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Experimental reconstruction of nonlocal response
of thermal nonlinear optical media
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We study experimentally and theoretically the nonlocal response of a medium with thermal nonlinearity and
show that despite its inherently infinite range it can be accurately characterized by a well-defined nonlocal
response function. We retrieve the shape of this function and analyze its transformation with the change of
boundaries. © 2007 Optical Society of America
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Optical nonlinearity is an important property of a
material that characterizes its response to an exter-
nal electromagnetic field. It is usually accepted that
the material response at a certain point depends only
on the value of the field at that point. However, the
response of many materials is spatially nonlocal. In a
nonlocal medium the nonlinear response induced at a
certain point is carried away to the surrounding re-
gions. The size of this extended region determines
the range of nonlocality. In materials where the non-
linearity appears as a result of, e.g., diffusion pro-
cesses, the nonlocal region expands to microscopic or
even macroscopic scales.

The physical processes leading to a long-range non-
local nonlinear response are rather diverse, including
plasma heating and ionization [1], atomic diffusion
[2], and drift and/or diffusion of photoexcited carriers
in photorefractive media [3,4]. Similarly, the heat
conduction in materials with thermal nonlinearity
[5,6] results in a spatially nonlocal change of the op-
tical refractive index often termed a “response with
an infinite range of nonlocality” [7]. The physics of
these nonlocal mechanisms is very different; how-
ever, the description of the nonlinear response can be
unified, provided that the nonlinear change of the re-
fractive index, �n�x ,y�, is expressed by a nonlocal re-
sponse function R�x ,y� determining the degree of
nonlocality [8,9]:

�n�x,y� =� � �R�x − x�,y − y��I�x�,y��dx�dy�, �1�

where I�x ,y� is the light intensity at the point �x ,y�
and � is a normalization coefficient, such that
�R�x ,y�dxdy=1. Obviously, in this approach the
shape and spatial extent of the nonlocal response
function are the only characteristics that determine
the light propagation in such materials. In this Let-
ter, we study experimentally and theoretically the
characteristics of the nonlocal response of a thermal
nonlinear liquid as a medium with an infinite extent
of nonlocality. We demonstrate that, despite being in-

herently dependent on boundaries, the response of
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finite-size thermal medium can be accurately de-
scribed by the generic spatially invariant nonlocal re-
lation Eq. (1) with a well-defined, localized nonlocal
response function dependent only on sample geom-
etry.

To determine experimentally the characteristics of
the nonlocal response function we use a pump–probe
technique to induce a refractive index modulation in
a weakly absorbing liquid. The intensity-dependent
refractive index change of such a medium results
from heating of the liquid by the absorbed laser light,
volume expansion, and subsequent index change via
the thermo-optic effect. To induce an index change,
the wavelength of the pump light has to be partially
absorbed by the sample. On the other hand, the
sample should not be affected by the probe beam. To
achieve such conditions, we use a pump laser at
532 nm and probe at 633 nm (see Fig. 1), where the
intensity of the probe beam is several orders of mag-
nitude lower than the pump intensity. Both laser
beams pass through a 2 mm thick glass cell filled

Fig. 1. (Color online) Experimental setup: F, filter; SF,
spatial filter; M, mirrors; L, lenses; BC, beam-splitter cube;
P, polarizer; T, telescope; � /2, half-wave plate; A, attenua-

tor. Inset, ethylene glycol transmission spectrum.
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with liquid (ethylene glycol or ethanol) dyed with io-
dine. The iodine allows for higher absorption of the
green pump beam than for the red probe (Fig. 1, in-
set).

For reconstruction of the induced refractive index
distribution the cell is placed in the object arm of an
adaptive interferometer [10]. It contains a program-
mable phase modulator as a controllable-phase mir-
ror in a diffraction-grating regime. The modulator in-
troduces a desired phase shift in the first diffraction
order, which is selected by a spatial filter. The pump
beam is combined with the probe by a pair of polar-
izing beam-splitter cubes. The cell is subsequently
imaged onto a high-resolution CCD camera.

This interferometric technique allows one to quan-
titatively determine the spatial distribution of the in-
duced refractive index change, �n�x ,y�, providing
that the probe beam does not change its shape inside
the cell. This condition is met in the thin cell. The
subsequent phase reconstruction procedure is a par-
ticular realization of the four-frame interferometric
technique [11]. In our experiment a set of four inter-
ferograms Ij�x ,y� �j=1. . .4� is recorded (Fig. 2, right
inset) for phase shifts of �j−1�� /2 between the object
and the reference beams. The phase profile in the ob-
ject arm of the interferometer can then be recon-
structed according to the relation ��x ,y�=tan−1��I4
−I2� / �I1−I3��. The experiments were performed at
different beam positions inside the sample away from
the transverse boundaries.

The measured maximum change of the refractive
index versus the absorbed laser power, shown in Fig.
2(a), is a linear dependence and agrees with earlier
theoretical predictions [6]. The retrieved two-
dimensional (2D) nonlinear refractive index �n�x ,y�
is shown in Figs. 2(b) and 2(c) as both 2D pseudocolor
and 3D plots for ethylene glycol and ethanol, respec-
tively. For comparison, in Fig. 2(a), left inset, we
show the intensity profile of the pump laser I0�x ,y�,
which is clearly much narrower than the induced re-

Fig. 2. (Color online) (a) Dependence of peak refractive in-
dex change on absorbed power. Right inset, measured in-
terference pattern (ethylene glycol, 2 mW); left inset, laser
beam profile. (b), (c) Reconstructed refractive index change

profiles in ethylene glycol and ethanol at 2 mW.
sponse. In the case of ethanol, the induced refractive
index is strongly asymmetric, indicating the presence
of convection in the sample [6]. The convection effec-
tively carries upward the absorbed heat, reducing the
size of the nonlocal response in the horizontal direc-
tion.

Having the index distribution and the pump-beam
intensity profile, we determine the nonlocal response
function R�x ,y�. This is essentially an inverse prob-
lem [12], which is solved iteratively by Fourier decon-
volution as R�x ,y�=F−1�F��n�x ,y�� /F�I�x ,y���. The
dependence of the full width at half-maximum
(FWHM) of the response function in the horizontal x
direction for both liquids is shown in Fig. 3(a). In the
case of ethylene glycol the width of the response func-
tion is independent of power, which is expected, as
the response function should not depend on the width
or intensity of the input beam. On the other hand,
the width of the response function is reduced with
power in the case of ethanol. This is a consequence of
the convection process, being power dependent. At
low powers where no convection is present the re-
sponse function has the same profile for both liquids.
To understand why these two significantly different
materials have the same response function (in the
absence of convection) we consider the heat equation
in a medium with thermal conductivity k and linear
absorption �,

k�2T�x,y,z� = − �I�x,y�, �2�

where T�x ,y ,z� is the temperature distribution in the
sample and �2 is the Laplacian. The temperature dis-
tribution inside the sample determines the induced
refractive index change by �n�x ,y ,z�= �dn /dT��T,
where dn /dT is the thermo-optic coefficient of the
material. For boundaries with constant temperature
the solution of heat equation (2) can be written as
T�x ,y ,z�=� /k���I�x� ,y��G�x ,x� ,y ,y� ,z ,z��dx�dy�dz�,

Fig. 3. (Color online) (a) Dependence of the response func-
tion FWHM �wx� on absorbed power. (b), (c) Reconstructed
response function profile (b) and comparison of the mea-
sured (solid line) and calculated (dashed) response function

profile (c) for ethylene glycol.
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where G�x ,x� ,y ,y� ,z ,z�� is a Green function that de-
pends on the geometry and boundary conditions only.
Now one can remove the z dependence from the re-
fractive index change �n�x ,y ,z� by integrating it
along the sample length L. Then we obtain �n�x ,y�
= �dn /dT� /L�0

LT�x ,y ,z�dz. Therefore the response
function calculated by inverting relation Eq. (1) in-
deed depends only on the geometry of the sample and
the boundary conditions, but not on the properties of
the medium, confirming our experimental observa-
tions. In Fig. 3(b) and 3(c) we show the spatial profile
of the retrieved nonlocal response function R�x ,y�.
The agreement with the profile calculated by using
the heat equation (2) is excellent, as shown in Fig.
3(c). The above representation also applies for the
case of an asymmetric boundary condition leading to
an asymmetric response function R�x ,y�.

The dependence of thermal nonlinearity on bound-
aries has serious consequences for the index mea-
surements. Typically, in the context of beam propaga-
tion in a thick thermal sample only the transverse
geometry is considered. In a thick sample the slow
variation of the beam intensity along the propagation
direction does not lead to any appreciable tempera-
ture gradient or heat flow in this direction. As a re-
sult, the nonlocal response is a function of the trans-
verse coordinates only. The situation becomes more
complex when a thin sample is used (as in our experi-
ments). In this case the front and back facets of the
cell induce longitudinal heat flow, affecting the final
temperature and refractive index distributions,
which become a function of three spatial coordinates.
To assess the impact of this effect on the nonlocal re-
sponse function we solved numerically Eq. (2) assum-
ing a Gaussian pump beam as a heat source. In the
simulations the transverse dimensions of the sample
were kept constant while the thickness was varied.
Figure 4 shows the calculated width of the response

Fig. 4. (Color online) Calculated width of the response
function (top) and corresponding maximum of the refrac-
tive index change (bottom) as a function of the cell thick-
ness. (a)–(c) Radical profiles of the response function for
thicknesses of 2, 4, and 50 mm, respectively.
function (top) and corresponding maximum refractive
index change (bottom) versus the sample thickness.
It is clear that for thin samples the heat flow toward
the back and front boundaries strongly affects the
measured index distribution, thus decreasing the
range of nonlocality in transverse direction.

On the other hand, when the thickness of the
sample increases, the effect of longitudinal heat flow
becomes less pronounced until the response is com-
pletely determined by the transverse boundaries.
However, in all cases the nonlocality can still be well
described by the generic convolution model, Eq. (1).
In fact this approximation is more accurate for a thin
sample when the influence of transverse boundaries
on the heat flow is weaker. The insets in Fig. 4 depict
profiles of the response function calculated for thick-
nesses of 2, 4, and 50 mm. The increase of the extent
of nonlocality and change of its shape with sample
thickness is clearly visible.

In conclusion, we have demonstrated that nonlocal
nonlinearity of a thermal medium can be described
accurately by a finite-extent nonlocal response func-
tion even though the thermal effect is of an infinite
range. The response function is independent of the
material parameters and is determined by the geom-
etry of the sample. Therefore control of the remote
boundaries provides an efficient tool for affecting the
propagation of beams in thermal nonlinear media
[13].
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