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Generation of lattice structures of optical vortices
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We demonstrate experimentally the generation of square and hexagonal lattices of optical vortices and reveal
their propagation in a saturable nonlinear medium. If the topological charges of the vortices have identical
signs, the lattice exhibits rotation, whereas if their signs alternate between being the same and being opposite
to each other, we observe stable propagation of the structures. In the nonlinear medium the lattices induce
periodic modulation of the refractive index. Diffraction of a probe beam by this nonlinearity-induced periodic
structure is observed. © 2002 Optical Society of America
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1. INTRODUCTION
Optical vortices are intriguing objects that attract much
attention1 and display fascinating properties with pos-
sible applications in the optical transmission of informa-
tion and in guiding and trapping of particles. They have
a characteristic screw-type phase dislocation2 whose or-
der multiplied by its sign is referred to as a topological
charge (TC). The study of optical vortices and, in gen-
eral, phase singularities not only suggests new directions
for fundamental research but also provides links to other
branches of physics, such as quantum optics,3

superfluidity,4 Bose–Einstein condensates,5,6 and cos-
mology.

Optical vortices can be generated in several different
controllable ways: in lasers with large Fresnel numbers7

or by helical phase plates,8 laser mode converters,9,10 and
computer-generated holograms (CGHs).11 The method of
CGHs, however, is the most commonly used, because it
permits precise control of the vortex position and the TC
and provides a possibility of generation of desired pat-
terns of optical vortices.

The propagation dynamics of a single vortex, in both
linear and nonlinear media, has been the subject of much
research (see, e.g., Refs. 12–14), in which also the nonca-
nonical properties of the vortex have been taken into
account.15,16 It has been shown that the vortex position
on a background beam is strongly affected by any source
of phase and intensity gradients17–19 and can be con-
trolled by interference with a weak plane wave.20 If the
0740-3224/2002/030550-07$15.00 ©
vortices propagate in self-defocusing nonlinear media
(NLMs), they can form an optical vortex solitons
(OVSs).21 (For an overview of OVSs see Ref. 1, Chaps. 7
and 8.) In a NLM, OVSs induce optical waveguides in a
medium22–24 that can guide weak information beams.
An OVS was experimentally generated first in a Kerr
NLM25 and later in media with other types of nonlinear-
ity: saturable-atomic,26 photorefractive,27 and photo-
voltaic.28 Recently an OVS was observed in a quadratic
NLM with a defocusing response. However, care was
taken to avoid modulational instability of the plane-wave
background beam.29

The propagation of multiply charged OVSs has also
been investigated.30,31 It was found that they are topo-
logically unstable and decay into vortices of unit charge.32

The vortices produced by the decay can arrange them-
selves into regular patterns (vortex ensembles) while they
interact with one another by means of phase and inten-
sity gradients. The decay of the higher-order vortices
obeys the general principle of conservation of the total an-
gular momentum (AM) of the beam that carries them.
Additionally, for a closed region of space the net topologi-
cal charge must be conserved during continuous evolu-
tion, provided that no vortices enter or leave the region.

An ensemble of optical vortices exhibits a fluidlike
motion18,33 that depends strongly on the geometrical con-
figuration. The propagation of the simplest vortex en-
semble, namely, a vortex pair, has been investigated by
several groups of researchers.17,18,33–35 In Ref. 34 the ro-
2002 Optical Society of America
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tation of a pair of vortices with equal TCs is reported to be
controlled by the Gyou phase of the host Gaussian beam.
Changing the beam intensity changes the position of the
beam waist inside the self-defocusing NLM, thus chang-
ing the angle of rotation at the output plane. A compari-
son between the degree of rotation of a vortex pair in lin-
ear and nonlinear regimes was made in Ref. 35. It was
pointed out that the effect of rotation in the nonlinear re-
gime can be more than three times greater than in the
linear regime. The enhancement is assigned to the non-
linear confinement of the vortex cores, which allows the
vortices to propagate as vortex filaments.

Recently the propagation of vortex arrays was investi-
gated. Such arrays were generated by a bent glass
plate36 or as a result of transverse instability of dark-
soliton stripes.37–39 The instability could be enhanced
additionally when the dark-soliton stripe interacted with
an optical vortex, causing unzipping of the stripe.40 En-
sembles of ordered optical vortices were also investigated
in quadratic NLMs and promise controllable generation of
multiple-vortex patterns.41 The proposed method paves
the way for creation of reconfigurable vortex ensembles by
means of seeded second-harmonic generation.

With respect to the fluidlike motion of the vortex en-
sembles, a stationary configuration of vortices was
found.33 It consists of three vortices of equal TC situated
in an equilateral triangle and an additional vortex with
an opposite TC in the center. That configuration proved
to be stable to small displacement of one of the disloca-
tions. However, if the vortices are of higher order they
decay and subsequently form another stationary configu-
ration, which resembles part of a hexagonal honeycomb
lattice. This fact directs our attention to the investiga-
tion of optical vortex lattices and to characterization of
the propagation of the beams upon which they are im-
posed.

Until now, lattices of optical vortices propagating in
NLMs were considered only theoretically. The simplest
case of a square lattice consisting of vortices with alter-
nating charges was investigated by direct modeling of
four vortices under periodic boundary conditions.42

Later, lattices with different geometries superimposed
upon a finite background beam (conditions closer to ex-
perimental ones) were considered.33 It was shown that,
depending on the TCs, the vortex lattices can exhibit ro-
tation or rigid propagation for equal or alternating TCs,
respectively. In addition, lattices possess elasticity
against displacement of one or more vortices out of their
equilibrium positions.

Here we report what is to our knowledge the first ex-
perimental investigation of lattice structures of optical
vortices in self-defocusing NLMs. We concentrate our at-
tention on two types of lattice geometry, square and hex-
agonal. When beams propagate in a NLM they induce a
periodic modulation of the medium’s refractive index.
For high beam intensities these changes are sufficient to
cause diffraction of a probe beam propagating perpendicu-
larly to the volume with a periodically modulated refrac-
tive index. One may control this diffraction by steering
the propagation of the vortex lattice, e.g., by controlling
its degree of rotation (for lattices that consist of vortices
with equal charges). One may attain additional control
by changing the pump beam’s intensity, which changes
the refractive index of the medium and therefore the dif-
fraction efficiency of the induced periodic phase grating.

The maximal refractive-index change in our experi-
ment is of the order of 1024 to 1023, which is not enough
to permit an effective two-dimensional photonic bandgap
structure to be formed.43 As a proof of principle, how-
ever, one can consider the possibility of trapping glass
spheres44 by using optical vortices ordered in a lattice.
This might give an opportunity for generation of effective
two-dimensional photonic crystals. One could reconfig-
ure such a crystal by altering the degree of rotation of the
lattice (by changing the intensity of the focused back-
ground beam as described in Ref. 34) for equal TCs or by
use of dynamically reconfigurable holograms.45

We would like to emphasize the close link between our
results and those found in the field of Bose–Einstein con-
densates, for which experimental investigations of vortex
ensembles,46 vortex arrays as a result of dark soliton-
stripe instability,47 and vortex lattices48 have been re-
ported recently.

2. GENERAL ANALYSIS
Let us consider the propagation of a beam in a self-
defocusing NLM with saturable nonlinearity whose evo-
lution is described by the normalized nonlinear Schrö-
dinger equation for the slowly varying amplitude
envelope:
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where D' is the transverse Laplace operator. The trans-
verse coordinates (x, y) are normalized to the characteris-
tic size of the dark structures a, and the propagation co-
ordinate z is normalized to the diffraction length of the
dark beams. The background beam intensity I 5 uEu2 is
expressed in units of the intensity necessary for forming a
one-dimensional dark soliton I1Dsol of size a. The satura-
tion parameter is defined by s 5 I1Dsol /Isat , where Isat is
the saturation intensity retrieved by the experimental
conditions. We introduce phenomenologically the model
of the saturation that we use to describe the nonlinear re-
sponse of the thermal medium. The model was derived
from a test experiment for self-bending of the background
beam and was described in detail in Refs. 32 and 49. The
parameters of nonlinear response functions s and g de-
pend on the particular conditions in which the experi-
ment is performed, e.g., on the properties of the NLM and
on the focusing conditions. In all measurements re-
ported here we used thermal nonlinearity and, in particu-
lar, ethylene glycol dyed with DODCI (diethyloxadicar-
bocyanine iodide). Two concentrations of the dye were
used, so s 5 0.4, 1.2; g . 3 in both cases.

To investigate the propagation dynamics of vortex lat-
tices we first conducted numerical simulations by using
the beam propagation method. The initial conditions
were modeled as the superposition of vortices situated in
the nodes of a lattice:
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with square (sq) and hexagonal (hex) symmetry. In Eq.
(2), rjk are the nodes of the Bravais lattice that represents
the physical lattice structure. The square lattice (Fig. 1,
top row) coincides with the Bravais lattice; however, the
hexagonal honeycomb lattice (Fig. 1, middle row) is rep-
resented by a Bravais lattice with a base containing two
vortices. If one defines the primitive vectors of the Bra-
vais lattice as b and c, then the nodes of the lattice are
described as rjk 5 jb 1 kc, where j and k are integers.
The primitive vectors of the square lattice are orthogonal
to each other and can be expressed in (x, y) coordinates as
b 5 (D, 0) and c 5 (0, D), where D is the distance be-
tween two neighboring vortices. For the honeycomb lat-
tice the primitive vectors are not orthogonal and are ex-
pressed as b 5 (A3D, 0) and c 5 @(A3/2)D, (3/2)D#.
Then the two vortices inside the elementary cell have po-
sitions r1 5 1/3(b 1 c) and r2 5 2/3(b 1 c).

The functions sq(r 2 rjk) and hex(r 2 rjk) describe the
structure of the elementary cell of the Bravais lattice and
are expressed as

sq~r 2 rjk! 5 tanh~ ur 2 rjku!

3 expF i sgnj1k arctan
~r 2 rjk!y

~r 2 rjk!x
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The sign function (sgn) is equal to 11 for equal TCs and
to 21 for alternating TCs.

Then the lattice structure is superimposed upon a
super-Gaussian (flat-topped) background beam:

B~x, y, z 5 0 ! 5 AI0 expF2S Ax2 1 y2

w
D 14G , (5)

where width w is chosen to exceed the characteristic
width of the dark structures a more than 40 times and I0
is the maximal background beam intensity.

We modeled the propagation of lattices of different ge-
ometries and different TC distributions (see Fig. 1). No
qualitative differences were observed in the propagation
of vortex structures with respect to the lattice geometry
(square or hexagonal). The propagation, however, de-
pends crucially on the vortex charge distribution [equal,
Fig. 1(b), or alternating, Fig. 1(c)]. Two characteristic
differences can be clearly seen: (i) In the case of equal
TCs (sgn 5 11) the superposition of the phases of all vor-
tices results in an azimuthal phase gradient and a non-
zero total AM, which causes rotation of the whole struc-
ture [Fig. 1(b)]. In the case of alternating TCs (sgn
5 21) the superposition of all the phases gives, on aver-

age, no phase gradient and zero total AM. As a result,
steady propagation of the lattice is observed in the simu-
lations [Fig. 1(c)]. (ii) In the case of equal TCs the non-
zero total AM and the centrifugal forces lead to increased
broadening of the background beam. The maximal in-
tensity rapidly decreases along the NLM [I . 0.6 at z
5 10 Fig. 1(b), bottom]. The dependence of the beam

propagation on the intensity in this case is relatively
weak, and topological effects dominate nonlinear effects.
In the case of alternating TCs [Fig. 1(c)] the background
beam broadening is an effect that is due only to the com-
bined action of diffraction and self-defocusing nonlinear-
ity and depends strongly on the beam’s intensity.

The degrees of rotation of the two lattice geometries for
equal TCs are depicted in Fig. 2. The rotation is due to
the phase gradient, which is greater for the denser
(square-shaped) structure. Therefore the rotation of the
square structure (open squares in Fig. 2) is faster than
the rotation of the hexagonal structure (filled circles).

Fig. 1. Background beams containing vortex lattices of different
geometries: (a) at the input of the NLM and (b), (c) at z 5 10 for
lattices with equal and alternating TCs, respectively. Images of
square-shaped and hexagonal lattices are shown. Bottom,
transverse slices of hexagonal lattices. For comparison, a trans-
verse slice of the background beam (without vortices imposed) is
shown by dashed curves. In all cases D 5 5.0, I0 5 1, and s
5 0.4. The images are gray-scale coded; white corresponds to
maximal intensity.

Fig. 2. Angles of rotation of vortex lattices of equal TCs versus
propagation distance for square (open squares) and hexagonal
(filled circles) geometry. Solid curves are guides for the eye.
The lattice parameters are the same as in Fig. 1.
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The dependence of the angle of rotation on distance is not
linear because in the course of propagation the back-
ground beam spreads out and the distance between the
vortices increases. That causes a decrease of the angular
velocity with increasing propagation length.

Similar behavior was described previously for Kerr
nonlinearity.33 Here we point out the effects of satura-
tion of the nonlinearity. As was already mentioned, the
rotation of the lattice and the increased beam spreading
in the case of equal TCs are topological effects. The ef-
fects that depend on nonlinearity are related to the local
intensity by means of the specific beam shape and the in-
tensity pattern formed on the background. For example,
the transverse profile of a single OVS in a saturable me-
dium differs significantly at different values of the satu-
ration parameter26 (the OVS is broader at higher satura-
tion). In the case of periodically ordered vortices, when
each individual dark beam starts to broaden, the overlap
with the wings of its neighbors increases, whereas the in-
dividual cores do not change significantly. Because the
vortices are superimposed upon a finite background beam
whose total energy is conserved, bright peaks form be-
tween the vortices as a result of local energy redistribu-
tion [Fig. 1(c), bottom]. Therefore, even in a saturable
medium, sharp intensity changes are present. These in-
tensity variations reflect in a well-defined periodic modu-
lation of the refractive index of the medium is still pre-
served.

3. EXPERIMENTAL INVESTIGATION
The experimental setup is similar to one used
previously32,49 and is shown in Fig. 3. We used the
488-nm line from an Ar1 laser to reconstruct the photo-
lithographically produced CGH with the desired vortex
lattice. The 11 (or 21) order of the diffraction was sepa-
rated from the other diffraction orders by an iris dia-
phragm and was focused on the input face of a glass cell
containing the NLM. The output face of the cell was im-
aged to a CCD camera, and neutral filters were used to
prevent its saturation.

To ensure the correct generation of the lattices by the
CGHs, first we opened the diaphragm, allowing the 11
diffraction order to interfere with the plane 0th order.
Interference patterns for three lattices are presented in
Fig. 4. The vortices appear as forks of interference lines.
Two neighboring vortices at each image are marked with

Fig. 3. Experimental setup: D, iris diaphragm; L1 , L2 , lenses
of focal lengths 7.0 and 8.0 cm, respectively: M, mirror; E,
screen; F, neutral-density filters; CCD, camera. The character-
istic distances between elements are shown.
arrows. The images show a correctly reproduced square-
shaped lattice with alternating TCs and two hexagonal
lattices with alternating and equal TCs (Fig. 4, left to
right). The images are brighter on the right-hand side
because they inhomogeneously overlapped the 0th-order
beam. That inhomogeneity also introduced an intensity
gradient into the structure of vortices, which caused
shrinking and displacement of the vortices from their
regular positions. Overall, that effect led to deformation
of the lattice. Being aware of this fact, in the experiment
we preserved the regular lattice structure by placing the
diaphragm as close as possible to the CGH.

We determined the features of the nonlinear propaga-
tion by measuring the characteristic nonlinear param-
eters of the medium for two dye concentrations. For the
lower concentration, the power necessary for forming
a one-dimensional dark-soliton stripe was estimated to
be P1Dsol . 22 mW, and the saturation power was
Psat . 60 mW (measured in a self-bending scheme).49

For the higher concentration the characteristic powers
were P1Dsol . 20 mW and Psat . 16 mW. The intensity
distributions for two hexagonal lattices (with alternating
and equal charges) at the end of the NLM with the lower

Fig. 4. Interferograms of three experimentally generated lat-
tices. Two neighboring vortices in each image are marked with
arrows.

Fig. 5. Experimental images of the vortex lattices after 10-cm
propagation in a NLM. (a) Hexagonal lattice with alternating
TCs for powers of 10 and 50 mW. (b) Hexagonal lattice with equal
TCs for the same powers. The inset in each image represents
the size and the orientation of the elementary cell of each lattice.



554 J. Opt. Soc. Am. B/Vol. 19, No. 3 /March 2002 Dreischuh et al.
dye concentration are shown in Fig. 5. Because of some
technical restrictions in synthesizing the CGH, for the
lattice with equal TCs the number of vortices encoded is
less than in the hologram with alternating TCs. The geo-
metrical characteristics (the elementary cell of the lat-
tices), however, are the same in both cases. The propa-
gation behavior for the two lattices is clearly different.
Whereas the lattice with alternating charges exhibits
steady propagation [Fig. 5(a)], the lattice with equal
charges [Fig. 5(b)] tends to rotate (at ;28° counterclock-
wise). The background beam spread more widely than in
the case of a lattice with alternating charges. Unfortu-
nately, because of the different number of vortices, this
fact is not obvious from Fig. 5. The smaller number of
vortices in Fig. 5(b) modulates the background beam such
that more filters were used to prevent saturation of the
CCD camera. As a consequence, the wings of the back-
ground beam in Fig. 5(b) are not seen, and the beam di-
ameter seems to be smaller than in Fig. 5(a). To illus-
trate that the spreading is indeed greater for equal TCs
we examined in detail the size of the elementary cell of
the honeycomb lattice. Because the distances between
the neighboring vortices were encoded in the CGHs to be
the same (the holograms produced were inspected by a
microscope), any difference in vortex separation is due to
evolution during propagation. Of the images in Fig. 5 we
inset the exact size and orientation of the elementary hex-
agonal cell of the lattice (see the bottom-right corner of
each image). Indeed, a comparison of the elementary
cells of the lattices for the two cases shows that the one
with equal TCs is 18% larger.

The influence of nonlinearity can be seen if the corre-
sponding images for two powers are compared. We note
again that an increase in beam power does not influence
the degree of rotation of the lattice presented in Fig. 5(b)
because the waist of the laser beam is near the input face
of the NLM. The higher power of the laser beam contrib-
utes, however, to broadening of the background beam.
Comparing the sizes of the elementary cell of the same
lattice at two different powers, we estimated 15% broad-
ening of the beam for Fig. 5(a) and 12% for Fig. 5(b).
That difference we attributed to the increased back-
ground beam size at the entrance of the NLM, which is
due to the topological interaction of the equally charged
vortices between the CGH and the NLM.

The square-shaped lattices were investigated in the
same way, and qualitatively similar features were ob-
served. We also investigated lattices with intentionally
encoded defects in their structures, e.g., when one of the
vortices is missing or all the vortices in a line are shifted
out of their equilibrium position. These experiments re-
vealed the interesting property that the lattices exhibit
elasticity. However, the resolution in our experiments
was not sufficient to enable us to resolve this feature in
more than a qualitative manner.

4. DIFFRACTION OF A PROBE BEAM BY
VORTEX LATTICES
When an intense laser beam propagates along a NLM, its
refractive index changes proportionally to the intensity
distribution. Inasmuch as the vortex lattices possess a
periodic intensity distribution (see Figs. 1 and 5) one can
expect periodic modulation of the refractive index. In a
self-defocusing medium the higher local intensity will cor-
respond to a lower local refractive index. The lattices are
imposed on a finite background beam, which induces in
the NLM a cylindrical defocusing lens (considered perpen-
dicular to the laser beam). This lens is modulated by the
dark-vortex structure that constitutes the lattice. In a
thermal NLM, such as slightly absorbing liquid, the non-
local effect that comes from the heat transfer also influ-
ences the refractive-index change and effectively de-
creases its modulation. Nonlocality is not taken into
account in the model of Eq. (1). Its manifestation is that
at zero intensity (the points of vortex phase dislocation)
the refractive-index change is nonzero (see a description
in Ref. 50).

To investigate the modulation of the refractive index in
the NLM caused by the presence of lattices we conducted
an experiment in which a (probe) single-mode He–Ne la-
ser beam was directed perpendicularly to the (pump) Ar1

laser beam, as shown in Fig. 3. We aligned the probe
beam such that it crossed the pump beam 1 cm inside the
NLM. (The higher dye concentration was used in this ex-
periment.) The input profile of the He–Ne laser beam is
shown in Fig. 6 [image (a)], and its circular symmetry is
evident. When it crossed the Ar1 laser beam the symme-

Fig. 6. Images of the probe He–Ne laser beam on screen E (Fig.
3). (a) Input He–Ne laser beam profile; (b) intensity profiles of
the probe beam at low pump power (10 mW) for different vertical
displacements with respect to the pump beam; (c), (d) diffraction
of the He–Ne beam from periodic phase gratings induced in the
NLM by square and hexagonal lattices, respectively (pump
power, 80 mW); (e) diffraction pattern when a single vortex is su-
perimposed upon the pump beam (pump power, 30 mW).
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try was distorted and the beam was elongated in the di-
rection perpendicular to the plane of Fig. 3.

First we identified the effect of an optically induced
Gaussian cylindrical lens on the probe beam. To keep
the same background beam characteristics, we shifted the
CGH such that only a region with parallel interference
lines was illuminated, thus ensuring an unmodulated
background beam. This unmodulated pump beam in-
duced a cylindrical lens in the NLM, whereas the probe
beam passed through the lens and was defocused [Fig. 6,
center of images (b)]. The diameters of the two beams
were estimated to be approximately equal at the cross
point. Therefore one should expect that the probe beam
would be strongly affected by aberrations of the induced
lens. In images (b) of Fig. 6, five probe beam profiles are
shown, for different positions of the He–Ne laser beam.
The pump power was kept at 10 mW. Different input po-
sitions of the probe beam are achieved by parallel vertical
translation by a simple periscopic system denoted, for
simplicity, mirror M in Fig. 3. The He-Ne laser beam is
elongated symmetrically if it crosses the pump in the cen-
ter and asymmetrically if it is shifted up or down. At
higher powers the aberration of the induced cylindrical
lens becomes vertically asymmetric, probably as a result
of the asymmetric heat diffusion in the cell.

The situation is different when the vortex lattice is im-
posed on the background beam. At a power of the Ar1

laser beam higher than 20 mW, the vortices will have
well-confined cores. Because of the nonlinear change in
the refractive index, the vortex lattice writes a phase
grating in the NLM. The perpendicularly propagating
He–Ne laser beam passes through this grating and devel-
ops well-pronounced diffraction orders at the output
screen, as shown in Fig. 6, images (c) and (d), at 80-mW
pump power. The constant of the phase grating written
is apparently different for the square-shaped [Fig. 6, im-
age (c)] and for the hexagonal-shaped [Fig. 6, image (d)]
lattices. In the first case the period of the vortex struc-
ture was smaller (so was the period of the phase grating)
and higher dispersion in the diffraction orders was ob-
served (higher angle of diffraction). At lower powers dif-
fraction orders were also observed. However, it was more
difficult to distinguish them at the screen because the ef-
fective cylindrical lens had a larger focal length. At dif-
ferent powers the magnitudes of the refractive index and
the modulation depths of the phase grating written in the
NLM were different. These differences influenced the
energy redistribution among the diffraction orders.
Moreover, because of the finite number of vortices in the
lattices and the nearly equal sizes of the pump and the
probe beams, diffraction from the phase grating could not
be compared directly with diffraction from an infinite pe-
riodic structure. In our opinion the ratio between the in-
tensities of the different diffraction orders is gradually in-
fluenced by the fact that different parts of the probe beam
pass through different numbers of vortices. Further, at
the exit of the phase grating the modulated probe beam is
additionally affected by aberration of the thermal lens.

To ensure that the observed diffraction structure is in
fact induced by the periodicity of the vortex lattices, we
tested the diffraction caused by a single vortex superim-
posed upon the background beam. As shown in Fig. 6
[image (e)], diffraction by a single vortex is substantially
different from and resembles the diffraction of a laser
beam by a wire. In all our experiments we observed
strong vertical asymmetry of the probe-beam diffraction
pattern, which always developed downward at powers
higher than 20 mW. Numerical modeling of the pro-
cesses and further experimental investigations should al-
low us to gain deeper insight in the relative strengths of
the mechanisms described.

5. CONCLUSIONS
In conclusion, we have successfully experimentally gener-
ated lattice structures of optical vortices with different to-
pological charge distributions and described their propa-
gation in saturable nonlinear media. Because of the
intensity dependence of the refractive index these lattices
induce periodic modulation of the refractive index of the
medium and write an effective phase grating in it. The
modulation is sufficient to force the perpendicularly
propagating probe beam of a He–Ne laser to diffract.
This property could appear to offer the interesting possi-
bility of creating periodic structures in the refractive in-
dex of a NLM. It could find an application for optical
writing of two-dimensional photonic crystals and could
appear to be relevant to the physics of Bose–Einstein con-
densates.
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