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Experimental generation of steering
odd dark beams of finite length
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We report what we believe is the first realization of odd dark beams of finite length under controllable initial
conditions. We obtain mixed edge–screw phase dislocations by reproducing binary computer-generated holo-
grams. Two effective ways to control the steering of the beams are analyzed experimentally and compared
with numerical simulations. © 2000 Optical Society of America [S0740-3224(00)01412-0]
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1. INTRODUCTION
Physically, dark spatial solitons (DSS’s) are localized in-
tensity dips that appear in stable background beams as
the result of an exact counterbalance of diffraction and
nonlinearity. A necessary condition for their existence is
the presence of a phase dislocation in the wave front
along which the phase is indeterminate and the field am-
plitude is zero. Besides by their intriguing physical pic-
ture, particular interest in DSS’s is motivated by their
ability to induce gradient optical waveguides in bulk self-
defocusing nonlinear media.1–5 The only known truly
two-dimensional DSS’s are the optical vortex solitons
(OVS’s),2 whereas in one transverse spatial dimension
DSS’s manifest themselves as dark stripes.6 The odd ini-
tial condition required for generating a fundamental one-
dimensional (1D) DSS corresponds to an abrupt p-phase
jump centered along the irradiance minimum of the
stripe. The OVS’s have a more complicated phase profile
described by exp(imw), where w is the azimuthal coordi-
nate in a plane perpendicular to the background beam
propagation direction and m—the so-called topological
charge—is an integer number. This phase function en-
sures a p phase jump in each diametrical slice through
the vortex core. Fundamental DSS’s of these types have
the common feature of zero transverse velocity if no per-
turbations are present. In contrast, ring dark solitary
waves7 slowly change their parameters, even when they
originate from ideal odd initial conditions.8

In their pioneering research, Nye and Berry9 conjec-
tured that mixed edge–screw dislocations cannot exist.
Nonetheless, almost two decades later an indication of
their existence was found10 for two interacting optical
vortices of opposite topological charges. In our recent ex-
0740-3224/2000/122011-07$15.00 ©
periments on the generation of quasi-two-dimensional
DSS’s,11 we found that moderate saturation of the nonlin-
earity can stabilize the snake instability that usually
leads to the solitons’ decay. This made it possible to
identify 1D odd dark beams (ODB’s) of finite length with
their characteristic edge–screw phase dislocations.11,12

The mixed dislocation forces the dark beams to steer in
space. This property appears to be of practical interest,12

provided that there are effective ways to control the
ODB’s transverse velocity.

In this paper we report what is to our knowledge the
first experimental realization of steering of ODB’s of finite
length with mixed phase dislocations under controllable
initial conditions. Two approaches to controlling the
beams’ transverse velocity are investigated experimen-
tally and compared with numerical simulations.

2. EXPERIMENTAL SETUP AND RESULTS
A. Computer-Generated Holograms
The phase portrait of the mixed edge–screw dislocation12

consists of a pair of semihelices with a phase difference of
p to which an effective topological charge of 61/2 can be
ascribed [Fig. 1(a)]. Their spatial offset 2b determines
the length of the edge part of the dislocation and ensures
a phase jump of Dw in the direction perpendicular to the
dark stripe of finite length. The phase function of this
mixed phase dislocation can be described by

Fa,b~x, y ! 5 DwF2
b

p
arctanS ax

y 1 bb
D

1
~1 2 a!

2
sgn~x !G , (2.1)
2000 Optical Society of America



2012 J. Opt. Soc. Am. B/Vol. 17, No. 12 /December 2000 Dreischuh et al.
where x and y denote the transverse Cartesian coordi-
nates perpendicular and parallel, respectively, to the dark
beam. 2b stands for the length of the edge part of the
dislocation, and

a 5 H 0 u yu < b

1, b 5 21 y . b

1, b 5 1 y < 2b

. (2.2)

The pattern of computer-generated holograms (CGH’s)
that we used to produce this phase distribution comprises
parallel lines that become curved at the positions of the
semivortex cores [Fig. 1(b)]. In the edge part of the dis-
location the lines terminate and reappear shifted for a p
jump by one half of the pattern period. Holograms with
such structures correspond to interference lines shifted
along an imaginary line of finite length and to curved
lines that limit the dislocations, as was recently observed
experimentally.11 The binary CGH’s used are photolitho-
graphically fabricated, with a grating period of 20 mm.
Several holograms with various lengths of the edge parts
of the dislocations are etched upon a common substrate.
Special attention was paid to aligning the edge parts of
the various dislocations correctly upon their common sub-
strate. The simplicity of varying the dislocation length
and the magnitude of the phase jump is the main
advantage13 of the approach that we have chosen. The
diffraction efficiency at first order is 9%, close to the the-
oretical 10% limit for binary holograms. The unavoid-
able quantization inaccuracy of p/24 (Ref. 14) for holo-
grams of this type is negligible for the measurements
with phase jumps of Dw 5 3p/4, p, 5p/4 that are pre-
sented here.

B. Experimental Setup
The setup used is similar to that which was used for the
research presented in the previous experiment.11

Briefly, we use the beam of a single-line Ar1 laser (l
5 488 nm) to reconstruct the CGH’s. The first-
diffraction-order beam with the phase dislocation nested
in it is filtered through a slit and is focused onto the en-
trance of a 10-cm-long nonlinear medium (NLM). After
the desired propagation path length, the beam is deflected
by a prism immersed in a nonlinear liquid and is pro-
jected directly onto a CCD camera array with a resolution

Fig. 1. (a) Phase distribution and (b), interference pattern cor-
responding to a mixed edge–screw phase dislocation.
of 13 mm. The NLM is ethylene glycol dyed with diethyl-
oxadicarbocyanine iodine (Lambdachrome) to reach an
absorption coefficient of 0.107 cm21. In a calibration
measurement we generated 1D DSS’s by using CGH’s of
the type described in Subsection 2.A. The soliton con-
stant Ia2 (i.e., the product of the background beam’s in-
tensity I and the square of the dark beam width a mea-
sured at the 1/e level) was found to reach its
asymptotically constant value for input powers of Psol

1D

' 33 mW. It is known that thermally self-defocusing
liquids are both nonlocal and saturable. Inasmuch as
the saturation of the nonlinearity is able to modify the
ODB’s transverse velocity and profile, we needed to esti-
mate that saturation and to account for it in our numeri-
cal calculations. In an independent measurement we re-
alized a self-bending scheme similar to that used in the
research reported in Refs. 15 and 16. The asymmetry re-
quired was introduced by an intentional tilt of the prism
immersed in the NLM, which yielded different nonlinear
propagation path lengths for the different parts of the
background beam. The strength of the self-bending ef-
fect was measured in the near field. For an absorptive
nonlocal medium the choice of a suitable saturation model
is not trivial;17 see also Sec. IV of Ref. 18. We found a
good fit for the experimental data to the expression Dy
; I/(1 1 I/Isat)

g. Using it, we estimated Psat
' 100 mW and g 5 3. In addition to carefully aligning
the CGH’s upon the substrate, we reproduced the holo-
grams such as to achieve vertical dark beam steering,
which is not sensitive to the possible presence of undes-
ired weak horizontal self-deflection of the background
beam. We changed the ODB parameters (length-to-
width ratio and magnitude of the phase jump) by a strict
horizontal translation of the substrate. We tested the ac-
curacy of the alignment by checking for equal steering of
the ODB’s reproduced from two identical holograms
placed at opposite ends of the series of aligned CGH’s.
Here we identify the ODB’s by the corresponding lengths
2b of the edge portions of the dislocations in CGH pixels
(1pixel 5 5 mm) as encoded in the holograms. The de-
flection Dx of the dark beams is measured in units of CCD
camera pixels. We estimate that measurements with an
encoded dislocation length of b/5 mm CGH pixels corre-
spond to a dislocation length–to–ODB width ratio
(2b/a) 5 2 3 0.1 3 (b/5 mm) in the numerical simula-
tions (e.g., a 14-pixel, dislocation length corresponds to
b/a 5 1.4 in the simulations).

C. Odd Dark Beam Steering Versus Dislocation Length
All data presented in this subsection refer to p phase
jumps across the edge parts of the mixed dislocations. In
Fig. 2(a) we plot the deflection Dx of ODB’s with several
dislocation lengths for input powers of 1.7 mW (filled
circles), 33 mW (filled triangles), and 67 mW (open
squares). The data obtained at P 5 1.7 mW refer to a
linear regime of propagation. Some experimental frames
obtained at 33 and 67 mW are shown in Figs. 2(b) and
2(c), respectively. They were recorded for a nonlinear
propagation path length of z 5 8.5 cm. The general ten-
dency of a linear increase of the deflection with decreas-
ing dislocation length is clearly expressed [Fig. 2(a), solid
curve]. The shortest mixed phase dislocation encoded
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was only 1 pixel long. In this case the strong deviation
from the linear dependence is caused by the annihilation
of the semicharges that is due to the shortening of the
edge part of the dislocation. It is shown below that this
shortening accelerates at higher input powers (intensi-
ties). For that reason, even the ODB with an initially 10
pixel long phase dislocation appears gradually less de-
flected at P 5 67 mW than for P 5 33 mW [Fig. 2(a)]. In
Figs. 2(b) and 2(c) the upper solid lines are intended to de-
note the positions of the ODB’s at the entrance of the
NLM. Because ODB steering is also present in the linear
regime of propagation [Fig. 2(a), filled circles] these posi-
tions (with respect to the dark beam’s intensity minimum
and the trailing peak maximum) are identified by numeri-
cal simulations for b/a 5 2.5. The identification corre-
sponds to an encoded dislocation length of 25 pixels [not
shown in Figs. 2(b) and 2(c)]. Somewhat surprising is
the weak sensitivity of the ODB deflection-versus-
background beam power (intensity) far from topological
charge annihilation, which we can intuitively understand
by recalling the known interaction situation of well-
separated OVS’s of opposite topological charges.19,20 In
this case the attraction between the OVS’s is negligible as
compared with their translation as a pair. We measured
the ODB deflection versus nonlinear propagation path
length at a constant input power of 33 mW (see Fig. 3).
As expected, the ODB with a 10-pixel-long dislocation has
higher transverse velocity than the ODB with a 22-pixel-
long dislocation. The linearity in the dependencies is
also well pronounced.

Fig. 2. (a) Deflection of odd dark beams of finite length versus
dislocation length at input powers of 1.7 mW (filled circles), 33
mW (filled triangles), and 67 mW (open squares) for z 5 8.5 cm
and Dw 5 p. Selected experimental frames are shown in (b), 33
mW and (c), 67 mW. From left to right, the frames correspond
to b 5 1, 14, 22 pixels. Upper solid lines, calculated position of
the ODB at the entrance of the NLM for b 5 25 pixels.
D. Phase Control of the Odd Dark Beam Steering
As a second possible way to control the dark-beam deflec-
tion we considered varying the magnitude of the phase
jump Dw across the edge part of the mixed dislocation. In
Fig. 4 we compare the experimental dependencies
Dx(Dw)ub522pix (open squares) and Dx(b)uDw5p (filled
circles). The lines are the respective linear fits. Be-
cause a problem in encoding a larger set of phase jumps in
the CGH’s was recognized too late, we measured the de-
flection Dx at Dw 5 3p/4, p, 5p/4 only. In view of the
limited points of measurement, the linear fit of the phase
dependence in Fig. 4 appears to be assailable. The lin-
earity of the dependence, however, is confirmed by nu-
merical simulations (see Section 3 below). We have plot-
ted the dependence of Dx on Dx(Dw) and on Dx(b) in one
figure to underline the fact that it appears to be easier to
deflect the ODB by controlling the phase than by control-
ling the dislocation length. The measurements are per-
formed at a constant power of 33 mW.

E. Power/Intensity Dependencies
The ability of dark spatial solitons1–5 (and dark spatial
waves21,22) to induce gradient all-optical waveguides in
bulk self-defocusing NLM’s originates in the negative
nonlinear correction to the linear refractive indices of the
media. Therefore, the intensity dependencies remain un-

Fig. 3. Deflection Dx versus nonlinear propagation path length
z for encoded dislocation lengths of 10 and 22 pixels. Dashed
and solid curves, the respective linear fits. P 5 33 mW, Dw
5 p.

Fig. 4. ODB deflection versus magnitude of phase jump Dw
(open squares) and dislocation length as encoded in the CGH’s
(filled circles). Solid curves are linear fits. P 5 33 mW.
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questionably of interest, despite the low sensitivity of the
ODB steering to the input power (intensity). In Fig. 5 we
present experimental data on the power dependence of
the length of the edge portion of the mixed dislocation for
Dw 5 p and for two different lengths (14 and 22 pixels)
encoded in the holograms. It is easy to understand that
the (mixed) phase dislocations do not remain sharp and at
an unchanged magnitude when the (odd) dark beam is
steering.23 We estimate the dislocation lengths by evalu-
ating the respective longitudinal ODB slices at 5% of the
background-beam intensity (i.e., at the actual noise level
in the recorded frames). Generally, the dislocation
length decreases monotonically with increasing input
power. Asymptotically, the dislocation flattens and dis-
appears, provided that the ratio b/a is less than 2. As
was mentioned in Ref. 12, at b/a ; 4 the ODB’s should be
expected to bend owing to snake instability.17 In fact, we
observed such behavior for ODB’s with encoded disloca-
tion lengths that ranged from 4 to 6. Creation of a vortex
beam is recognized by the convergence of two neighboring
interference lines into one. However, the vortices formed
by this instability remain with highly overlapping
cores.17,24

In Fig. 6 we plot the measured ODB widths (Fig. 6a)
and lengths (Fig. 6b) at the 1/e level as a function of the
background-beam power. The initial lengths of the
mixed phase dislocations are denoted in pixels as encoded
on the respective CGH’s, whereas the widths and lengths
at the exit of the NLM are measured in units of CCD cam-
era pixels. The strong decrease in both the ODB width
and length up to 17 mW (approximately Psol

1D/2) is followed
by recovery of the width and length at approximately
Psol

1D . At higher input powers, both transverse quantities
decrease, but the tendency is slower than for the situation
below Psol

1D/2 and stabilizes asymptotically at high satura-
tion. As is discussed in Section 3, the minima in the
curves plotted in Fig. 6 result from the reshaping of the
ODB’s at the particular 1/e intensity level chosen for
evaluation. The estimation there shows that the first
rapid decrease in both transverse dimensions of the
ODB’s does not correspond to a soliton constant forma-
tion. Generally speaking, the ODB’s analyzed are not
solitary waves in the widely adopted sense, inasmuch as
they do not survive, for instance, a collision with a second
ODB that is steering in the opposite direction.12 Never-

Fig. 5. Edge dislocation length versus input background beam
power for two dislocation lengths encoded in the CGH’s. Dw
5 p, z 5 8.5 cm.
theless, the narrowing in both transverse directions for
higher powers (intensities) should improve the guiding
ability when signal beams or pulses are to be transmitted
inside the ODB’s and deflected in space.25 It is interest-
ing to note that, independently of the length of the mixed
dislocations (2b), the widths (a) of the dislocations should
be initially equal (in the near field behind the CGH’s), but
appear to be different near the entrance of the NLM.
The estimation has shown a CGH-to-NLM distance of ap-
proximately four Rayleigh diffraction lengths with re-
spect to the initial ODB width. The well-pronounced
separation between the curves in Fig. 6a should be attrib-
uted to the different two-dimensional diffractions at dif-
ferent initial ODB length-to-width ratios.

3. NUMERICAL SIMULATIONS
In our numerical simulations we are modeling the experi-
mentally obtained dependencies by accounting for the es-
timated moderate saturation of the nonlinearity. The
saturation was described by the phenomenologically
adopted correction to the nonlinear refractive index:

Dn 5 n2uEu2/~1 1 suEu2!g (3.1)

(see Ref. 1 for details). Within this model [Eq. (3.1)] the
saturable nonlinearity tends to Kerr nonlinearity for low
intensities. We determined the three independent pa-
rameters [Isat , g, and (un2uI0)max] in Eq. (3.1) by evaluat-
ing the data from the self-bending experiment described
in Subsection 2.B. The estimated values Psol

1D 5 33 mW,
Psat 5 100 mW, g 5 3, and Dn 5 (un2uI0)max 5 1023 are
accurate to within 15%.

Fig. 6. ODB a, width and b, length (at the 1/e level) versus in-
put background-beam power for two different dislocation lengths
encoded in the CGH’s. z 5 8.5 cm.
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The (2 1 1)-dimensional nonlinear evolution of the
steering ODB of finite length in the bulk homogeneous
and isotropic NLM is described by the generalized nonlin-
ear Schrödinger equation

i
]E

]z
1

1

2 S ]2

]j2 1
]2

]h2DE 2
LDiff

LNL

uEu2

~1 1 suEu2!g
E 5 0,

(3.2)

where the transverse spatial coordinates are normalized
to the initial dark-beam width (z 5 x/a, h 5 y/a) and
the propagation path length is expressed in Rayleigh dif-
fraction lengths LDiff 5 ka2. Further, LNL 5 (kn2I0)21

is the nonlinear length, k is the wave number inside the
NLM, and I0 is the background beam’s intensity. s
5 Psol

1D/Psat 5 0.3 is the saturation parameter. As was
done in the research reported in Ref. 12, the slowly vary-
ing electric-field amplitude of the ODB was chosen to be
tanh shaped:

E~x, y ! 5 AI0B@r1,0~x, y !#tanhF ra,b~x, y !

a G
3 exp@iFa,b~x, y !#, (3.3)

where ra,b(x, y) 5 @x2 1 a( y 1 bb)2#1/2 is the effective
Cartesian–radial coordinate, Fa,b is the phase distribu-
tion of the mixed edge–screw dislocation [see Eq. (2.1)],
and a and b are given by Eq. (2.2). The width w of the
super-Gaussian background beam

B~r ! 5 expH 2F S x2 1 y2

w2 D 1/2G14J (3.4)

is chosen to exceed at least 15 times the ODB lengths.
Model equation (3.2) was solved numerically by the beam-
propagation method on a 1024 3 1024 grid. It should be
mentioned that the initial width a(z 5 0) of the ODB of
finite length was chosen to correspond to that of an infi-
nite 1D dark spatial soliton (a 5 asol

1D 5 const I0
21/2). It

was proved numerically that the ODB deflection is insen-
sitive to the particular value of a, and Figs. 7–9 were gen-
erated under this assumption. In fact, the nonlinearity
causes appreciable reshaping of the beams, in particular
in the first evolution stage when the ODB starts steering;
see Fig. 2 of Ref. 12.

To improve the similarity between the experimental
data (Figs. 5 and 6) and the numerical results (Fig. 10),
we assume an initial ODB width that is twice as large as
in the experiment. In Fig. 7 we plot the ODB deflection
versus b/auz50 for several input powers (intensities). All
data presented in this section refer to a normalized propa-
gation path length of z 5 4LNL , which corresponds to
that estimated for the experiment. Nevertheless, all cal-
culations are carried out up to 10LNL , whereby no quali-
tative deviation from the tendencies discussed is seen.
The linearity in the ODB deflection versus b/a is well
obeyed except for b/a . 2.2. The longer ODB’s steer
more slowly, bend slightly, and decay into pairs of vortex
beams for b/a . 4. In the linear regime of propagation
the ODB’s also are deflected but the deflection is stronger
at higher input powers/intensities. This tendency is
more pronounced for shorter dislocations. In the experi-
mental data (Fig. 2a), this behavior is much weaker, and
the deflection remains within the experimental accuracy.
Looking for an adequate explanation, in a series of simu-
lations we verified that a 630% inaccuracy in estimating
Psat results in only a 65% deviation in the ODB deflection
at z 5 4LNL . The observed tendency of a decrease of the
ODB steering velocities at increased saturation is well
understood26 but seems to be insufficient in quantity. We
attribute the absence of a well-expressed power depen-
dence in Fig. 2a to the NLM nonlocality. In a separate
experiment it was estimated that the nonlocality in this

Fig. 7. Calculated ODB steering versus b/a for several input
powers (Dw 5 p).

Fig. 8. ODB steering along the NLM for b/a 5 1.0, 2.2.
Crosses, 10% of the numerical data. Vertical dashed line,
propagation distance z/LNL 5 4, corresponding to the experi-
mental conditions at 33 mW.

Fig. 9. Deflection of ODB’s versus phase jump Dw for b/a
5 2.2 and for several input powers.
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medium is negligible on a spatial scale of several hundred
of micrometers only.18

In Fig. 8 we plot the ODB deflection versus the nonlin-
ear propagation path length z/LNL for b/a 5 1.0, 2.2. As
in Fig. 7, the magnitude of the edge part of the phase dis-
location is set to Dw 5 p. Once the ODB starts to steer,
its transverse velocity remains constant (see Fig. 3). The
longer ODB’s with longer edge dislocations, however, emit
dispersive waves in their first evolution stage (z
, 1LNL), which cause a delay in the steering along the
NLM (Fig. 8, lower curve).

In Fig. 9 we present results obtained for phase-
dependent control of the ODB deflection at several input
powers (intensities). In qualitative agreement with the
experimental observation, the linear increase in ODB
steering with a decrease in the magnitude of the phase
jump to Dw 5 0.5p is evident. A comparison of Figs. 7
and 9 confirms the conclusion that at a fixed nonlinear
propagation distance the phase-controlled ODB deflection
is more efficient than that which one can achieve by vary-
ing the b/a ratio.

Figure 10a is intended to clarify the origin of the non-
monotonic power dependencies of the ODB widths (and
lengths) observed at input powers below Psol

1D (see Fig. 6).
The solid curve represents the ODB FWHM; the dashed
curve, the full width at the 1/e-intensity level. In these
simulations Dw 5 p and b/a 5 1.4 are assumed. Quali-
tatively, we obtained the same curves for b/a 5 2.2 by ac-
counting for the initial free-space propagation in the ex-
periment (from the CGH to the entrance of the NLM; z
' 4LDiff). The minimum in the ODB width evaluated at
the 1/e level originates from the reshaping of the beam
profile that is caused by the moderate saturation. A
similar reshaping is reported in Ref. 27 (see Figs. 2–4

Fig. 10. a, ODB width and b, length of the edge portion of the
mixed phase dislocation versus input power for Dwuz50 5 p and
b/a 5 1.4. (FW1/e, full width at the 1/e-intensity level.)
therein). At b/a 5 2.2 the data obtained for the ODB
length versus input power (intensity) were found to be
even more sensitive to the intensity level of evaluation.
Because of the transverse steering of the ODB’s of finite
length, the edge portions of the dislocations shorten
monotonically with increasing background power (Fig.
10b). The numerical results are in very good qualitative
agreement with the experimental ones (Fig. 5).

4. CONCLUSION
The results presented show that one can effectively con-
trol the inherent steering dynamics of odd dark beams of
finite length by varying both the magnitude Dw and the
relative length b/a of the mixed edge–screw phase dislo-
cation. The background-beam intensity has a weak in-
fluence on the steering but is important for keeping the
optically induced gradient waveguides steep, which is
crucial for all-optical guiding, deflection, and switching of
signal beams or pulses. Because the mixed phase dislo-
cations shorten and flatten along the nonlinear media
(tending asymptotically to washout), the ODB’s seem to
be promising for use primarily in future short-range all-
optical switching devices.
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