yu. S. Kivshar and X. Yang, Phys. Rev. E50, R40 ~1994!.
@31# Yu. S. Kivshar, J. Christou, V. Tikhonenko, B. Luther-Davie

and L. Pismen, Opt. Commun.152, 198 ~1998!.
@32# V. Kamenov, A. Dreischuh, and S. Dinev, Phys. Scr.55, 68

~1997!.
@33# W. Krolikowski, N. Akhmediev, and B. Luther-Davies, Phy

Rev. E48, 3980~1993!.
@34# I. Freund, Opt. Commun.159, 99 ~1999!.


