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We show that spatial phase dislocations associated with optical vortices can be embedded in femtosecond laser
beams by computer-generated holograms, provided that they are built in a setup compensating for the intro-
duced spatial dispersion of the broad spectrum. We present analytical results describing two possible arrange-
ments: a dispersionless 4f setup and a double-pass grating compressor. Experimental results on the generation
of optical vortices in the output beam of a 20 fs Ti:sapphire laser and the proof-of-principle measurements with
a broadband-tunable cw Ti:sapphire laser confirm our theoretical predictions. © 2006 Optical Society of
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1. INTRODUCTION

The presence of phase dislocations in the wavefront of a
light beam determines its phase and intensity structure.
Since the phase becomes indeterminate at the singularity
point, both the real and the imaginary parts of the field
amplitude (i.e., also the field intensity) vanish.! Each one-
dimensional (1D) m-phase dislocation is coupled with a
zero-intensity line [one-dimensional odd dark beam (1D
ODB)]. An isolated point singularity with a screw-type
phase distribution is associated with an optical vortex
(OV). The characteristic helical phase profiles of OVs are
described by exp(im6) multipliers, where 6 is the azi-
muthal coordinate and the integer number m is their to-
pological charge. As shown in Ref. 2, an m-fold-charged
OV beam carries an orbital angular momentum of mh per
photon, independent of the spin angular momentum @i.e.,
on the polarization state). Recently, free-space transfer of
information encoded as orbital angular momentum was
demonstrated,® in which the inherent security of the data
depended on topological rather than on mathematical en-
cryption.

The understanding of the linear spatiotemporal behav-
ior of focused femtosecond beams with phase singularities
is of both theoretical and experimental interest. Remark-
able spectral changes take place in the neighborhood of
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phase singularities near the focus of a converging, spa-
tially fully coherent polychromatic wave.* Broadband illu-
mination leads to nonnegligible chromatic effects in the
vortex region even in the case of compensated spectral
dispersion.‘r”6

In self-defocusing media the nonlinearity is able to
compensate for the dark-beam diffraction, and dark spa-
tial solitons have been generated7_9 in a variety of mate-
rials. In self-focusing media, OV beams are uns‘cable,10 ex-
cept for the case of partial incoherence!! or nonlocal
nonlinear response or both.1213 Instability-induced
breakup of OVs to a controllable number of bright spatial
solitons has lead to the concepts of soliton molecules'*
and soliton algebra.ll‘.’_19 All types of soliton application
will benefit from ultrashort pulses carrying spatial phase
dislocations, since such pulses exhibit peak intensities
high enough to access optical nonlinearities in many ma-
terials. These concepts, along with the difficulties associ-
ated with the generation of subpicosecond helical (spin-
ning) solitons in optical fibers?® and stable spinning
optical solitons in three dimensions,?! indicate the impor-
tance of the problem. Phase dislocations in femtosecond
laser fields may also provide a new degree of freedom in
experiments such as phase-controlled high-harmonic gen-
eration.

© 2006 Optical Society of America
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The challenge in creating spatial phase dislocations in
short pulses with broad spectral bandwidths is to impose
the desired dislocation onto all spectral components while
keeping the pulse width and shape undistorted?? and the
pulse front untilted. The known methods for generating
phase singularities applicable in the cw and quasi-cw re-
gimes are not suited for femtosecond lasers. Astigmatic
transverse-mode converters®>?* cannot be used directly,
since they require transverse modes higher than the fun-
damental TEM;, The approach? of preparing a
Hermite—Gaussian-like (HGj;) mode at the entrance of
the converter by splitting a HGy, mode and spatially off-
setting its two out-of-phase halves seems feasible, but for
femtosecond pulses it requires an additional interfero-
metrically controlled delay line. Intracavity phase
elements?® and beam rotators?”?® are not applicable in
the femtosecond regime because of the emitted transverse
mode. Transparent spiral wave plateszg’30 are less flexible
in controlling the phase distribution dynamically as com-
pared with liquid-crystal modulators structured in pie
slices.®"®2 They all preserve the beam path, and the latter
exhibits a high efficiency in energy conversion, in addi-
tion. In both cases, however, the magnitude of the phase
jump of the dislocation will deviate from = for the differ-
ent spectral components of the short pulse, and topologi-
cal dispersion will be present.?® Glass platelets of a vary-
ing thickness providing linear phase retardation on one
half of a (cw) laser beam are able to produce OVs.3* Be-
cause of the space-dependent dispersion and time delays,
this technique cannot be applied to ultrashort pulses ei-
ther.

A well-known®® and widely used method to generate
spatial phase dislocations is the reconstruction of
computer-generated holograms (CGHs). This method can
be used to realize screw,>®?’ step,38 39 and mixed- -type
dislocations*® as well as arrays of such dislocations*! in
first-order diffracted beams. To impose the encoded phase
dislocation onto all spectral components of the ultrashort
pulse while keeping the pulse undistorted, one must align
the CGH as a part of an optical system with compensated
spatial dispersion. We demonstrated recently*? that a dis-
persionless 4f system43745 provides one possible solution
of the problem. Here we discuss in detail the application
of a 4f system for encoding phase defects in femtosecond
laser pulses. Although our approach is well suited for fem-
tosecond oscillators, schemes involving (chirped pulse)
amplifiers would be troubled by the restless behavior of
the dislocations, and amplified spontaneous emission in
the dark core of the beam has to be expected. In the sec-
ond part of this paper we show that the spatial dislocation
can be efficiently encoded in an amplified femtosecond
pulse by using a CGH in a double-pass grating-pair
COMPpressor.

2. THEORETICAL MODEL

Without loss of generality, we normalize the electric field
amplitude to unity and assume that the spatial profile of
the optical field is Gaussian E~exp[—(x% +y%)/ o%], where
09 is the beam width at the 1/e level and the aperture of
the CGH is large enough not to cause edge diffraction.
The field evolution after passing the CGH is analyzed by
using the Fresnel integral
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exp(Lks) imr?
E(xyy 2= 8) = f J E(x03y070)exp dx()dy()

(1)
Directly behind the CGH, it has the form
E(x0,50,0) = T(x9,y)exp[— (x5 +y3)/ag]. (2)

In the above expressions r2=(x—x0)2+(y—yo)2,\ is a par-
ticular wavelength within the generated spectral band-
width, k=27/\, and T(xq,yo) is the grating transmission
function containing the phase profile ¢(x,y,) of the de-
sired dislocation. This function can be expanded in a Fou-
rier series in terms of field amplitudes C,, of the different
diffraction orders n:

%

>, C, explin2m(xy/d)lexpline(xg,y0)]. (3)

n=-—o©

T(xo,y0) =

Here d is the period of the diffraction grating imprinted
on the CGH. In the particular case of a plane phase pro-
file ¢(xg,y0) = pp=constant, Eq. (3) describes the transmis-
sion of a diffraction grating with stripes perpendicular to
the Ox, axis (see Fig. 1). The quantity d¢y/(2m) corre-
sponds to the offset of the central transmitting stripe
from the center of the coordinate system Oxy,. The coef-
ficients C,, depend on the particular profile of the stripes.
For a binary CGH of perfectly transmitting and reflecting
stripes of equal widths, Cn=sin(n71'/2)/(n71').48

When a plane-wave reference beam is used for the gen-
eration of the hologram, the curvature of the CGH stripes
decreases with increasing distance to the singularity, and
the stripes appear perpendicular to the coordinate axis
Ox, independent of the type of the encoded dislocation.
Since we are interested in the +1st diffracted order beams
only, which reconstruct the encoded phase profile, we will
analyze the electric field distribution at distances at
which the diffracted orders are well separated.

3. CREATION OF PHASE DISLOCATIONS
BY A SINGLE COMPUTER-
GENERATED HOLOGRAM

The structure of the CGH for generating a 1D ODB and
the coordinate system assigned to it are shown in Fig. 1.

Fig. 1. CGH for generating a 1D ODB in a general (nonperpen-
dicular) orientation of the dislocation axis with respect to the
grating stripes.
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In the general situation of a nonparallel orientation of the
dislocation axis with respect to one of the coordinate sys-
tem axes, the dislocation position is given by the straight-
line equation y=xtan «. The encoded m-phase jump
causes an offset of the stripes by half a period on both
sides of the dislocation. This CGH (Fig. 1) can be consid-
ered to be composed of two identical half-gratings that are
shifted with respect to each other. Let us assume that the
grating is illuminated by a laser beam aligned in a way
that the 1D dislocation crosses its center. Then the CGH
transmission function can be written in the form

.27Tx0 .
T.(x0,y0) =Cyexp| i exp{i[ o + sgn(yo

- x¢ tan a)@/2]}, (4)

where the subscript + refers to the value of the signum
function, i.e., to the upper or lower half of the grating. The
field just behind the grating is therefore given by

E (x0,50) = T+(x9,y0)exp[— (xg +y(2>)/020]- (5)

It is more convenient to evaluate the diffraction integral
Eq. (1) in a coordinate system Ox;,y; with the x; axis par-
allel to the 1D dislocation. After rotating the coordinate
system by an angle a, we find that Eq. (5) becomes

E;,1>0(x1,y1) = exp[- (x? +y%)/0’(2)]Ty1>0(x1,y1),

E, _o(x1,y1) = expl[— (1 + yD/oGIT, <o(x1,y1).  (6)

Following the beam propagation in a coordinate system
Oxqy, parallel to Oxyy; but located at a distance z=s, one
can describe the electric field amplitude of the diffracted
wave E(xg,Y9) by a sum of two integrals:

:

exp(itks)| [~ Yy
E(x9,y9) = —— E! _o(x1,y1)expli
(x2,¥2) s 2, y1>0( 1,Y1)exp s

© 0 2
, .91
+ Ey1<0(x1,y1)exp l? dxdys,

(7)
where r%lz(xz—x1)2+(yz—y1)2. With the substitution y;
——v1, denoting r?:xi2 +yi2,i= 1,2, and after some routine
mathematics, we can write the integrals as

201 . . '777'%
E(x3,y3) = —expligo)exp(iks)exp| i—
I\S \s
JLI ool -l
X exp| — — |exp| i—
= Jo o-(z) \s
\s
Xexp| —tkx; xz—gcosa

k \s
Xsin| —yq y2+gsina doxqdy;. (8)
s

The equation describing the position of the dislocation
y9+(As/d)sin a=0 arises from the physical requirement of
a zero value of the electric field amplitude E(xy,ys) for the
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Fig. 2. Gray-scale images of the 1D ODB 17 (top) and 35 cm
(bottom) behind a single CGH, for cw (left) and femtosecond (fs)
laser beams (right). The dashed horizontal line marks the posi-
tion where the cross section of the light intensity distributions
has been taken (see Fig. 4).

diffracted wave at the position of the phase dislocation. In
a coordinate system (x,y) with axes parallel to the initial
(xg,y0) axes (see Fig. 1), the orientation of the dislocation
at arbitrary z=s is described by the condition

y = (x — \s/d)tan a. 9

Hence, in the course of its propagation, the dislocation re-
mains parallel to the one encoded in the CGH. However,
there is a wavelength-dependent spatial offset (spatial
dispersion) proportional to A\s/d. For a broadband illumi-
nation of the CGH, the only initial orientation of the 1D
dislocation for which the integral intensity remains zero
along the dislocation is the one encoded perpendicular to
the CGH stripes, i.e., at an angle «=0. This is intuitive
because the spatial dispersion is perpendicular to the
CGH stripes. Unfortunately, spatial chirp is inevitable.
Its presence can be clearly recognized in Fig. 2 by the
horizontal elongation of the beam.

The gray-scale images of the 1D ODB in the cw and
femtosecond regimes are obtained by changing the opera-
tion regime of a Ti:sapphire laser. The oscillator is
pumped by an intracavity-doubled Nd: YVO, (Millenia Vi)
laser and emits nearly transform-limited 20 fs pulses at a
repetition rate of 78 MHz with an average power of 200
mW at a central wavelength of 797 nm.*® The eventual
mode hopping of the femtosecond oscillator in cw™® (lasing
in one longitudinal mode at a time and hopping among
different modes at nearly constant output power) will re-
sult in a spectral averaging during the camera acquisition
and, as a consequence, could reduce the contrast of the ex-
perimental frames. In the measurements presented in the
first part of this paper, binary CGHs produced photolitho-
graphically with a stripe period of d =30 um are used, and
the experimental frames are recorded with a CCD camera
with 12 um resolution. With the relatively low-resolution
holograms used in this paper, the above-mentioned nega-
tive effect remains negligible. To demonstrate the influ-
ence of the beam diffraction, we show in the left column of
Fig. 2 frames of 1D ODBs in c¢w regime 17 and 35 cm be-
hind the hologram. The images in the right column are re-
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corded at the same distances when mode locking was

turned on. In Fig. 3 vertical cross sections of the images
shown in Fig. 2 are compared. In both regimes the inte-
gral intensity approaches the zero level at the phase dis-
location encoded perpendicularly to the grating stripes.
The beam broadening along the 1D dislocation due to the
spatial dispersion is much stronger in the femtosecond re-
gime as compared with the cw. This is clearly seen in Fig.
4 (left), in which we compare horizontal slices taken par-
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Fig. 3. Vertical cross sections of the images shown in Fig. 2.
Solid squares, cw regime; open circles, femtosecond regime.
Propagation distances are 17 (top) and 35 cm (bottom).
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Fig. 4. Left graph: cross sections of the bottom images in Fig. 2

taken parallel to the 1D ODB. Right: numerical results for a

propagation distance z=0.6Lp. Solid squares and solid curve, cw

regime; open circles and dashed curve, femtosecond regime. The

transverse coordinate is in CCD-camera pixels for the experi-
mental profiles and in arbitrary units for the numerical ones.

100 200

Vol. 23, No. 1/January 2006/J. Opt. Soc. Am. B 29

Fig. 5. Gray-scale images of a quasi-2D dark beam formed by
crossed 1D phase dislocations, for cw and femtosecond laser
beams. Top, 17 cm behind a single CGH; bottom, 35 cm behind.
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Fig. 6. (a) Central cross sections of the images shown in Fig. 5
for z=35 cm. Solid squares and solid curve, cw regime (horizontal
and vertical slices, respectively); open circles and dashed curve,
femtosecond regime (horizontal and vertical slices, respectively).
(b) Numerically obtained vertical cross sections for propagation
distance z=0.6Lp. Solid curve, cw regime; dashed curve, femto-
second regime. (¢) The same as in (b) but in the horizontal

direction.

allel to the dislocation in both regimes (see marker in Fig.
2). Numerical simulations obtained by solving the Fresnel
integral [Eq. (1)] for 2=0.6Ly, (Lp=ko?2/2) are shown in
Fig. 4 (right). The broadening along the dislocation in-
creases with increasing propagation path length (Fig. 2).
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For an arbitrary orientation of the 1D dislocation the
integral intensity cannot be zero, since the position of the
dislocation in each monochromatic spectral component
depends on \. A pair of perpendicular 1D phase disloca-
tions was encoded in another CGH at an dislocation-to-
stripe angle «=45 deg. The results observed in the cw and
femtosecond regimes are shown in Fig. 5 for the same
propagation distances (17 and 35 cm) after the CGH. Fig-
ure 6(a) is aimed to accentuate (solid squares and solid
curve depict horizontal and vertical slices, respectively)
that, similar to the 1D case, the cw quasi-2D dark beam
retains its high contrast. Owing to the spatial dispersion
of the CGH, the dislocations generated in the different
spectral components in the femtosecond regime are dis-
placed, and the intensity modulation degenerates (in Fig.
6(a), open circles and dashed curve depict horizontal and
vertical slices, respectively). The cross sections extracted
from the bottom images shown in Fig. 5 agree qualita-
tively well with the numerical profiles presented in Figs.
6(b) and 6(c). At large propagation distances the uncom-
pensated dispersion in the femtosecond regime results in
the formation of horizontal gray stripes (see Fig. 5) in-
stead of a black cross.

4. TWO-DIMENSIONAL DISLOCATION AND
ANALYSIS OF THE 4f SYSTEM

The optical vortex (OV) is an object localized in two trans-
verse dimensions. When generated by a single CGH, the
spatial dispersion displaces the vortices in the individual
spectral components. This can clearly be seen in Fig. 7, in
which we show gray-scale images of OV beams recorded
at two distances behind a CGH, in both the cw and the
femtosecond regimes. The contrast of the broadband OV
is gradually reduced as compared with that of the mono-
chromatic beam under comparable conditions (Fig. 7, left
graph: z=35 cm). This behavior is confirmed by numerical
simulation shown in Fig. 7 (right graph).

In the expansion of the grating transmission function
T(xg,y0) [Eq. (3)], the multiplier accounting for the angu-
lar dispersion exp(i27nxy/d) does not depend on the par-
ticular form of the encoded phase profile ¢(xg,y). This al-
lows one to compensate for the dispersion introduced by
the CGH by using a suitable optical system involving an
additional grating with the same period d without any in-
fluence on the phase distribution ¢(xg,y(). This require-
ment is satisfied by a dispersionless 4f system*> ™ as
shown in Fig. 8.

To obtain the evolution of the electric field inside the 4f
setup (Fig. 8), we use the integral relation between the
field distributions in the front and back focal planes of a
thin lens,

1 k
E(xpyp = ﬁ’f on exp{—i;‘(xoxﬁyayf)}dxodyo,
(10)

which is obtained from the diffraction integral [Eq. (1)]
accounting for the transmission
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k
tx,y) = exp(ikndo)exp{— iZe(x2 +y2)} (11)

of the thin lens of optical thickness nd and focal length f.
For simplicity, the constant phase multipliers and the
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Fig. 7. Gray-scale images of OV beams 17 (top) and 35 cm (bot-
tom) behind a single CGH, for cw and femtosecond laser beams.
Graph: corresponding horizontal cross sections of the OV beams
recorded at 35 cm (left) and numerical results for propagation
distance 0.6Lp (right). The transverse coordinate is in CCD-
camera pixels for the experimental profiles and in arbitrary units
for the numerical ones.

G L
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-f
Fig. 8. Illustration of the 4f setup that is analyzed theoretically.
G, diffraction grating; CGH, computer-generated hologram with
an encoded phase singularity; L, lenses of focal length f; D, iris
diaphragm. The input, Fourier, and output planes are denoted by
indices 0, f, and 1, respectively.
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CGH

Fig. 9. Illustration of the folded 4f setup that is used in the ex-
periment. CGH, computer-generated hologram; L, quartz lens;
M, silver-coated mirror.

quadratic phase terms introduced by the lenses are omit-
ted. The lens apertures are considered to be much larger
as compared with the spatial extent of the beam at the re-
spective planes. In the particular case of an incoming
Gaussian background beam, the first-order diffracted
wave just after the first grating G (see Fig. 8) is given by

x%+y% 2m
E'(x0,y0) = C1exp| — ——— |exp %o, (12)

o
and its distribution E(xs,yp) in the back focal plane of the
first lens is
A\ 2 )
0% .')Cf— E +yf
E(xpyp)=—0C - 13
(xpyp) o 1 €xp 2 (13)
o

The analysis of 4f*type systems has been the subject of ex-
tensive research in connection with their wide application
in pulse-shaping experimen‘cs.‘m#15 Here the iris dia-
phragm does not affect the propagation of the first-order
diffracted beam passing through the 4f system and re-
moves all other diffracted order beams only. Applying
again the transformation [Eq. (10)], one gets the field dis-
tribution in front of the CGH:

2m

—x) s (14)

Cl x2+y2
E(x,y):)\2—fzexp _(BU—)Z exp iﬁd
0

where B is the angular magnification of the optical sys-
tem. The transmission function of the first-order dif-
fracted beam is given by T(x,y)=A;exp(i2m7x/d)
xexplip(x,y)].*® In this way we derive an analytical ex-
pression for the electric field amplitude E’(x,y) at the exit

of the 4f system:
ClAl |: x2+y2:| [ ( )]
= exp| - explip(x,y
(m\)? (Boy)®

.277 1
X exp 17(1+E)x . (15)

The last multiplier in Eq. (15) accounts for the net spatial
dispersion at the exit. For a perfect alignment, f=-1, and
the 4f system is dispersion free. Therefore, arbitrary-
oriented dark beams with phase dislocations generated in
each individual spectral component are recombined spa-
tially and temporally to overlap at the exit without any
chirp.

E'(x,y)
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The 4f setup used in our experiment (Fig. 9) is folded in
the Fourier plane by a silver-coated mirror. A large-
aperture (2.5 cm) quartz lens with a focal length f
=20 cm is aligned carefully to minimize aberrations. A bi-
nary CGH of an OV is positioned in a way to reconstruct
the encoded point phase dislocation in the center of the
background beam. In the peripheral part of this grating
the stripes are parallel. This region is used as an effective
second grating to recombine the spectral components at
the exit. In Fig. 10 (top figures) gray-scale images of OVs
recorded 35 cm after the exit of the 4f setup are shown.
The frames are taken in the cw and femtosecond regimes
successively by our turning the mode locking on and off
while keeping the alignment unchanged. Interference
lines in the frame in Fig. 10 recorded for cw can clearly be
seen. They appear owing to slight overlapping of the OV
beam exiting the 4f system with a beam reflected directly
from the CHG substrate. Owing to the lack of temporal
overlapping and the reduction of the coherence length,
both interference and speckles disappear in the femtosec-
ond regime. In comparison with the lower right frame in
Fig. 7, the contrast of the femtosecond OV shown in Fig.
10, right frame, is clearly improved and can be maximized
by one’s filtering out all parasitic reflections. An estima-
tion based on the visibility of the interference structure in
the cw regime (Fig. 10, left frame) shows a (10+3)% con-
tribution of such reflections to the background signal in
the vortex core. The influence of these reflections in the
femtosecond regime is likely to be stronger, since the di-
rectly reflected broadband signal is actually dispersed in
space. The graph in Fig. 10 shows vertical cross sections
of the cw and femtosecond OV beams (solid squares and
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Fig. 10. Frames: OVs recorded 35 cm after the 4f setup in the
cw and the femtosecond regimes. Graph: corresponding vertical
cross sections of OV beams in the cw and femtosecond regimes
(solid squares and open circles, respectively).



32 J. Opt. Soc. Am. B/Vol. 23, No. 1/January 2006

200
2 1501 %
g %, 8?@5! )
£ : w ! %%
5 100 1‘1 g E
S ] h
= ] N
SR
S 50
E ] ey wl
0 L} T L} T 1 T |!
150 100 50 0 50 100 150

Transverse coordinate (pix)

Fig. 11. Comparison between the OV cross sections taken par-
allel to the stripes of the CGH in the femtosecond regime. Open
circles, single CGH; solid squares, folded 4f setup.

open circles, respectively). The improvement of the con-
trast in the OV beam core is once again confirmed (see
Fig. 11) by our comparing the beam profiles for the cases
in which a single CGH and a CGH in a 4f system are
used.

As long as no pulse shaping is to be performed in the
Fourier plane, the low-resolution d\/dxy=150 nm/mm re-
lated to the 30 um grating period is acceptable. Temporal
pulse shaping in the same 4f system would require much
denser gratings and lenses and focusing mirrors of
shorter focal lengths.

5. CREATION OF PHASE DISLOCATIONS IN
THE PULSE COMPRESSION PROCESS

In the following we will demonstrate that dark beams car-
rying phase dislocations can be generated in double-pass
grating compressors%’47 without introducing additional
spatial dispersion. One of the gratings (in this theoretical
model, the last one) has to be replaced by a CGH of a pe-
riod d equal to that of the other grating(s). The optical
scheme analyzed is shown in Fig. 12.

Theoretical analysis of this system amounts to evalua-
tion of the diffraction integral between the planes in
which the diffraction gratings are located. To calculate
the field distribution in the plane (xs,ys) of the second
grating, we shift the input plane (xg,yo) at a distance z
=sg in front of it. (This shift is arbitrary and can later be
set equal to zero.) Omitting the constant phase multipli-
ers, we can describe the transmission functions of each
grating and the CGH as follows:

T(xl’yl) = Cl exp[L(27T/d)x1]’
T(x]’y_]) = Cl eXp[— I’(27T/d)x]:|7 ] = 2?3’

T(x,y) = Cy expli(27/d)x]exp[ (x,y)]. (16)

A plus or minus sign in the phase corresponds to beam
propagation in the first or in the minus first diffraction or-
der of the respective grating. One can obtain the electric
field distribution E’(x9,y9) just after the second grating
by multiplying the field diffracted between the (x;,y;) and
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(x9,y9) planes by the transmission function T'(x3,ys). The
field distribution needed to evaluate the diffraction inte-
gral is a product of the field diffracted between the (x,y)
and (x1,y1) planes and the transmission function 7'(x1,y1)
of the first grating. Therefore,

_Cl 277.762
E’(xz,y2)=mexp - p explik(so+1)]

0
2773(31
Xf Cexp|i 2
T,
XIJE(xo,yo)eXP 4 dxodyg
)\SO

Ty
X exp iv dxqdy;, am

where ri2j=(xi—xj)2+(y,-—yj)2,i,j=0, 1, 2. Changing the or-
der of integration and integrating over x; and y,, we find
that the field after the first pass through the compressor
(i.e., after the second grating; see Fig. 12) is

o C3 o - msglh
—(xz,yz)—mexp[l (so+1)]exp -lm
XJJE(xo,yo)
.27Tl(x2—x0)
X —_] —
P T D
e, e
X . . 18
exp L)\(so+l) 0dyo (18)

The evolution of the optical field amplitude during the
second pass through the compressor—i.e., between the
(x9,y9) plane and the output (x,y) plane—is modeled in
the same way. Since the output grating of the compressor
is chosen to be the CGH, the output electric field ampli-
tude E’(x,y) contains the phase multiplier ¢(x,y). After
some algebra we get

Fig. 12. TIllustration of the double-pass grating compressor that
is analyzed theoretically. G, diffraction gratings; CGH, computer-
generated hologram with an encoded phase singularity; /, com-
pressor length. The planes of the gratings are indexed succes-
sively. The CGH is assumed to stand at the exit of the
COmpressor.
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Ti:sapphire ||
laser

Fig. 13. Setup of the proof-of-principle experiment. PM, phase
masks (phase CGHs); D, iris diaphragm; S, slit; M, removable
mirrors (dashed boxes) and folding mirror ensuring vertical off-
set in the reverse pass through the system; F, filter; L, imaging
lens (f=2 c¢cm); DPSSL, diode-pumped solid-state laser (Verdi V5);
CCD, charge-coupled device camera.

CZ

E' =(x,y) = ———explik(l; + ) Jexp[ ¢(x,y)]

Nl +1)

Xexp _L—(ll+l)d2
IJE (x2,y2)exp{

Xex P{ )\(ll+l):| dxodys, (19)

where r?=(x—x9)2+(y —y5)2. After substituting Eq. (18) in
to Eq. (19) and integrating over x9 and y,, we can write
the output amplitude of the electric field in a compact
form:

27l (x - x9)
d(11 +1)

E(x,y) = CiE g exp{ik[s - L(Md)*Texpl¢(x,y)].  (20)

Here E 4 is the electric field amplitude diffracted in the
course of the optical beam propagation in the compressor
[accurate to accumulated linear phase exp(iks); see Eq.
(1)]. The first phase term in Eq. (20) accounts for the dif-
ferent propagation path lengths (and transit times) of the
different spectral components, i.e., for the negative group-
velocity dispersion of the grating compressor. The last
term contains the phase profile encoded in the CGH. Be-
cause of symmetry reasons, the same result holds when
the dislocation is generated by the first grating.

In the following, the behavior of the phase dislocations
carried by the broad bandwidth of femtosecond laser
pulses is imitated by sets of measurements conducted
with a cw laser tuned at different wavelengths. In that
sense, but without loss of generality, the following experi-
ment serves as a proof of principle. The setup of the grat-
ing compressor is shown in Fig. 13. It consists of two iden-
tical phase masks (PMs) of OV. The PMs are phase CGHs
fabricated directly on photoresist with stripe periods of
80 um. Their higher (30%) efficiencies in the first diffrac-
tion order and large apertures (of 1.2 cm) were important
in this measurement. To avoid dispersion in two spatial
dimensions, we prealigned the gratings under the micro-
scope so the stripes are parallel. Then the compressor
scheme is aligned with the 532 nm output of a diode-
pumped solid-state laser (Verdi V5). After two mirrors
have been removed (Fig. 13, dashed boxes) the same laser
is used to pump a cw tunable Ti:sapphire ring laser (Co-
herent 899-21). The diffracted beams of corresponding or-
der after each PM are transmitted by two slits during the
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first pass through the compressor. A plane silver-coated
mirror is used to reflect the infrared beam back for the
second pass. It intentionally introduces a small vertical
angular tilt (along the grating stripes) that allows one to
separate the output beam from the input one and to en-
code a phase singularity only once—at the entrance or at
the exit of the setup—even using identical CGHs. The
output is imaged by a quartz lens (=20 cm) directly on
the array of a CCD camera of 8 um resolution. The PM-
to-PM distances (25 to 58 cm) are chosen such that the in-
dividual diffraction orders can be separated. The PM-to-
folding-mirror distance [limited by the half-aperture of
the PMs (1.2 cm)] was chosen in the same range.

The positions of the Oth- and *1 st-order beams dif-
fracted by the PM at the exit of the compressor are plotted
in Fig. 14 as a function of wavelength. The wavelengths
are measured by a wavemeter (Burleigh, WA-1100). Since
in this measurement an OV is embedded in the beam by
the first PM, it passes through the entire system, and all
three output beams carry OVs. This was done in order to
use the OVs as spatial markers. Only one of the beams
passes through the setup as would be required for a real
double-pass grating compressor.%"47 It can clearly be seen
that the OV nested in this beam preserves its position in
space. The straight line in Fig. 14 represents a
wavelength-independent OV position accurate within a
standard deviation of two CCD-camera pixels when the
laser wavelength is tuned in a 80 nm broad spectral in-
terval. In contrast, the positions of the zero-order and
idler first-order beams (middle and upper curves, respec-
tively) change monotonically.

Although ultrashort pulses have broad spectra and a
fixed phase relation between the spectral components, we
measure the spatial positions of the vortices at discrete
wavelengths only. Therefore, the experiment can be
thought of as being a proof of principle. Nevertheless, tak-
ing the real spectrum of an amplified ultrashort pulse®®
and integrating a set of laser-beam power-density distri-
butions recorded experimentally at discrete wavelengths,
one can simulate the encoding of phase dislocations in a
real double-pass grating compressor. The gray-scale in-
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Fig. 14. Position of the OV at the exit plane of the pulse com-
pressor as a function of the wavelength. Squares and triangles
(solid and dashed curves) correspond to dispersion compensated
and two uncompensated (zero-order and idler) beams, respec-
tively. The dislocation is reproduced by the first PM.
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Proof-of-principle simulations with OVs encoded in the (a) first and (b) last diffraction from a PM. Graphs: transverse cross

sections of the uncompensated idler (solid curve) and desired OV (dotted curve). Insets: spectrally integrated experimental gray-scale

images (idler, left; compensated OV, right).

sets in Figs. 15(a) and 15(b) are created in this way. Fig-
ure 15(a) refers to the 50 cm long compressor, in which
the OV is encoded by the first PM. Because of diffraction,
the spectrally integrated desired OV beam (right inset) is
much broader as compared with the one exiting the
longer setup (75 cm) where it was encoded by the last PM
[Fig. 15(b), right inset]. The uncompensated spatial dis-
persion of the different spectral components in the mod-
eled idler beam [Fig. 15(b), left inset] closely resembles
the intensity distribution of an OV generated by a single
CGH (Fig. 7, right images). The dotted and solid curves in
Figs. 15(a) and 15(b) represent profiles of the compen-
sated and idler output beams. The clearly higher contrast
of the OV generated in the compressor as compared with
the contrast of the idler vortex in both cases strongly sup-
ports the general conclusion of this analysis: Dark beams
carrying phase dislocations can be generated in chirped
femtosecond laser beams by using the respective holo-
grams in a grating compressor scheme. Real adoption of
this scheme in femtosecond systems requires ten-times-
denser holographic diffraction gratings, which should not
be a technical problem.

6. CONCLUSION

Our analytical and experimental results demonstrate the
possibility of creating spatial phase dislocations in broad-
band (e.g., femtosecond) optical fields by using computer-
generated holograms. In order to cancel the spatial dis-
persion introduced, these specifically designed diffraction
gratings have to be implemented in 4f setups or in
double-pass grating compressors. The first approach does
not affect the width of the ultrashort pulses and can be
used directly with femtosecond oscillators. When (chirped
pulse) amplifiers are involved in the femtosecond laser
systems, the phase dislocations can be generated in all
spectral components at the later stage of the pulse short-
ening in a grating compressor. In addition, our results are
directly applicable to tunable laser beams when they have
to preserve the positions of the spatial phase dislocations,
as well as to encode phase dislocations in white-light-type
beams.
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