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We show that spatial phase dislocations associated with optical vortices can be embedded in femtosecond laser
beams by computer-generated holograms, provided that they are built in a setup compensating for the intro-
duced spatial dispersion of the broad spectrum. We present analytical results describing two possible arrange-
ments: a dispersionless 4f setup and a double-pass grating compressor. Experimental results on the generation
of optical vortices in the output beam of a 20 fs Ti:sapphire laser and the proof-of-principle measurements with
a broadband-tunable cw Ti:sapphire laser confirm our theoretical predictions. © 2006 Optical Society of
America

OCIS codes: 050.1970, 090.1760, 120.5060, 140.3300, 140.7090.
p
t
m
v
d

c
t
r
c
n
b
s
a
w
d
h
t
a
n
o
t
l
e
e

. INTRODUCTION
he presence of phase dislocations in the wavefront of a

ight beam determines its phase and intensity structure.
ince the phase becomes indeterminate at the singularity
oint, both the real and the imaginary parts of the field
mplitude (i.e., also the field intensity) vanish.1 Each one-
imensional (1D) �-phase dislocation is coupled with a
ero-intensity line [one-dimensional odd dark beam (1D
DB)]. An isolated point singularity with a screw-type
hase distribution is associated with an optical vortex
OV). The characteristic helical phase profiles of OVs are
escribed by exp�im�� multipliers, where � is the azi-
uthal coordinate and the integer number m is their to-

ological charge. As shown in Ref. 2, an m-fold-charged
V beam carries an orbital angular momentum of mq per
hoton, independent of the spin angular momentum (i.e.,
n the polarization state). Recently, free-space transfer of
nformation encoded as orbital angular momentum was
emonstrated,3 in which the inherent security of the data
epended on topological rather than on mathematical en-
ryption.

The understanding of the linear spatiotemporal behav-
or of focused femtosecond beams with phase singularities
s of both theoretical and experimental interest. Remark-
ble spectral changes take place in the neighborhood of
0740-3224/06/010026-10/$15.00 © 2
hase singularities near the focus of a converging, spa-
ially fully coherent polychromatic wave.4 Broadband illu-
ination leads to nonnegligible chromatic effects in the

ortex region even in the case of compensated spectral
ispersion.5,6

In self-defocusing media the nonlinearity is able to
ompensate for the dark-beam diffraction, and dark spa-
ial solitons have been generated7–9 in a variety of mate-
ials. In self-focusing media, OV beams are unstable,10 ex-
ept for the case of partial incoherence11 or nonlocal
onlinear response or both.12,13 Instability-induced
reakup of OVs to a controllable number of bright spatial
olitons has lead to the concepts of soliton molecules14

nd soliton algebra.15–19 All types of soliton application
ill benefit from ultrashort pulses carrying spatial phase
islocations, since such pulses exhibit peak intensities
igh enough to access optical nonlinearities in many ma-
erials. These concepts, along with the difficulties associ-
ted with the generation of subpicosecond helical (spin-
ing) solitons in optical fibers20 and stable spinning
ptical solitons in three dimensions,21 indicate the impor-
ance of the problem. Phase dislocations in femtosecond
aser fields may also provide a new degree of freedom in
xperiments such as phase-controlled high-harmonic gen-
ration.
006 Optical Society of America
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The challenge in creating spatial phase dislocations in
hort pulses with broad spectral bandwidths is to impose
he desired dislocation onto all spectral components while
eeping the pulse width and shape undistorted22 and the
ulse front untilted. The known methods for generating
hase singularities applicable in the cw and quasi-cw re-
imes are not suited for femtosecond lasers. Astigmatic
ransverse-mode converters23,24 cannot be used directly,
ince they require transverse modes higher than the fun-
amental TEM00. The approach25 of preparing a
ermite–Gaussian-like �HG01� mode at the entrance of

he converter by splitting a HG00 mode and spatially off-
etting its two out-of-phase halves seems feasible, but for
emtosecond pulses it requires an additional interfero-
etrically controlled delay line. Intracavity phase

lements26 and beam rotators27,28 are not applicable in
he femtosecond regime because of the emitted transverse
ode. Transparent spiral wave plates29,30 are less flexible

n controlling the phase distribution dynamically as com-
ared with liquid-crystal modulators structured in pie
lices.31,32 They all preserve the beam path, and the latter
xhibits a high efficiency in energy conversion, in addi-
ion. In both cases, however, the magnitude of the phase
ump of the dislocation will deviate from � for the differ-
nt spectral components of the short pulse, and topologi-
al dispersion will be present.33 Glass platelets of a vary-
ng thickness providing linear phase retardation on one
alf of a (cw) laser beam are able to produce OVs.34 Be-
ause of the space-dependent dispersion and time delays,
his technique cannot be applied to ultrashort pulses ei-
her.

A well-known35 and widely used method to generate
patial phase dislocations is the reconstruction of
omputer-generated holograms (CGHs). This method can
e used to realize screw,36,37 step,38,39 and mixed-type
islocations40 as well as arrays of such dislocations41 in
rst-order diffracted beams. To impose the encoded phase
islocation onto all spectral components of the ultrashort
ulse while keeping the pulse undistorted, one must align
he CGH as a part of an optical system with compensated
patial dispersion. We demonstrated recently42 that a dis-
ersionless 4f system43–45 provides one possible solution
f the problem. Here we discuss in detail the application
f a 4f system for encoding phase defects in femtosecond
aser pulses. Although our approach is well suited for fem-
osecond oscillators, schemes involving (chirped pulse)
mplifiers would be troubled by the restless behavior of
he dislocations, and amplified spontaneous emission in
he dark core of the beam has to be expected. In the sec-
nd part of this paper we show that the spatial dislocation
an be efficiently encoded in an amplified femtosecond
ulse by using a CGH in a double-pass grating-pair
ompressor.46,47

. THEORETICAL MODEL
ithout loss of generality, we normalize the electric field

mplitude to unity and assume that the spatial profile of
he optical field is Gaussian E�exp�−�x0

2+y0
2� /�0

2�, where
0 is the beam width at the 1/e level and the aperture of
he CGH is large enough not to cause edge diffraction.
he field evolution after passing the CGH is analyzed by
sing the Fresnel integral
E�x,y,z = s� =
exp�iks�

i�s �� E�x0,y0,0�exp� i�r2

�s �dx0dy0.

�1�

irectly behind the CGH, it has the form

E�x0,y0,0� = T�x0,y0�exp�− �x0
2 + y0

2�/�0
2�. �2�

n the above expressions r2= �x−x0�2+ �y−y0�2 ,� is a par-
icular wavelength within the generated spectral band-
idth, k=2� /�, and T�x0 ,y0� is the grating transmission

unction containing the phase profile ��x0 ,y0� of the de-
ired dislocation. This function can be expanded in a Fou-
ier series in terms of field amplitudes Cn of the different
iffraction orders n:

T�x0,y0� = 	
n=−�

�

Cn exp�in2��x0/d��exp�in��x0,y0��. �3�

ere d is the period of the diffraction grating imprinted
n the CGH. In the particular case of a plane phase pro-
le ��x0 ,y0�=�0=constant, Eq. (3) describes the transmis-
ion of a diffraction grating with stripes perpendicular to
he Ox0 axis (see Fig. 1). The quantity d�0 / �2�� corre-
ponds to the offset of the central transmitting stripe
rom the center of the coordinate system Ox0y0. The coef-
cients Cn depend on the particular profile of the stripes.
or a binary CGH of perfectly transmitting and reflecting
tripes of equal widths, Cn=sin�n� /2� / �n��.48

When a plane-wave reference beam is used for the gen-
ration of the hologram, the curvature of the CGH stripes
ecreases with increasing distance to the singularity, and
he stripes appear perpendicular to the coordinate axis
x0, independent of the type of the encoded dislocation.
ince we are interested in the ±1st diffracted order beams
nly, which reconstruct the encoded phase profile, we will
nalyze the electric field distribution at distances at
hich the diffracted orders are well separated.

. CREATION OF PHASE DISLOCATIONS
Y A SINGLE COMPUTER-
ENERATED HOLOGRAM

he structure of the CGH for generating a 1D ODB and
he coordinate system assigned to it are shown in Fig. 1.

ig. 1. CGH for generating a 1D ODB in a general (nonperpen-
icular) orientation of the dislocation axis with respect to the
rating stripes.
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n the general situation of a nonparallel orientation of the
islocation axis with respect to one of the coordinate sys-
em axes, the dislocation position is given by the straight-
ine equation y=x tan �. The encoded �-phase jump
auses an offset of the stripes by half a period on both
ides of the dislocation. This CGH (Fig. 1) can be consid-
red to be composed of two identical half-gratings that are
hifted with respect to each other. Let us assume that the
rating is illuminated by a laser beam aligned in a way
hat the 1D dislocation crosses its center. Then the CGH
ransmission function can be written in the form

T±�x0,y0� = C1 exp�i
2�x0

d �exp
i��0 + sgn�y0

− x0 tan ���/2��, �4�

here the subscript ± refers to the value of the signum
unction, i.e., to the upper or lower half of the grating. The
eld just behind the grating is therefore given by

E±��x0,y0� = T±�x0,y0�exp�− �x0
2 + y0

2�/�0
2�. �5�

t is more convenient to evaluate the diffraction integral
q. (1) in a coordinate system Ox1 ,y1 with the x1 axis par-
llel to the 1D dislocation. After rotating the coordinate
ystem by an angle �, we find that Eq. (5) becomes

Ey1�0� �x1,y1� = exp�− �x1
2 + y1

2�/�0
2�Ty1�0�x1,y1�,

Ey1	0� �x1,y1� = exp�− �x1
2 + y1

2�/�0
2�Ty1	0�x1,y1�. �6�

ollowing the beam propagation in a coordinate system
x2y2 parallel to Ox1y1 but located at a distance z=s, one

an describe the electric field amplitude of the diffracted
ave E�x2 ,y2� by a sum of two integrals:

E�x2,y2� =
exp�iks�

i�s ��
−�

� �
0

�

Ey1�0� �x1,y1�exp�i
�r21

2

�s �
+�

−�

� �
−�

0

Ey1	0� �x1,y1�exp�i
�r21

2

�s �dx1dy1,

�7�

here r21
2 = �x2−x1�2+ �y2−y1�2. With the substitution y1

−y1, denoting ri
2=xi

2+yi
2 , i=1,2, and after some routine

athematics, we can write the integrals as

E�x2,y2� =
2C1

i�s
exp�i�0�exp�iks�exp�i

�r2
2

�s �

�

−�

� �
0

�

exp�−
r1

2

�0
2�exp�i

�r1
2

�s �

exp�− ikx1�x2 −

�s

d
cos ��


sin�k

s
y1�y2 +

�s

d
sin ��dx1dy1. �8�

The equation describing the position of the dislocation
2+ ��s /d�sin �=0 arises from the physical requirement of
zero value of the electric field amplitude E�x ,y � for the
2 2
iffracted wave at the position of the phase dislocation. In
coordinate system �x ,y� with axes parallel to the initial

x0 ,y0� axes (see Fig. 1), the orientation of the dislocation
t arbitrary z=s is described by the condition

y = �x − �s/d�tan �. �9�

ence, in the course of its propagation, the dislocation re-
ains parallel to the one encoded in the CGH. However,

here is a wavelength-dependent spatial offset (spatial
ispersion) proportional to �s /d. For a broadband illumi-
ation of the CGH, the only initial orientation of the 1D
islocation for which the integral intensity remains zero
long the dislocation is the one encoded perpendicular to
he CGH stripes, i.e., at an angle �=0. This is intuitive
ecause the spatial dispersion is perpendicular to the
GH stripes. Unfortunately, spatial chirp is inevitable.

ts presence can be clearly recognized in Fig. 2 by the
orizontal elongation of the beam.
The gray-scale images of the 1D ODB in the cw and

emtosecond regimes are obtained by changing the opera-
ion regime of a Ti:sapphire laser. The oscillator is
umped by an intracavity-doubled Nd:YVO4 (Millenia Vi)
aser and emits nearly transform-limited 20 fs pulses at a
epetition rate of 78 MHz with an average power of 200
W at a central wavelength of 797 nm.49 The eventual
ode hopping of the femtosecond oscillator in cw50 (lasing

n one longitudinal mode at a time and hopping among
ifferent modes at nearly constant output power) will re-
ult in a spectral averaging during the camera acquisition
nd, as a consequence, could reduce the contrast of the ex-
erimental frames. In the measurements presented in the
rst part of this paper, binary CGHs produced photolitho-
raphically with a stripe period of d=30 �m are used, and
he experimental frames are recorded with a CCD camera
ith 12 �m resolution. With the relatively low-resolution
olograms used in this paper, the above-mentioned nega-
ive effect remains negligible. To demonstrate the influ-
nce of the beam diffraction, we show in the left column of
ig. 2 frames of 1D ODBs in cw regime 17 and 35 cm be-
ind the hologram. The images in the right column are re-

ig. 2. Gray-scale images of the 1D ODB 17 (top) and 35 cm
bottom) behind a single CGH, for cw (left) and femtosecond (fs)
aser beams (right). The dashed horizontal line marks the posi-
ion where the cross section of the light intensity distributions
as been taken (see Fig. 4).
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orded at the same distances when mode locking was
urned on. In Fig. 3 vertical cross sections of the images
hown in Fig. 2 are compared. In both regimes the inte-
ral intensity approaches the zero level at the phase dis-
ocation encoded perpendicularly to the grating stripes.
he beam broadening along the 1D dislocation due to the
patial dispersion is much stronger in the femtosecond re-
ime as compared with the cw. This is clearly seen in Fig.
(left), in which we compare horizontal slices taken par-

ig. 3. Vertical cross sections of the images shown in Fig. 2.
olid squares, cw regime; open circles, femtosecond regime.
ropagation distances are 17 (top) and 35 cm (bottom).

ig. 4. Left graph: cross sections of the bottom images in Fig. 2
aken parallel to the 1D ODB. Right: numerical results for a
ropagation distance z=0.6LD. Solid squares and solid curve, cw
egime; open circles and dashed curve, femtosecond regime. The
ransverse coordinate is in CCD-camera pixels for the experi-
ental profiles and in arbitrary units for the numerical ones.
llel to the dislocation in both regimes (see marker in Fig.
). Numerical simulations obtained by solving the Fresnel
ntegral [Eq. (1)] for z=0.6LD �LD=k�0

2 /2� are shown in
ig. 4 (right). The broadening along the dislocation in-
reases with increasing propagation path length (Fig. 2).

ig. 5. Gray-scale images of a quasi-2D dark beam formed by
rossed 1D phase dislocations, for cw and femtosecond laser
eams. Top, 17 cm behind a single CGH; bottom, 35 cm behind.

ig. 6. (a) Central cross sections of the images shown in Fig. 5
or z=35 cm. Solid squares and solid curve, cw regime (horizontal
nd vertical slices, respectively); open circles and dashed curve,
emtosecond regime (horizontal and vertical slices, respectively).
b) Numerically obtained vertical cross sections for propagation
istance z=0.6LD. Solid curve, cw regime; dashed curve, femto-
econd regime. (c) The same as in (b) but in the horizontal
irection.
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For an arbitrary orientation of the 1D dislocation the
ntegral intensity cannot be zero, since the position of the
islocation in each monochromatic spectral component
epends on �. A pair of perpendicular 1D phase disloca-
ions was encoded in another CGH at an dislocation-to-
tripe angle �=45 deg. The results observed in the cw and
emtosecond regimes are shown in Fig. 5 for the same
ropagation distances (17 and 35 cm) after the CGH. Fig-
re 6(a) is aimed to accentuate (solid squares and solid
urve depict horizontal and vertical slices, respectively)
hat, similar to the 1D case, the cw quasi-2D dark beam
etains its high contrast. Owing to the spatial dispersion
f the CGH, the dislocations generated in the different
pectral components in the femtosecond regime are dis-
laced, and the intensity modulation degenerates (in Fig.
(a), open circles and dashed curve depict horizontal and
ertical slices, respectively). The cross sections extracted
rom the bottom images shown in Fig. 5 agree qualita-
ively well with the numerical profiles presented in Figs.
(b) and 6(c). At large propagation distances the uncom-
ensated dispersion in the femtosecond regime results in
he formation of horizontal gray stripes (see Fig. 5) in-
tead of a black cross.

. TWO-DIMENSIONAL DISLOCATION AND
NALYSIS OF THE 4f SYSTEM

he optical vortex (OV) is an object localized in two trans-
erse dimensions. When generated by a single CGH, the
patial dispersion displaces the vortices in the individual
pectral components. This can clearly be seen in Fig. 7, in
hich we show gray-scale images of OV beams recorded
t two distances behind a CGH, in both the cw and the
emtosecond regimes. The contrast of the broadband OV
s gradually reduced as compared with that of the mono-
hromatic beam under comparable conditions (Fig. 7, left
raph: z=35 cm). This behavior is confirmed by numerical
imulation shown in Fig. 7 (right graph).

In the expansion of the grating transmission function
�x0 ,y0� [Eq. (3)], the multiplier accounting for the angu-

ar dispersion exp�i2�nx0 /d� does not depend on the par-
icular form of the encoded phase profile ��x0 ,y0�. This al-
ows one to compensate for the dispersion introduced by
he CGH by using a suitable optical system involving an
dditional grating with the same period d without any in-
uence on the phase distribution ��x0 ,y0�. This require-
ent is satisfied by a dispersionless 4f system43–45 as

hown in Fig. 8.
To obtain the evolution of the electric field inside the 4f

etup (Fig. 8), we use the integral relation between the
eld distributions in the front and back focal planes of a
hin lens,

E�xf,yf� =
1

�f �� E0 exp�− i
k

f
�x0xf + y0yf�dx0dy0,

�10�

hich is obtained from the diffraction integral [Eq. (1)]
ccounting for the transmission
t�x,y� = exp�iknd0�exp�− i
k

2f
�x2 + y2� �11�

f the thin lens of optical thickness nd0 and focal length f.
or simplicity, the constant phase multipliers and the

ig. 7. Gray-scale images of OV beams 17 (top) and 35 cm (bot-
om) behind a single CGH, for cw and femtosecond laser beams.
raph: corresponding horizontal cross sections of the OV beams

ecorded at 35 cm (left) and numerical results for propagation
istance 0.6LD (right). The transverse coordinate is in CCD-
amera pixels for the experimental profiles and in arbitrary units
or the numerical ones.

ig. 8. Illustration of the 4f setup that is analyzed theoretically.
, diffraction grating; CGH, computer-generated hologram with
n encoded phase singularity; L, lenses of focal length f; D, iris
iaphragm. The input, Fourier, and output planes are denoted by
ndices 0, f, and 1, respectively.
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uadratic phase terms introduced by the lenses are omit-
ed. The lens apertures are considered to be much larger
s compared with the spatial extent of the beam at the re-
pective planes. In the particular case of an incoming
aussian background beam, the first-order diffracted
ave just after the first grating G (see Fig. 8) is given by

E��x0,y0� = C1 exp�−
x0

2 + y0
2

�0
2 �exp�i

2�

d
x0� , �12�

nd its distribution E�xf ,yf� in the back focal plane of the
rst lens is

E�xf,yf� =
�0

2

��f
C1 exp�−

�xf −
�f

d �2

+ yf
2

� �f

��0
�2 � . �13�

he analysis of 4f-type systems has been the subject of ex-
ensive research in connection with their wide application
n pulse-shaping experiments.43–45 Here the iris dia-
hragm does not affect the propagation of the first-order
iffracted beam passing through the 4f system and re-
oves all other diffracted order beams only. Applying

gain the transformation [Eq. (10)], one gets the field dis-
ribution in front of the CGH:

E�x,y� =
C1

�2f 2exp�−
x2 + y2

���0�2exp�i
2�

�d
x� , �14�

here � is the angular magnification of the optical sys-
em. The transmission function of the first-order dif-
racted beam is given by T�x ,y�=A1 exp�i2�x /d�
exp�i��x ,y��.48 In this way we derive an analytical ex-

ression for the electric field amplitude E��x ,y� at the exit
f the 4f system:

E��x,y� =
C1A1

���f�2exp�−
x2 + y2

���0�2exp�i��x,y��


exp�i
2�

d �1 +
1

�
�x . �15�

he last multiplier in Eq. (15) accounts for the net spatial
ispersion at the exit. For a perfect alignment, �=−1, and
he 4f system is dispersion free. Therefore, arbitrary-
riented dark beams with phase dislocations generated in
ach individual spectral component are recombined spa-
ially and temporally to overlap at the exit without any
hirp.

ig. 9. Illustration of the folded 4f setup that is used in the ex-
eriment. CGH, computer-generated hologram; L, quartz lens;
, silver-coated mirror.
The 4f setup used in our experiment (Fig. 9) is folded in
he Fourier plane by a silver-coated mirror. A large-
perture (2.5 cm) quartz lens with a focal length f
20 cm is aligned carefully to minimize aberrations. A bi-
ary CGH of an OV is positioned in a way to reconstruct
he encoded point phase dislocation in the center of the
ackground beam. In the peripheral part of this grating
he stripes are parallel. This region is used as an effective
econd grating to recombine the spectral components at
he exit. In Fig. 10 (top figures) gray-scale images of OVs
ecorded 35 cm after the exit of the 4f setup are shown.
he frames are taken in the cw and femtosecond regimes
uccessively by our turning the mode locking on and off
hile keeping the alignment unchanged. Interference

ines in the frame in Fig. 10 recorded for cw can clearly be
een. They appear owing to slight overlapping of the OV
eam exiting the 4f system with a beam reflected directly
rom the CHG substrate. Owing to the lack of temporal
verlapping and the reduction of the coherence length,
oth interference and speckles disappear in the femtosec-
nd regime. In comparison with the lower right frame in
ig. 7, the contrast of the femtosecond OV shown in Fig.
0, right frame, is clearly improved and can be maximized
y one’s filtering out all parasitic reflections. An estima-
ion based on the visibility of the interference structure in
he cw regime (Fig. 10, left frame) shows a �10±3�% con-
ribution of such reflections to the background signal in
he vortex core. The influence of these reflections in the
emtosecond regime is likely to be stronger, since the di-
ectly reflected broadband signal is actually dispersed in
pace. The graph in Fig. 10 shows vertical cross sections
f the cw and femtosecond OV beams (solid squares and

ig. 10. Frames: OVs recorded 35 cm after the 4f setup in the
w and the femtosecond regimes. Graph: corresponding vertical
ross sections of OV beams in the cw and femtosecond regimes
solid squares and open circles, respectively).
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pen circles, respectively). The improvement of the con-
rast in the OV beam core is once again confirmed (see
ig. 11) by our comparing the beam profiles for the cases

n which a single CGH and a CGH in a 4f system are
sed.
As long as no pulse shaping is to be performed in the

ourier plane, the low-resolution d� /dxf=150 nm/mm re-
ated to the 30 �m grating period is acceptable. Temporal
ulse shaping in the same 4f system would require much
enser gratings and lenses and focusing mirrors of
horter focal lengths.

. CREATION OF PHASE DISLOCATIONS IN
HE PULSE COMPRESSION PROCESS

n the following we will demonstrate that dark beams car-
ying phase dislocations can be generated in double-pass
rating compressors46,47 without introducing additional
patial dispersion. One of the gratings (in this theoretical
odel, the last one) has to be replaced by a CGH of a pe-

iod d equal to that of the other grating(s). The optical
cheme analyzed is shown in Fig. 12.

Theoretical analysis of this system amounts to evalua-
ion of the diffraction integral between the planes in
hich the diffraction gratings are located. To calculate

he field distribution in the plane �x2 ,y2� of the second
rating, we shift the input plane �x0 ,y0� at a distance z
s0 in front of it. (This shift is arbitrary and can later be
et equal to zero.) Omitting the constant phase multipli-
rs, we can describe the transmission functions of each
rating and the CGH as follows:

T�x1,y1� = C1 exp�i�2�/d�x1�,

T�xj,yj� = C1 exp�− i�2�/d�xj�, j = 2,3,

T�x,y� = C1 exp�i�2�/d�x�exp���x,y��. �16�

plus or minus sign in the phase corresponds to beam
ropagation in the first or in the minus first diffraction or-
er of the respective grating. One can obtain the electric
eld distribution E��x2 ,y2� just after the second grating
y multiplying the field diffracted between the �x ,y � and

ig. 11. Comparison between the OV cross sections taken par-
llel to the stripes of the CGH in the femtosecond regime. Open
ircles, single CGH; solid squares, folded 4f setup.
1 1
x2 ,y2� planes by the transmission function T�x2 ,y2�. The
eld distribution needed to evaluate the diffraction inte-
ral is a product of the field diffracted between the �x0 ,y0�
nd �x1 ,y1� planes and the transmission function T�x1 ,y1�
f the first grating. Therefore,

E��x2,y2� =
− C1

�2s0l
exp�− i

2�x2

d �exp�ik�s0 + l��


�� �C1 exp�i
2�x1

d �

�� E�x0,y0�exp�i

�r10
2

�s0
�dx0dy0


exp�i
�r21

2

�l �dx1dy1, �17�

here rij
2 = �xi−xj�2+ �yi−yj�2 , i , j=0, 1, 2. Changing the or-

er of integration and integrating over x1 and y1, we find
hat the field after the first pass through the compressor
i.e., after the second grating; see Fig. 12) is

E� = �x2,y2� =
C1

2

i��s0 + l�
exp�ik�s0 + l��exp�− i

�s0l�

�s0 + l�d2

�� E�x0,y0�


exp�− i
2�l�x2 − x0�

�s0 + l�d 

exp�i

�r20
2

��s0 + l�dx0dy0. �18�

he evolution of the optical field amplitude during the
econd pass through the compressor—i.e., between the
x2 ,y2� plane and the output �x ,y� plane—is modeled in
he same way. Since the output grating of the compressor
s chosen to be the CGH, the output electric field ampli-
ude E��x ,y� contains the phase multiplier ��x ,y�. After
ome algebra we get

ig. 12. Illustration of the double-pass grating compressor that
s analyzed theoretically. G, diffraction gratings; CGH, computer-
enerated hologram with an encoded phase singularity; l, com-
ressor length. The planes of the gratings are indexed succes-
ively. The CGH is assumed to stand at the exit of the
ompressor.
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E� = �x,y� =
C1

2

i��l1 + l�
exp�ik�l1 + l��exp���x,y��


exp�− i
�l1l�

�l1 + l�d2

�� E��x2,y2�exp�− i

2�l�x − x2�

d�l1 + l� 

exp�i

�r2

��l1 + l�dx2dy2, �19�

here r2= �x−x2�2+ �y−y2�2. After substituting Eq. (18) in
o Eq. (19) and integrating over x2 and y2, we can write
he output amplitude of the electric field in a compact
orm:

E�x,y� = C1
4Ediff exp
ik�s − l��/d�2��exp���x,y��. �20�

ere Ediff is the electric field amplitude diffracted in the
ourse of the optical beam propagation in the compressor
accurate to accumulated linear phase exp�iks�; see Eq.
1)]. The first phase term in Eq. (20) accounts for the dif-
erent propagation path lengths (and transit times) of the
ifferent spectral components, i.e., for the negative group-
elocity dispersion of the grating compressor. The last
erm contains the phase profile encoded in the CGH. Be-
ause of symmetry reasons, the same result holds when
he dislocation is generated by the first grating.

In the following, the behavior of the phase dislocations
arried by the broad bandwidth of femtosecond laser
ulses is imitated by sets of measurements conducted
ith a cw laser tuned at different wavelengths. In that

ense, but without loss of generality, the following experi-
ent serves as a proof of principle. The setup of the grat-

ng compressor is shown in Fig. 13. It consists of two iden-
ical phase masks (PMs) of OV. The PMs are phase CGHs
abricated directly on photoresist with stripe periods of
0 �m. Their higher (30%) efficiencies in the first diffrac-
ion order and large apertures (of 1.2 cm) were important
n this measurement. To avoid dispersion in two spatial
imensions, we prealigned the gratings under the micro-
cope so the stripes are parallel. Then the compressor
cheme is aligned with the 532 nm output of a diode-
umped solid-state laser (Verdi V5). After two mirrors
ave been removed (Fig. 13, dashed boxes) the same laser

s used to pump a cw tunable Ti:sapphire ring laser (Co-
erent 899-21). The diffracted beams of corresponding or-
er after each PM are transmitted by two slits during the

ig. 13. Setup of the proof-of-principle experiment. PM, phase
asks (phase CGHs); D, iris diaphragm; S, slit; M, removable
irrors (dashed boxes) and folding mirror ensuring vertical off-

et in the reverse pass through the system; F, filter; L, imaging
ens �f=2 cm�; DPSSL, diode-pumped solid-state laser (Verdi V5);
CD, charge-coupled device camera.
rst pass through the compressor. A plane silver-coated
irror is used to reflect the infrared beam back for the

econd pass. It intentionally introduces a small vertical
ngular tilt (along the grating stripes) that allows one to
eparate the output beam from the input one and to en-
ode a phase singularity only once—at the entrance or at
he exit of the setup—even using identical CGHs. The
utput is imaged by a quartz lens �f=20 cm� directly on
he array of a CCD camera of 8 �m resolution. The PM-
o-PM distances (25 to 58 cm) are chosen such that the in-
ividual diffraction orders can be separated. The PM-to-
olding-mirror distance [limited by the half-aperture of
he PMs (1.2 cm)] was chosen in the same range.

The positions of the 0th- and ±1 st-order beams dif-
racted by the PM at the exit of the compressor are plotted
n Fig. 14 as a function of wavelength. The wavelengths
re measured by a wavemeter (Burleigh, WA-1100). Since
n this measurement an OV is embedded in the beam by
he first PM, it passes through the entire system, and all
hree output beams carry OVs. This was done in order to
se the OVs as spatial markers. Only one of the beams
asses through the setup as would be required for a real
ouble-pass grating compressor.46,47 It can clearly be seen
hat the OV nested in this beam preserves its position in
pace. The straight line in Fig. 14 represents a
avelength-independent OV position accurate within a

tandard deviation of two CCD-camera pixels when the
aser wavelength is tuned in a 80 nm broad spectral in-
erval. In contrast, the positions of the zero-order and
dler first-order beams (middle and upper curves, respec-
ively) change monotonically.

Although ultrashort pulses have broad spectra and a
xed phase relation between the spectral components, we
easure the spatial positions of the vortices at discrete
avelengths only. Therefore, the experiment can be

hought of as being a proof of principle. Nevertheless, tak-
ng the real spectrum of an amplified ultrashort pulse49

nd integrating a set of laser-beam power-density distri-
utions recorded experimentally at discrete wavelengths,
ne can simulate the encoding of phase dislocations in a
eal double-pass grating compressor. The gray-scale in-

ig. 14. Position of the OV at the exit plane of the pulse com-
ressor as a function of the wavelength. Squares and triangles
solid and dashed curves) correspond to dispersion compensated
nd two uncompensated (zero-order and idler) beams, respec-
ively. The dislocation is reproduced by the first PM.
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ets in Figs. 15(a) and 15(b) are created in this way. Fig-
re 15(a) refers to the 50 cm long compressor, in which
he OV is encoded by the first PM. Because of diffraction,
he spectrally integrated desired OV beam (right inset) is
uch broader as compared with the one exiting the

onger setup (75 cm) where it was encoded by the last PM
Fig. 15(b), right inset]. The uncompensated spatial dis-
ersion of the different spectral components in the mod-
led idler beam [Fig. 15(b), left inset] closely resembles
he intensity distribution of an OV generated by a single
GH (Fig. 7, right images). The dotted and solid curves in
igs. 15(a) and 15(b) represent profiles of the compen-
ated and idler output beams. The clearly higher contrast
f the OV generated in the compressor as compared with
he contrast of the idler vortex in both cases strongly sup-
orts the general conclusion of this analysis: Dark beams
arrying phase dislocations can be generated in chirped
emtosecond laser beams by using the respective holo-
rams in a grating compressor scheme. Real adoption of
his scheme in femtosecond systems requires ten-times-
enser holographic diffraction gratings, which should not
e a technical problem.

. CONCLUSION
ur analytical and experimental results demonstrate the
ossibility of creating spatial phase dislocations in broad-
and (e.g., femtosecond) optical fields by using computer-
enerated holograms. In order to cancel the spatial dis-
ersion introduced, these specifically designed diffraction
ratings have to be implemented in 4f setups or in
ouble-pass grating compressors. The first approach does
ot affect the width of the ultrashort pulses and can be
sed directly with femtosecond oscillators. When (chirped
ulse) amplifiers are involved in the femtosecond laser
ystems, the phase dislocations can be generated in all
pectral components at the later stage of the pulse short-
ning in a grating compressor. In addition, our results are
irectly applicable to tunable laser beams when they have
o preserve the positions of the spatial phase dislocations,
s well as to encode phase dislocations in white-light-type
eams.

ig. 15. Proof-of-principle simulations with OVs encoded in the
ections of the uncompensated idler (solid curve) and desired O
mages (idler, left; compensated OV, right).
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