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Abstract.

In this work we model the nonlinear propagation of bright Gausian beams
in the presence of a weak nonlocality. The variational results indicate an
increase of the soliton power with increasing the nonlocality. Conditionsfor
generating *breathing’ 1D solitons are derived.

1 Introduction

Generally, nonlocality means that the response of a material to an external ac-
tion at a particular point depends also on the action on neighboring points. In
a plasma the processes of heating and ionization are known to cause nonlocal
response [1]. The long lifetime of optically pumped atoms allows the atomic
diffusion to transport the excitation away from the interaction region. If the
mean free path of the atoms is small compared to the diameter of the laser beam,
the refractive index change extends beyond the laser beam cross-section [2].
Drift and/or diffusion of photoexcited carriers cause a nonlocal response in pho-
torefractive materials too [3, 4]. Spatial nonlocality in the nonlinear response is
present also in Bose-Einstein condensates when the particles exhibit long-range
interactions [5, 6] or the localization of the condensate increases. The large
nonlinearity of nematic liquid crystals stems from light-induced molecular re-
orientation. Due to elastic intermolecular forces the refractive-index change can
extend well-beyond the excitation region [7]. It is apparent that heat conduction
in materials with thermal nonlinearity results in nonlocal changes in their refrac-
tive indices [8]. Not that obvious, the analogy between parametric interaction in
quadratic media and nonlocal cubic media [9, 10] has lead to the understanding
that quadratic and nonlocal Kerr solitons are equivalent [11]. In this case the
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quadratic response depends on the square of the amplitude of the fundamental
wave, not on the field intensity as expected for cubic response.

It is worth mentioning that while in most analyses the nonlocality in space
is considered to be symmetric, the temporal response function can be asymmet-
ric (as in the case of Raman effect on optical pulses [12]). The width of the
response function relative to the width of the intensity profile determines the
degree of the nonlocality [13]. In the local limit, the response becomes a é-
function. In the highly-nonlocal limit the beam evolution is described by the
equation of a linear harmonic oscillator [14]. The special logarithmic nonlinear-
ity allows exact analytical treatment [15]. In the case of weak nonlocality, exact
analytical one-dimensional soliton solutions are found for both bright and dark
solitons [16]. Important recent results show theoretically that two-dimensional
ring vortex solitons should exist in self-focusing nonlinear media in the regime
of strong nonlocality [17, 18].

2 Theoretical model

2.1 General formulation of the problem

The evolution of the slowly-varying electric field amplitude E(z,y, z) is de-
scribed by the two-dimensional generalized nonlinear Schrodinger equation
which takes account of the beam diffraction, the self-phase modulation (SPM),
and the weak anisotropic (y; # -,) nonlocality

1
i0,E + ﬂ(63 +02)E + k°PM|EPE
+ % (O3 E*)E + 78| EF)E = 0. (1)
The (2+1)D Euler-Lagrange equation has the form
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The density of the Lagrange operator L corresponding to Eq. 1 is

~

L = ik(E3,E* — E*3,E) + |0, E|" +|9,E|’
— kESPM| BNt — 1 (00| EPP)? — % (B, |EP)?]. (3)
In essence [19], the variational approach requires selection of a trial function
E = E(z,y,q:(2)),i = 1..n depending not only on z,y, but also on suitable
variational variables (functions) ¢;(z). They have to be chosen by physical rea-

sons. After substituting the trial function in L and integrating the result over the
transverse coordinates z and y, one gets the Lagrangian < L >

(Ed(2), (=) = / / E(e,y,di(2), qi(z)dedy 4
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which has to satisfy the system of Lagrange equations

~

d 0(L(4i(2),%:(2)))  B(L(di(2),2:(2)))
dz 04(2) 0qi(2)
With dots we denote differentiation with respect to the propagation coordinate

z. The result of the variational procedure is a system of ordinary differential
equations (ODEs) for the variational parameters g; [19, 20].

= 0. ()

2.2 Two-dimensional results

In this work we analyze Gaussian beam described by
E(z,y,2) = A(z) exp{~2° /03 (2) — y* /oy (2) +i®(z,9,2)},  (6)

where ®(z,y,2) = (k/2){9:(2)z* + 9y(2)y*} + ¢(2). Following the de-
scribed variational procedure we derived the following system of ODEs for the
variational variables

0p = V50,

Uy = =03 + 4/ (K2a3) — K5PM A%/ (ko3) + 67, A%/ (ko) + 27,4/ (ko2o?)
"‘Ty = Vyoy

Oy = -2 + 4/ (ko) — kSPMA2/(k1<\T4§) + 67, A%/ (koy) + 27, A% [ (kolol)
¢ = (=1/k)(07” + 0,%) + B/Ok5MA® — 205 + 0,%)
(d/dz)(rkoyo,A%) = 0.

Y]

The last equation is nothing else but the energy conservation law P = Py =
(m/2)050040A43 = (7/2)0,0,A%. Making use of this law, after routine trans-
formations, one gets two second-order equations describing the evolution of the
beam’s widths

(rko20,)5, = dmay, [ (ko) — 2k5TM Py + 12y, By /o2 + 4fny0/a§ ®
(mkoso4)Gy = 4moy [ (kay) — 2kSPM py + 12y, Ry /o + 47z Po /o

.
2.3 Reduction to one transverse dimension

Under certain conditions (e.g. planar waveguides, highly elliptical laser beams)
the dimensionality of the generalized Schrodinger equation can be reduced.
Considering nonlinear propagation of an 1D Gaussian beam (E(x,y,z) =
A(2)exp[—x? /02 (2) +ikV,(2)x? /2 +ip(2)]) and following the described pro-
cedure, one gets the following system of equations for the evolution of the non-
trivial variational variables

Op = 19:00':0
Jo = =0 + 4/ (K03) = VRSPV A (koy) + 6V20a A%/ (kap) g
¢ =—1/(ko2) + (3/4)V2k5TM A% — 23/27, A? |0

(d/dz)(v/27koy0,A%) = 0.
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Figure 1. Rise of the soliton intensity with increasing the dimensionless nonlocality
ve/o2,. Shaded region - nonlinear diffraction overcompensating the spatial self-phase
modulation. The vertical bar denotes the nonlocality used in generating Fig. 3.

Taking the 1D energy conservation in to account (P = Py = /7/20,0A3 =

/7 /20, A%) we arrive at the second-order ODE governing the evolution of the
beam width o,

G, = 4/(K*03) — 2°"M Py /(VTkal) + 127, Po/ (VTkay).  (10)

This equation admits a soliton solution g,s when o, (z) = 0,(z2 = 0) = 040 =
ogs and o, = 0 (i.e. when the input beam remains a plane wave; ¥, = 959 = 0).
The soliton power P#° and intensity Z2° in the 1D nonlocal case analyzed here
become

T 2v/2
P = \/;U”kkSPMﬁ ey e = B emV/nf2). ()
zs z

It is quite apparent that in a nonlocal medium the soliton radius o, has to ex-
ceed a minimal radius o4 min = (6v;/k5F™)1/2. In the local approximation
Yz = 0 and o44,min = 0, which is unphysical. In the general model equation
(Eqg. 1) the last two terms appear as describing an intensity-dependent diffrac-
tion. This motivates the physical interpretation of the obtained results show-
ing that the higher the medium nonlocality, the larger the minimal achievable
1D beam width. The monotonic increase of the power/intensity needed for the
beam’s self-channeling is depicted in Fig. 1. Fig. 2 is aimed to show how well
the obtained variational results match the exact ones obtained by Bang et al.
[16]. Qualitatively, the Gaussian trial function seems to approximate reasonably
well the shape of the nonlocal soliton and the deviation decreases for higher
nonlocality. If the incoming beam is focused, the beam’ wavefront curvature
¥z0 # 0. Integrating Eq. 10 ones we obtained

8")/ PO _ _ 4 _ _
Oz = \/:%k (Uw03 - U:cs) + k_2(aw()2 - 0w2) -
4kSPMP0 L

NG (070 — 05 ") + (V20040)%.  (12)
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Figure 2. Intensity profiles of 1D nonlocal spatial solitons for different values of the
parameter v/ = 2kv.I2°. Solid curve - variational results, dotted - exact analytical
results (see [16]).
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Figure 3. Beam radius vs. nonlinear propagation path length for v, /o2, = 0.05 and
P/Pj"’ = 2/3,3/2, and 1 (short-dashed curve, long-dashed curve, and horizontal solid
line, respectively). The beam radii in the linear and in the local nonlinear regimes (dotted
curve) are shown for comparison.

In Fig. 3 we show the evolution of the beam radius along the nonlinear medium
in the characteristic cases of nonlocal soliton formation (solid line), generation
of ’breathing’ solitons (short and long-hashed curves) and compare them with
beam radii in a linear and purely local nonlinear regime. In the case of a non-
stationary propagation along the NLM the extrema o 44 Of the beam width
o, (2) has to satisfy the condition 6, = 0, i.e.

_kESPMPyogy | 2kvsPo | K920080\ (Caentr |
1 + + +
\/7? \/7?0’;50 4 Tz0
kkSPMPOUwO (Uw,ewtr)2 _ Oz.extr + 2k7wP0
ﬁ 020 ﬁawo

The above equation has two real and positive solutions corresponding to minimal
and maximal physical beam radii o ym4n and 04, maz. respectively, only if

1 — kkSPM Pygoo / /T + 2kvo Po/ (Vo g0) + K202 0020 /4 < 0. (14)

(13)

0z0
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Since o, (2) is allowed to oscillate between o4 min and o4, maz, the inequality
given by Eq. 14 is the condition to create a "breathing’ soliton.

3 Conclusions

The comparison of our variational result with the exact analytical solution for
an 1D bright spatial soliton [16] allows to state that the variational method is
a powerful method which is well suited to describe nonlinear beam evolution
in nonlocal media. Analytical results for the increase of the soliton power with
increasing the nonlocality and for generating ’breathing’ 1D solitons are derived
and discussed.
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