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Abstract: We predict theoretically and generate experimentally in pho-
torefractive crystal two-dimensional self-trapped periodic waves of different
symmetries, including vortex lattices – patterns of phase dislocations with
internal energy flows. We demonstrate that these nonlinear waves exist with
nonlocal nonlinearity even when the optically-induced periodic refractive
index becomes highly anisotropic, and it depends on the orientation of the
two-dimensional lattice relative to the crystallographicc-axis.
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1. Introduction

Many novel possibilities to control light propagation, as well as steering and trapping of optical
beams, become accessible in nonlinear periodic photonic structures [1]. Periodic modulation
of the refractive index changes dramatically the wave band-gap spectrum and diffraction. The
interplay between diffraction and periodicity consequently strongly affects the propagation and
localization of light, leading to the formation of novel types of self-trapped optical beams,
discrete and gap spatial solitons [2].

Photonic lattices can be induced optically in photorefractive crystals employing their
anisotropic electro-optic properties [3, 4, 5]. In this approach, an ordinary-polarized periodic
light pattern created by several interfering plane waves induces a change of the refractive index
via the strong electro-optic effect, while propagating linearly along the crystal. The induced
periodic refractive index follows the light intensity distribution and it forms a two-dimensional
(2D) photonic lattice, being uniform in the direction of propagation. On the other hand an
extraordinary polarized signal beam propagates in the periodically modulated medium and si-
multaneously is affected by the strong photorefractive screening nonlinearity.

Another important possibility to create stationary two-dimensional light patterns for all-
optical induction is offered by the self-trapped periodic waves. Indeed, the diffractionless light
patterns in the form of stationary nonlinear periodic wavescan propagate without change in
their profile, becoming the eigenmodes of the self-induced periodic potentials. This behavior
is generic, since nonlinear periodic waves can exist in any type of nonlinear media, not re-
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stricted to photorefractive crystals. Such nonlinear periodic waves can be considered as flexible
structures because the lattice is modified and shaped by the nonlinear medium. Such flexible
nonlinear photonic lattices offer many novel possibilities for the study of nonlinear effects in
periodic systems, because they can interact with localizedsignal beams via the cross-phase
modulation and can form composite bound states [6, 7, 8].

Nonlinear photonic lattices created by two-dimensional arrays ofpixel-like spatial solitons
have been demonstrated experimentally in parametric systems [9], and in photorefractive crys-
tals [10, 11]. For the latter case of two-dimensional arraysof in-phasespatial solitons created
by the amplitude modulation, every pixel of the lattice induces a waveguide which can be ma-
nipulated by an external steering beam [11, 12]. However, the spatial periodicity of these two-
dimensional soliton lattices is limited by attractive interaction of the neighboring solitons that
generates their strong instability. In contrast, the recently suggested two-dimensional square
lattices created byout-of-phasespatial solitons were demonstrated to be robust in the isotropic
saturable model [13]. The phase profile of such self-trappedwaves resembles a chessboard
pattern with the lines ofπ-phase jumps between the neighboring sites.

Recently, we demonstrated experimentally the generation of lattices with the four-fold sym-
metry in an anisotropic photorefractive crystal [14]. Changing the orientation of the lattice with
respect to the c-axis of the photorefractive crystal, we distinguish two types of nonlinear pe-
riodic waves: the square pattern, with one high symmetry axis oriented parallel to the c-axis,
and diamond pattern, tilted by 45◦ with respect to the c-axis. Anisotropy of the photorefractive
media was shown to affect significantly the diffraction of the propagating waves [15], but even
more importantly, it changes the symmetry properties of theinduced refractive index pattern
because of the combined effect of saturation and nonlocality [14].

In this paper, we perform a generic study on the different symmetry-types of two-dimensional
nonlinear periodic waves and reveal their rich variety of symmetries and nontrivial phase struc-
tures. We demonstrate, that such periodic waves can be generated in anisotropic photorefrac-
tive materials, possessing orientational-dependent structure. First, we study theoretically the
phase-modulated two-dimensional structures ofa square geometry, usingan anisotropic non-
local modelof photorefractive nonlinearity, in both self-focusing and self-defocusing nonlinear
media. We then expand our analysis and introduce novel symmetry-types of two-dimensional
nonlinear modes with edge-type phase dislocations and three-fold symmetry,triangular lat-
tices. Similar to the two distinct orientations for square lattices, we distinguish the triangular
patterns with one of the three dislocation lines oriented parallel or perpendicular to the crystal
axis. Again the differences appear in the distribution of the refractive index, and they became
more pronounced for larger intensities of the lattice wave,i.e., in the regime of higher satura-
tion. We demonstrate experimentally how this orientational dependence changes the guiding
properties of the photonic lattice.

Second, we explore two-dimensional nonlinear lattices with an internal energy flow, which
is expected to strongly influence the interaction of the lattice with additional signal beams due
to the exchange of momenta between the interacting waves [16]. The net energy flow within the
stationary wave structure should be balanced out, thus it will contain closed loops of currents,
or optical vortices [17].Vortex latticeswere studied in linear [18] and self-defocusing nonlinear
optical media [19, 20]. Recently, we predicted the existence of self-trapped vortex lattices of a
square symmetry in isotropic saturable nonlinear media [21]. This approach can be generalized
to composite lattices created by the counter-propagating waves [22] and it is closely related to
the extensively studied vortex lattices in matter waves [23]. In this work, we study the square
and hexagonal nonlinear periodic waves with phase dislocations. The square vortex lattice has
a four-fold symmetry of the intensity and phase distributions, while the hexagonal intensity
pattern is built with the honeycomb structure of vortices.
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The paper is organized as follows. In the next Section, we describe our theoretical model ap-
plied to the lattices with the four-fold symmetry, i.e. the square and diamond patterns, including
the media with self-focusing and self-defocusing photorefractive nonlinearities. In Section 3 we
describe our experimental technique of the phase imprinting and demonstrate a good correspon-
dence between theoretical and experimental results. In Section 4 we expand our analysis to the
three-fold symmetry structures and find triangular lattices of two different orientations with re-
spect to thec-axis of the crystal. In Section 5 we describe theoreticallyand experimentally the
formation and nonlinear propagation of lattices with nontrivial vortex-like phase patterns.

2. Phase-modulated lattices: theoretical background

Spatially periodic nonlinear modes appear naturally due toa combined action of self-focusing
and modulational instability [1]. When the self-focusing effect compensates for diffraction of
the optical beams, it may support both isolated spatial solitons and periodic soliton-type lat-
tices. The latter can be identified asstationary periodic nonlinear waves, and they include well
studiedcnoidal waves, described by thecn anddn Jacobi elliptic functions as the stationary
solutions of the generalized nonlinear Schrödinger (NLS) equation [1],

i
∂E
∂z

+
∂ 2E
∂x2 +

∂ 2E
∂y2 +n(I)E = 0, (1)

where I ≡ |E|2 is the light intensity. Similar nonlinear waves appear as periodic solutions
of different nonlinear models, including quadratic, Kerr-type saturable, and photorefractive
anisotropic nonlocal models.

In the case of photorefractive, anisotropic and nonlocal model, the nonlinear contribution to
the refractive index in Eq. (1) is given by [24]

n(I) = σΓ
∂ϕ
∂x

, (2)

where the parameterΓ = x2
0κ2n2

0reff E is defined through the effective electro-optic coefficient
reff and externally applied bias electrostatic fieldE . The dimensionless parameterσ = ±1 in-
dicates the polarity of the applied voltage that changes thecharacter of the photorefractive
screening nonlinearity: self-focusing, forσ = +1, or self-defocusing otherwise. The electro-
static potentialϕ of the optically-induced space-charge field pattern satisfies the equation:

∇2
⊥ϕ +∇⊥ϕ∇⊥ ln(1+ I) = ∂x ln(1+ I), (3)

where we use the standard notation∇⊥ for the two-dimensional gradient operator such that
∇2
⊥ = ∂ 2

x + ∂ 2
y , and the intensityI is measured in units of the background (dark) illumination

intensity, required for the formation of spatial solitons in this medium. The physical variables
x̃, ỹ, and z̃ correspond to their dimensionless counterparts as(x̃, ỹ) = x0(x,y) and z̃ = 2κx2

0z,
herex0 is the transverse scale factor andκ = 2πn0/λ is the carrier wave vector with the linear
refractive indexn0. Stationary solutions to the system (1)-(3) are sought in the standard form,
E(x,y,z) = U(x,y)exp(ikz), where the field envelopeU satisfies the equation

−kU +
∂ 2U
∂x2 +

∂ 2U
∂y2 +ΓU

∂ϕ
∂x

= 0. (4)

Following Ref. [14], first we look for periodic solutions of asquare symmetry,U(X,Y) =
U(X +2π,Y +2π), and solve Eqs. (3), (4) using the relaxation technique [24]with the initial
ansatz in the form of a linear periodic mode,

Ulin(X,Y) = A sinX sinY. (5)
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Fig. 1. Comparison between the nonlinear square lattices in self-focusing(b, σ = +1), and
self-defocusing (c,σ =−1) media. The fieldU(x,y) in (a) and refractive index∂xϕ in (b,c)
are shown for three distinct values of the mode amplitude maxU(x,y), or the propagation
constantk, from low (k = −1.9 andk = −2.1) to high (k = −1.2 andk = −2.8) saturation.
Colors are scaled, and the information about the absolute values of the mode amplitude,
power density, and the refractive index modulation is summarized in (d).

We find that at least two distinct families of such solutions bifurcate from the linear wave
Ulin(X,Y), depending on its spatial orientation:a square latticeparallel to thec-axis withX = x
andY = y, anda diamond latticeoriented diagonally, in the latter caseX = (x+ y)/

√
2 and

Y = (x− y)/
√

2. Fig. 1 and Fig. 2 show the field and refractive index for the three values of
the lattice intensity, corresponding to the low, moderate,and high saturation regimes for both
families of periodic modes, respectively. In a general caseΓ 6= 1, the existence region of these
two families occupy a bandk ∈ [−2,Γ−2] with the amplitudeA(k) and power densityP(k)
vanishing in the linear limitk→−2, see Fig. 1(d) and Fig. 2(d). Here the power density is de-
fined as the power of a unit cell,P= 4

∫ ∫ π
0 U2dXdY. The main difference between the solutions

with different orientations comes from the structure of therefractive index, as is clearly seen
comparing Fig. 1(b) and Fig. 2(b). In the regime of high saturation of nonlinearity the regions
with the effective focusing lenses are well separated for the diamond lattice [see Fig. 2(a-d)],
and fuse effectively to vertical lines for the square lattice [see Fig. 1(a-d)]; this happens due to
larger nonlocality in the limit of strong nonlinearity saturation. In Fig. 1(d) and Fig. 2(d), we
plot the maximum and minimum values (extrema) of the refractive index, Extr(∂ϕ/∂x).

The model (2) includes the self-defocusing nonlinearity which can be realized with reversing
the polarity of the bias external field applied to a photorefractive crystal. In this caseσ = −1
and we also find numerically the stationary periodic square lattices, a two-dimensional analog
of the sn-type one-dimensional cnoidal waves. The corresponding families of such periodic
solutions [Fig. 1(c) and Fig. 2(c)] are compared to the four-fold symmetry lattices in a self-
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Fig. 2. Same as in Fig. 1 but for the diamond lattices.

focusing medium. We notice that, while the field distribution is almost identical in both cases,
the refractive index is opposite: the positive maxima in theself-focusing case (focusing lenses)
is inverted forσ =−1, and it represents defocusing lenses (induced potential maxima). Param-
eters of two families forσ = ±1 in Fig. 1(d) and Fig. 2(d) are almost symmetric with respect
to the linear solution atk = −2, however, these two families correspond to different existence
domains.

3. Experimental approach

To demonstrate experimentally both the existence and stability of the nonlinear periodic lattices
generated in anisotropic and nonlocal photorefractive media, we use an experimental setup sim-
ilar to that employed earlier [14], shown in Fig. 3. We use a cwfrequency-doubled Nd:YAG
laser at a wavelength of 532nm. The laser beam is originally expanded in a beam expander
combined with a spatial filter and is subsequently sent through a combination of a quarter wave
plate, a programmable spatial light modulator and a polarizer in order to induce the desired
phase structure onto the beam. In the inset of Fig. 3 two patterns imprinted onto the modula-
tor are depicted, with bright fields representing zero phasechange and dark fields representing
phase change ofπ. The output of the modulator is then imaged by a high numerical aperture
telescope onto the front face of our 20mm long Strontium Barium Niobate (SBN) photorefrac-
tive crystal. The polarization of the beam is orientated parallel to the crystallinec-axis, thus
the beam will experience a strong photorefractive nonlinearity (the electro-optic coefficient
r33 ≈ 200pm/V). The crystal is biased by an externally applied electric field and uniformly
illuminated with a white-light source to control the dark irradiance. Either the front face or the
back face of the crystal can be imaged with a lens onto the CCD-camera. The periodic pattern
generated by the modulator is filtered in its Fourier plane byan iris diaphragm. The input then
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Nd:YAG−Laser
532 nm, 80mW

SLM

QWP

P

CCD

L1 L2 L3

ID
HV

SBN:Ce

BGI

Fig. 3. Experimental setup, QWP – quarter wave plate, SLM – spatial light modulator,
P – polarizer, L – lens, ID – iris diaphragm, BGI – background illumination,HV – High
voltage, CCD – CCD camera. The insets show the chessboard-like phasepatterns for square
(left) and diamond (right) lattices, phase values areπ (black) and 0 (white).

Fig. 4. Experimentally generated light intensity patterns with chessboard-like phase: square
(upper row) and diamond (lower row). (a) linear output without appliedelectric field, (b)
nonlinear output with applied electric field, (d) guiding of a plane wave in photonic lattice.
(c) and (e) demonstrate the far field structure of the lattice and guided waves in (b) and (d)
respectively.

represents a non-diffracting wave, and it experiences robust linear propagation inside the crystal
(at zero bias voltage). When bias voltage is applied onto the crystal, the output intensity pattern
changes and nonlinear index change is induced in the crystal. In order to probe this refractive
index change and establish correspondence to the numericalsimulations of the refractive index,
the modulator can be switched off so that a broad plane wave illuminates the crystal. Due to
the slow response of the photorefractive nonlinearity, we can quickly monitor the output of the
plane wave without modifying the induced refractive index change. The plane wave is guided
by the periodic array of waveguides induced in the medium andthe output intensity pattern of
the guided beam qualitatively maps the induced refractive index modulation.

In Fig. 4, we summarize our experimental results for the four-fold symmetry self-trapped
lattices: square (top) and diamond (bottom) patterns. Bothwere measured at a bias field of
1kV/cm and a total power 1.4µW. The lattices have the period of 65µm and their linear out-
put, i.e. output intensity distribution at zero applied voltage, is shown in Fig. 4(a). The intensity
distribution for square and diamond patterns is nearly the same and only differs in spatial ori-
entation. When bias voltage is applied on the crystal, the lattice transforms into an eigenmode
of its self-induced waveguiding structure and the nonlinear outputs are shown in Fig. 4(b).
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We also monitor the far field (Fourier image) of the lattice wave [see Fig. 4(c)]. In the case
of a four-fold lattice symmetry, the far field is representedby four beams, which also determine
the boundaries of the first Brillouin zone [25]. The intensity of the plane wave guided by the
photonic lattice is shown in Fig. 4(d) and its Fourier image in Fig. 4(e). Accordingly to the
theory of the excitation of Bloch waves in periodic structures [26], the plane wave with zero
transverse wave-vector corresponds to the central high-symmetry point of the first Brillouin
zone [central dominating peak in Fig. 4(e)] and, due to periodicity, it also excites the central
points inhigher-orderbands of the transmission spectrum. Thus, the four side beams, visible
in Fig. 4(e), indicate the central points of thesecond band from the extended Brillouin zone.

At the same time, the output intensity of the guided wave matches the induced nonlinear
refractive index change and can be compared to the profiles ofthe numerically calculated re-
fractive index in Fig. 1 and Fig. 2. One can clearly see the difference in the refractive indices for
two orientations caused by the anisotropy of the photorefractive crystal. Figs. 4(d) demonstrate
this difference in the guiding properties of both lattices.Indeed, for square intensity pattern
in Fig. 4(d,top), neighboring spots fuse into vertical lines because of nonlocality and do so
preferably in one direction because of anisotropy. Corresponding Fourier image demonstrates
two dominant side beams generated by the resonant reflections in the guiding structure, corre-
sponding to the one-dimensional periodic pattern orientedvertically. This experimental result
supports the numerical predictions, compare with Fig. 1(b)for k = −1.5. In contrast, the dia-
mond pattern shows well-pronounced 2D array of waveguidingchannels, see Fig. 4(d,bottom)
and Fig. 2(b), and its Fourier image contains all four side beams.

4. Triangular lattices

If we expand our theoretical analysis to the studies of the nonlinear stationary structures with
the real envelopeU(x,y), then the only type of the phase modulations allowed is the edge-type
π phase jumps that produce the lines of zero intensity in the lattice. The simplest pattern of this
kind with the three-fold symmetry is a triangular lattice. The corresponding linear mode can be
constructed by interference of six plane waves, and it can bepresented in the following form:

U3(X,Y) = A sin
(

2Y/
√

3
)

sin
(

Y/
√

3+X
)

sin
(

Y/
√

3−X
)

, (6)

where we assume that one of the dislocation lines is parallelto theX-axis, so that two orienta-
tions of this pattern with respect to the crystalc-axis in Eq. (4) will correspond to(X,Y) = (x,y)
for the parallel orientation, and, e.g.,(X,Y) = (y,x), for the perpendicular orientation. For the
linear wave, the value ofk is given by∇2

⊥U3/U3 = −16/3≈= −5.3. The periodicity of the re-
fractive index pattern is defined by the intensity distribution, not by the field, and in our notation
this distance between the closest neighboring peaks of the intensity isπ/2.

We find two distinct families of triangular stationary wavesin the self-focusing photorefrac-
tive media from low to high saturation regimes,k > −5.(3). We summarize our numerical and
experimental data in Fig. 5, where we compare numerical results with experimental images, for
both parallel and perpendicular orientations, and for low and high saturations. Experimentally,
for switching from low to high saturation, the total power ofthe lattice-governing beam as well
as the intensity of the background illumination are changed. In the nonlinear output, the lattice
period is about 48µm.

Lattices with parallel orientation display distinct features in their refractive index profile,
namely two out-of-phase lobes of the field distribution, which are the closest neighbors in the
vertical direction, induce joined humps or focusing “islands”. These structures resemble bound
dipole pairs studied earlier in Ref. [24]. In the high saturation regime [see Fig. 5(top)], these
dipole-islands form a pattern with essentially square symmetry, similar to the diamond pattern
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Fig. 5. Theoretical (color) and experimental (grayscale) results fortriangular lattices cre-
ated by interference of six plane waves, see far field images in the top panel. Two distinct
orientations of the triangular lattices are compared (top and middle panel) aswell as low
(left) and high (right) saturation regimes. LW, fieldU(x,y) (color) and intensity (grayscale)
of the lattice wave. GW, calculated profiles of the refractive index (color)and measured
intensity of the guided wave (grayscale).
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discussed above. Experimentally measured intensity of theguided waves confirms this predic-
tion. Therefore, the triangular lattice with the parallel orientation can be seen as a higher-order
generalization of the diamond lattice. Furthermore, comparing far field images of the lattice
and guided waves allow us to conclude that the actual refractive index pattern has thereduced
symmetrywith respect to the lattice. Indeed, instead of six side-beams forming the lattice wave,
there is only four side-beams in the guided wave meaning thatthe induced potential is unable
to trap two side beams (top and bottom), and the guided-mode symmetry is reduced.

In contrast, the triangular lattices oriented perpendicular to the crystal axis display more
complex transition from low to high saturation regimes, seeFig. 5(middle). Now we find that
the “dipoles” are oriented parallel to thec-axis, and the guided wave has an essentially two-
dimensional modulation. Even in the high-saturation regime when the refractive index profile
resembles vertical stripes [cf. the square pattern in Fig. 1], the guided wave still has a visible
modulation in the vertical direction. This is in contrast tothe square pattern shown in Fig. 4
where the guided wave modulation also has the reduced symmetry.

Summarizing our theoretical and experimental results for different patterns with the edge-
type phase dislocations induced in anisotropic photorefractive crystals, we would like to stress
that the combined effect of anisotropy, saturation, and nonlocality can reduce significantly the
symmetry of the optically-induced refractive index patterns. That is the case for the square and
triangular lattices oriented parallel to the crystal axis.Nevertheless, as is found for the diamond
and perpendicular triangular lattices, essentially two-dimensional modulation can be achieved,
so that the isotropic saturable model can be employed to study this type of lattices.

5. Vortex lattices

Expanding the concept of the phase-modulated self-trappednonlinear lattices, we follow the
recent theoretical work [21] and introduce the so-calledvortex lattices. Theoretically, these
nonlinear waves bifurcate from the corresponding linear modes, that can be easily found from
the linear paraxial equation 1 without nonlinear term, i.e.n(I) = 0. A linear superposition of
two azimuthal modes sinϕ and cosϕ with azimuthal coordinateϕ is known to give rise to a
vortex beam with a phase dislocation,∼ x+ iy = r exp(iϕ). Similarly, superimposing two linear
modesUlin from Eq. (5), we obtain a vortex lattice of a square geometry,

Uvs(x,y) = A(sinxsiny+ i cosxcosy). (7)

Numerical procedure to find the families of stationary nonlinear periodic waves with the vortex
structure is similar to that described above. In Fig. 6 we present two examples of such lattices
and compare low (a) and high (b) saturation regimes for the vortex lattice with a diamond-type
intensity pattern. The parameters chosen are close to our experimental situation, in particular
the relatively large periodicity of the lattice results in strong localization of separate lattice sites
for large intensity, see Fig. 6(b,left).

Experimentally, we generate a square-type vortex lattice oriented diagonally to the prin-
cipal axis of the crystal with a period of 57µm. Applying an external DC electric field
(E = 1300V/cm) across the crystal provides the conditions for the formation of spatial soli-
tons of∼ 15µm size and also influences the propagation of the periodic modes. Even at this
high voltage and nonlinearity strength the output of the lattice does not deviate significantly
from the shape of a linear wave [see Fig. 6(c, left)] and the position of the vortices is generally
preserved, as shown in Fig. 6(c, middle). This is due to the fact that the profile of the nonlinear
periodic lattice is fairly close to the corresponding non-diffracting linear wave.

In order to verify that the lattice indeed propagates in a truly nonlinear fashion, we probe
the induced changes to the crystal refractive index. To do this, we send a broad plane-wave
trough the crystal, by switching-off the SLM, and observe the modulation of the plane-wave
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Fig. 6. Diagonally-oriented square vortex lattices in photorefractive self-focusing me-
dia. Numerically calculated stationary solutions are shown forΓ = 11.8 close to linear
diffraction-free wave withk =−0.1 andImax≃ 0.42 in (a), and in higher saturation regime
with k = 1.2 andImax ≃ 1.24 in (b). (c) Experimentally observed vortex lattice with the
period 57µm: left - nonlinear output for bias 1.3kV, middle - magnified top right part of
the lattice interfering with a reference broad beam to monitor the position of thevortex
dislocations (marked by arrows), right - intensity of the guided plane wave launched from
the edge of the first Brillouin zone.

at the output. In the case of four-fold symmetry vortex lattice the generated plane wave is
propagating exactly along the induced waveguides, e.g. in the middle of the first Brillouin zone.
Output intensity distribution of the guided wave is shown inFig. 6(c,right). As clearly seen, the
plane wave is indeed modulated by the induced periodic potential, and we observe guiding of
the probe beam at the maxima of the refractive index. This experimental observation is in a
good agreement with the corresponding numerical simulations [see Fig. 6(a,b)].

The idea of generating vortex lattices as non-diffracting linear waves can be extended further
to include more complex geometries such as hexagonal lattices shown in Fig. 7. Remarkably,
despite the complex internal energy flows, these lattices can be seen as probably the simplest
patterns with the three-fold symmetry created by the interference of only three plane waves [18]
[cf. triangular patterns with six waves Eq. (7)],

Uvh(x,y) = A
[

exp(ix)+exp
(

−ix/2+ i
√

3y/2
)

+exp
(

−ix/2− i
√

3y/2
)]

. (8)

In this type of patterns, the lattice sites create hexagonalclosely packed lattice while the vortex-
type dislocations form a honeycomb lattice with smaller spacing. Even though the vortices in
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Fig. 7. Self-trapped hexagonal pattern with nested honeycomb vortex lattice, stationary so-
lutions in isotropic saturable medium. The soliton constantk = −0.8 and peak intensity
Imax≃ 0.42 in (a), andk = −0.4 andImax≃ 3.58 in high saturation regime in (b). (c) Ex-
perimentally observed hexagonal vortex lattice of a period 22µm: left - nonlinear output
for bias 1.3kV, middle - magnified bottom right part of the lattice interferingwith a refer-
ence beam to identify the position of the vortices (marked by arrows), right - plane wave
launched at the edge of the Brillouin zone and modulated by the induced index lattice.

the lattice are very closely packed, we demonstrate that such lattices can be experimentally
generated and observed for rather small lattice periods, asshown in Fig. 7(c, left) for the pe-
riod of 22µm. The positions of the vortices in the lattice are also well preserved, as seen by
the interferogramm in Fig. 7(c, middle). In order to probe the refractive index modulation in
experiment, we send a plane wave trough the photorefractivecrystal. By fast reprogramming of
the modulator, we sent a plane wave propagating at the edge ofthe Brillouin zone, thus probing
the bang-gap structure of the induced periodic refractive index modulation. In this way, we test
not only the periodic modulations but also the inhomogeneities of the periodic pattern, since
the gap in the transmission spectrum depends strongly on thestructural defects and disorder. In
our experiments, we observe a strong periodic modulation ofthe output wave with the maxima
of the pattern located in between the lattice sites. This indicates an efficient excitation of the
Bloch waves corresponding to the second band of the transmission spectrum. In addition, this
observation proves that the induced nonlinear vortex lattice is homogeneous and stable.

Our theoretical analysis reveals that the vortex lattices possess distinct phase profiles, namely,
instead of a smooth phase twist around each dislocation point, as one would expect for isolated
optical vortices [17], the phase in the lattice experiencessharp jumps, and these phase steps
can be identified as “soft” edge dislocations (with phase difference less thanπ). The number
of such steps depends on the symmetry of the lattice [see Fig.6 and Fig. 7], so that each lattice
site has a fairly well defined phase, as shown by different colors. Indeed, the phase steps for
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the square vortex lattice are equal 2π/4 = π/2, thus there are four colors in the phase profiles
of Fig. 6, dark blue (0), light blue (π/2), yellow (π), and red (3π/2). In contrast, the phase
step for the hexagonal lattice is 2π/3 (each vortex is “built” with three lattice sites), so there
is almost no yellow. This phase behavior resembles the structure of soliton clusters [27] with
different azimuthal numbers [28], as well as the structure of discrete vortex solitons in periodic
lattices [29, 30]. Furthermore, as we discussed earlier in Ref. [21], the intensity profiles of the
vortex lattices do not differ significantly in the cases of a linear medium, and self-focusing or
self-defocusing nonlinear media, in contrast to the brightand dark vortex solitons. Therefore,
the vortex lattices presented above provide a link between the singular beams in linear and
nonlinear bulk media, as well as discrete vortices in external periodic potentials [17].

6. Conclusions

We have studied theoretically and generated experimentally, in a biased photorefractive crys-
tal, two-dimensional nonlinear photonic lattices of several different symmetries. Employing a
nonlocal anisotropic nonlinear model, we have described the structure and properties of the
self-trapped spatially-periodic nonlinear photonic lattices with out-of-phase neighboring sites,
as well as chessboard-like and triangular nonlinear patterns. For the triangular lattices, we have
found two distinct classes of optically-induced refractive index patterns with one of the edge
dislocation lines oriented parallel or perpendicular to thec-axis of the crystal. We have demon-
strated that the highly anisotropic periodic refractive index induced by the lattices differs sig-
nificantly from its isotropic counterpart, and it depends strongly on the lattice orientation. We
have expanded our theoretical approach to the periodic lattices with nested arrays of vortex-
type phase dislocations, or vortex lattices, and have generated experimentally vortex lattices
with two different symmetries. The square vortex lattice acquires a diamond-like intensity pat-
tern, while for the six-fold symmetry we have demonstrated that a hexagonal intensity pattern
can be generated with the vortices arranged in a honeycomb lattice.
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