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Abstract

In this work we numerically compare the interaction of optical vortices (OVs)
in self-defocusing and self-focusing Kerr nonlinear media. We find that the
basic scenarios (attraction/repulsion, translation/rotation vs. background)
in the interaction of two and three vortices with equal and alternative topo-
logical charges (TCs) are the same in both media. However, the vortex
dynamics under self-focusing conditions is influenced by the reshaping of
the surrounding part of the background. Square structure of OVs with al-
ternating TCs is found to be stable with respect to the vortex positions
in self-focusing media. This elementary cell is successfully generalized in a
large square array of OVs with alternative TCs which brings ordering in the
multiple filamentation of the background beam in self-focusing conditions.
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1. Introduction

The presence of phase dislocations in the wavefront of a light beam de-
termines its phase and intensity structure. Since the phase becomes indeter-
minate at singularity points, both the real and the imaginary parts of the
field amplitude (i.e. also the field intensity) vanish [1]. An isolated point
singularity with a screw-type phase distribution is associated with an optical
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vortex (OV). The characteristic helical phase profiles of OVs are described
by exp(imϕ) multipliers, where ϕ is the azimuthal coordinate and the integer
number m is their topological charge (TC). The study of OVs has received
special attention in recent years not only because of their rich linear and
nonlinear dynamics [2, 3, 4, 5, 6, 7], but also due to a variety of potential
applications including particle micro-manipulation [8], imaging [9], interfer-
ometry [10], and quantum information [11].

Singular nonlinear optics [12] will benefit from ultrashort pulses car-
rying spatial phase dislocations, since such pulses exhibit peak intensities
high enough to access optical nonlinearities in many materials. The meth-
ods for creating OVs (and other singular beams) in femtosecond pulses are
already established. Possible approaches include optical systems utilizing
computer generated holograms or a spatial light modulator aligned within
optical schemes with spatial dispersion compensation: a dispersionless 4f -
[13, 14, 15] or 2f − 2f -setup [16], or a double-pass grating compressor [13].
An achromatic vortex lens comprising pair of suitable adjacent optical glasses
whose interface resembles a helicoid seems to be able to create an OV free
of topological dispersion [17]. Polychromatic OVs (and OV solitons) are also
generated by uniaxial crystals [18, 19].

Despite the large activities in defocusing nonlinear materials, the dynam-
ics of beams with such complex phase structure in self-focusing nonlinear
media has remained weakly explored. As self-focusing materials are more
common in nature, this is somewhat surprising and could be explained by
the intrinsic beams’ azimuthal and modulational instabilities [20, 21, 22, 23].
Only recently stable spiraling bound state of two vortices of the same TC
are found in nonlocal self-focusing nonlinear media [24]. In self-defocusing
Kerr media, in contrast, the basic interaction scenarios between OVs are
well understood (see e.g. [2, 3, 25]) and stable vortex lattices are demon-
strated [26, 27, 28]. In this work we model numerically and compare the
interaction of optical vortices in local self-defocusing and self-focusing Kerr
nonlinear media searching for rotational and translational rigid OV lattice
which, under self-focusing conditions, can bring ordering in the multiple fila-
mentation of the background beam and can provide the necessary refractive
index modulation for off-site guiding of ordered probe beams.
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2. Numerical procedure

The numerical simulations of the OVs propagation along the nonlin-
ear medium (NLM) are carried out using the (2+1)-dimensional nonlinear
Schrödinger equation (NLSE)

i
∂A

∂(z/LDiff )
+

1

2
∆T A + sign(n2)

LDiff

LNL

|A|2A = 0, (1)

which accounts for the evolution of the slowly-varying optical beam enve-
lope A influenced by nonlinearity and diffraction. In the NLSE ∆T is the
transverse part of the Laplace operator whereas LDiff = kr2

0 and LNL =
1/(k|n2|I) stand for the diffraction and nonlinear length of the beam and
sign(n2) = ±1 for self-focusing and self-defocusing Kerr nonlinearity respec-
tively. (sign(n2) = 1 and LDiff = LNL is the necessary condition for bright
spatial soliton formation). In the above notations, k is the wave number in
the medium and I is the peak field intensity. The transverse spatial coordi-
nates (e.g. x and y) are normalized to the OV beam width r0. We solved
the NLSE by means of the beam propagation method with a computational
window spanning over 1024 × 1024 grid points. The input OV is described
by

A = A0B(r) tanh(r/r0) exp(imϕ) (2)

where A0 is the peak field amplitude, B(r) is the super-Gaussian bright
background carrying the dark beams (B(r) = exp{−(r2/r2

BG)8}; rBG =
0.64× 512pix.), tanh(r/r0) describes the OV profile (r0 = 14.7pix.) and the
integer m is the OV TC. The background beam was chosen sufficiently broad
to avoid any interaction of the OVs with its gradients. As a standard test
we modelled the formation of a single-charged optical vortex soliton (OVS)
(see Fig. 1). If not stated otherwise, the intensity in the simulations is kept
equal to that needed to form a charge-one OVS (I = IOV

SOL).

3. Vortex pair interaction

It is known that a pair of singly-charged OVs with the same sign of the
TCs rotate on the background and repel each other, whereas OVs of opposite
TCs attract each other (eventually annihilating) and translate with respect
to the background. We will first concentrate on the comparison between the
vortex-pair dynamics in self-focusing (n2 > 0) and self-defocusing (n2 < 0)
NLM (see Figs. 2 and 3) for equal TCs. Due to background-beam instability
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 Figure 1: Cross-section of the input OV beam (solid curve) and the fundamental OV
soliton formed at z = 4LNL (open circles).

and self-focusing, a valid comparison between the two nonlinear regimes is
limited to propagation lengths z = 2LNL as indicated by vertical dotted
lines in Fig. 2. The evolution of the OVs in the self-defocusing regime is
typically followed up to z = 5LNL. The correct identification of the position
of the screw phase dislocation within the dark OV core is done by inspecting
the OV phase profiles. In Fig. 2 we show the vortex pair rotation angle
(a) and the distance between the vortices (b) as a function of the nonlinear
propagation length z/LNL. Curves referring to the self-focusing regime of
propagation are easily identified by their termination prior/at z/LNL = 2
(see the vertical dotted line). Open circles and dashed curves refer to self-
defocusing nonlinearity, whereas solid circles and solid curves correspond to
n2 > 0. Initial vortex-to-vortex distances of 42pix. and 28pix. are considered.
In the self-defocusing regime, as expected, the closer the vortices the stronger
their interaction. This is especially well pronounced in the OV pair rotation
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 Figure 2: Equal TCs. Vortex pair rotation angle (a) and distance between the vortices (b)

vs. nonlinear propagation length. Open circles and dashed lines refer to self-defocusing
nonlinearity, solid circles and solid curves correspond to n2 > 0. Initial vortex-to-vortex
distances 42pix. (open/solid circles) and 28pix. (curves with no symbols).

angle (Fig. 2a, dashed curves) but can be also recognized in the relative
increase of the vortex-to-vortex distance (Fig. 2b, dashed curves). The first
impression from the vortex dynamics in the self-focusing regime is that, under
comparable initial conditions, it is initially much stronger as compared to
the dynamics in the case of n2 < 0. This behaviour, particularly visible in
the vortex-to-vortex distance vs. nonlinear propagation length, we attribute
to the fact that for n2 > 0 the vortex cores spread out much stronger as
compared to the linear regime, overlap considerably and the interaction is
stronger (see Fig. 3). The same is true during the initial stage of the OV pair
rotation (see Fig. 2a) but , in contrast to the case in [24], the background-
beam modulation and self-focusing at larger propagation distances (see the
right frame in Fig. 3) forces the rotation speed to decrease and even to
reverse (Fig. 2a, pure solid curve). The conclusion which can be drawn at
this point for equally charged OVs is that under comparable initial conditions
the change in the sign of the nonlinearity from negative to positive increases
the OV pair dynamics keeping the general interaction scenario unchanged.

It is known that in self-defocusing nonlinear media OVs of opposite TCs
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Figure 3: OV pairs of equal TCs at z = 2LNL for negative (left) and positive Kerr
nonlinearity (right). Initial vortex-to-vortex distance 42pix. The effects of self-focusing
require a bigger dynamic range for the right panel, in this case 2.5 times. In reality the
intensity of the background in both cases would be comparable. Some 3.8% of the total
computational area are shown.

attract each other (eventually annihilating at a certain propagation distance)
and translate on the background parallel to the imaginary line connecting
the vortex cores. The numerical results shown in Fig. 4a for n2 < 0 clearly
confirm that the vortex pair translation with respect to the background in-
creases linearly with the propagation distance. The transverse velocity of
the vortex pair is higher for initially more closely spaced OVs. We also find
the vortex-to-vortex distance to decrease monotonically at a rate that de-
pends on the reciprocal value of the vortex initial separation (see the dashed
curves in Fig. 4b). The most striking difference observed numerically in
the self-focusing case under comparable initial conditions is that the oppo-
sitely charged OVs drift rapidly in opposite directions (see the solid curves
in Fig. 4b). The calculated curves end at propagation distances at which
the self-focusing peak (lying symmetrically with respect to the OVs, see the
right frame in Fig. 5) reaches 8 times the initial field amplitude. This peak
strongly modulates the background between the OVs and, prevailing over
the pure topological interaction, effectively pushes the OVs away. The steep
increase in the vortex-to-vortex separation should be expected to saturate at
later evolution stages due to the surrounding self-focusing bright structure
(Fig. 5, right frame), however we refrained from continuing the numerical cal-
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 Figure 4: Opposite TCs. Vortex pair shift (a) and vortex-to-vortex distance (b) vs. nonlin-

ear propagation length. Open circles and dashed lines refer to self-defocusing nonlinearity,
solid circles and solid curves correspond to n2 > 0. Initial vortex-to-vortex distances
42pix. (open/solid circles) and 28pix. (curves with no symbols).

culation since the used slowly-varying amplitude approximation of the NLSE
is invalid in this regime. The initial tendency in the optical vortex shift (par-
allel translation) vs. propagation length at n2 > 0 is qualitatively similar to
the behaviour in the self-defocusing case, see the solid curves in Fig. 4a. At
later stages however, the widely spaced OVs, which further are pushed apart
by the self-focusing peak in between, start interacting with the surrounding
self-focusing ellipse-like structure and the shift of the OV pair decreases and
can even reverse. At this stage one can conclude that the general tendency
that the closer the OVs the stronger their interaction does not depend on the
particular sign of the Kerr nonlinearity. The bright structures self-focusing
on the background beam have profound impact on the OV pair dynamics at
n2 > 0.

4. Linear structures of optical vortices

As a next step we modeled the behaviour of a linear structure of three
equidistant single-charged OVs. The obtained numerical data for equally-

7



  
 

Figure 5: Opposite TCs. OV pairs at z = 1.75LNL for negative (left) and positive Kerr
nonlinearity (right). Initial vortex-to-vortex distances 42pix. For better visibility the gray
scale for the right frame corresponds to a 2.5 times bigger dynamic range. Some 3.8% of
the total computational area are shown.

charged OVs are summarized in Figs. 6 and 7, whereas Figs. 8 and 9 show the
results for alternating TCs. The comparison of the data in Fig. 2a and Fig. 6a
shows that the rotation of the linear array of three OVs is slower as compared
to the case of an OV pair when the TCs are equal. This is true for n2 > 0 and
n2 < 0 and for both inter-vortex distances used. Because of the influence of
the relatively complicated self-focusing surrounding structure (see the right
frame in Fig. 7) there is again a tendency of a decrease (and even a reversing
sign) of the rotation speed vs. propagation length. For n2 < 0 the repulsion
of two and three equally charged OVs is almost linear up to z = 2LNL. At
5LNL the repulsion is the same for both signs of the nonlinearities (within
the 1 − pix. resolution in the calculated phase distributions). For n2 > 0
the repulsion of the OV pair is again stronger than the one between the
three OVs. Again one can conclude that, in general, in both self-focusing
and defocusing media the dynamics of three aligned equally-charged OVs is
qualitatively similar to this of the OV pair of equal TCs.

The new behaviour observed with three OVs of alternative TCs is that
the modulation and self-focusing of the background is so strong (see the lower
left frame in Fig. 9) that the attraction between the two OVs is completely
suppressed for n2 < 0 and reversed to repulsion for n2 > 0 (see Fig. 8b,
solid curves). In case of a structure with an initial inter-vortex distance of
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 Figure 6: Three OVs with equal TCs. Rotation angle (a) and distance between two of

the vortices (b) vs. nonlinear propagation length. Open circles and dashed lines refer
to self-defocusing nonlinearity, solid circles and solid curves correspond to n2 > 0. Initial
vortex-to-vortex distances 42pix. (open/solid circles) and 28pix. (curves with no symbols).

42pix., for n2 > 0, the rotational angle is even reversed in sign (see the solid
curve with solid dots in Fig. 8a). Interestingly, for the shorter initial inter-
vortex distance of 28pix. we numerically observed clear annihilation of two of
the oppositely-charged OVs. The intensity and phase profiles of the resulting
dark structures are shown in Fig. 9. The arrows in the phase profiles indicate
the position of the only OV surviving the vortex pair annihilation. Besides
the effects of attraction/repulsion and shift/rotation, it is interesting to see
whether for alternating TCs there is a change in the rotation speed of this
simple structure for n2 > 0 as expected for n2 < 0. Let us therefore inspect
the results for n2 > 0 more closely. For the linear structure of three OVs of
equal TCs, the rotation angle at z/LNL = 1.5 is 22◦ for the initial 42− pix.
vortex-to-vortex distance and 20.5◦ for the 28 − pix. initial distance. The
respective values of the rotation angle for the structure with alternating TCs
are −4.5◦ for the 42 − pix. structure and 16.5◦ for the 28 − pix. structure.
This confirms the qualitative expectation that the TC of the middle OV
has a noticeable influence on the rotation dynamics of the ensemble also for
self-focusing conditions.
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Figure 7: Equal TCs. Three OVs at z = 1.75LNL for negative (left) and positive Kerr
nonlinearity (right). Initial vortex-to-vortex distances 42pix. For better visibility the gray
scale for the right frame corresponds to a 2.5 times bigger dynamic range. Some 4.6% of
the total computational area are shown.

When the middle OV is doubly-charged (and its TC is opposite to those
of the other vortices), the central vortex is not in its ground state. It decays
into two singly-charged OVs of the same TC which strongly repel each other.
The oppositely-charged OVs start to interact pairwise while translating in
parallel on the background beam. This is observed to be well pronounced
when following the dynamics of the structure in a self-defocusing NLM. The
results shown in the upper row in Fig. 10 clearly demonstrate this at z =
5LNL. For self-focusing conditions (Fig. 10, lower row), the vortex dynamics
is qualitatively similar, although it is strongly influenced by self-focusing of
the surrounding structure. This is evident when comparing the phase profiles
of the structures (see Fig. 10, right column), in which the arrows indicate
the positions of the vortices. For n2 > 0 annihilation of the OV pairs was
observed at a propagation distance of z ∼ 2LNL. All data shown in Fig. 10
refer to an initial OV-to-OV distance of 42pix. For the shorter inter-vortex
distance of 28pix., the observed behavior is qualitatively the same. However,
the repulsion between the sub-products of the decayed central OV clearly
dominates the pairwise interaction of the OVs, including annihilation for
n2 > 0 taking place at z ∼ 1.25LNL.
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 Figure 8: Three in-line OVs with alternating TCs. Rotation angle (a) and distance between
the two outer vortices (b) vs. nonlinear propagation length. Open circles and dashed lines
refer to self-defocusing nonlinearity, solid circles and solid curves correspond to n2 > 0.
Initial vortex structure length 2× 42pix. (open/solid circles) and 2× 28pix. (no symbols).

5. Square optical vortex array

The next more complicated configuration, namely four OVs situated in
the apices of a square with alternating TCs of the OVs, is referred to as
an optical leopard [29]. The nonlinear evolution of this configuration in self-
defocusing Kerr NLM is well described in [30]. It has been found there that
if such an ensemble is considered as consisting of two OV pairs with zero
effective TC, after some nonlinear propagation length the two pairs of OVs
exchange their interaction partners. In this way it has been shown that the
coherent interaction of OVSs is elastic. In Fig. 11 we show the intensity
and phase profile of the ensemble of four OVs with alternative TCs after a
propagation distance z = 1LNL in a self-focusing NLM. Within an accuracy
of 1pix. in estimating the vortex positions, we found that the vortices keep
their initial positions and the influence of self-focusing of the background in a
shamrock-like structure prevails the pairwise topological interaction observed
in self-defocusing NLM.

The rigid behaviour of this ensemble motivated us to consider it as an
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Figure 9: Alternating TCs. Three OVs at z = 1.75LNL for negative (upper row) and
positive Kerr nonlinearity (lower row). Initial vortex-to-vortex distances 42pix. For better
visibility the gray scale for the lower left frame is 2.5 times higher than this for the upper
left frame. Some 4.6% of the total computational area are shown.

elementary cell of a large square array of OVs with alternating TCs which,
if stable, could bring ordering, for instance, in the filamentation of intense
laser beams in self-focusing NLM. Previous experimental and numerical re-
sults in self-defocusing NLM showed [27] that such a square optical lattice
is stable and is able to induce in the nonlinear medium periodic modulation
of the refractive index, which is sufficiently strong to force a probe beam
to diffract by it. In view of the similar basic interaction scenarios for OVs
in self-focusing and self-defocusing NLM (attraction/repulsion, transverse
translation/rotation) and the results shown in Fig. 11, it is intriguing to see
whether the stability of the large square lattice of OVs holds also under self-
focusing conditions. In Fig. 12 we show numerical results obtained with a
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large array of some 600 OVs ordered in a square matrix with inter-vortex
distance of 42pix. Fig. 12a demonstrates the typical texture-like structure
formed on the initially flat-toped background beam after a linear propaga-
tion to z = 5LDiff . In our view this structure is a result of the paarwise
interaction of oppositely charged OVs. The background beam intensity in
the nonlinear regimes was set to I = 1.268IOV

SOL in order to compensate for
the reduction in the effective intensity between the vortices due to the over-
lapping of their wings. (This coefficient depends on the particular ratio of
the OV-to-OV distance to the individual OV beam width r0). Under self-
defocusing conditions (Fig. 12b) the distance between the OVs in the central
part of the array, over several grating periods, was measured to be exactly
42pix. as set initially. In the self-defocusing wings of the background beam
the vortex-to-vortex distance was found to increase up to ∼ 60pix. due to
the interaction with the finite background. These estimations were made by
inspecting the phase profile of the vortex array. In order to measure ade-
quately the position of the self-focusing bright peaks (Fig. 12c) we stretched
the greyscale of the computed image 10 times. We measured that the dis-
tances between the bright filaments are exactly 42pix. at z = 1.5LNL, even
in the peripheral part of the background beam. This is identical to the ini-
tial OV-to-OV distance. In order to get a basis for comparison, the results
shown in Fig. 12 use the same grey scales. In this mode of the presentation
one can see that self-focusing is weaker in the peripheral areas as a result of
lower background intensity. In addition, the low-intensity cross-sections of
the self-focused filaments are slightly elliptical, whereas their high-intensity
cross sections are circular. The weak ellipticity in the low-intensity cross
sections of the filaments we attribute to the texture-like structure resulting
from the OV topological interactions (Fig. 12a). In case of an OV lattice of
a smaller grating constant (28pix.) we observed a stronger texture-like struc-
ture in the linear regime. During self-focusing of the beam we observed the
development of ordered sub-structures in self-focusing filaments. In our view
this violates the slowly varying envelope approximation and we will refrain
to speculate on it.

6. Conclusion

The behaviour of optical vortices and optical vortex arrays has been re-
viewed and investigated in both self-defocusing and self-focusing Kerr nonlin-
ear media. The interaction scenarios between two vortices (attraction/repulsion,
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transverse shift/rotation) in both cases are qualitatively similar. However,
in the self-focusing regime the interaction (repulsion, rotation, shift) is en-
hanced and in some cases even reversed in sign. This can be explained by
the influence of reshaping the background beam, which then affects the in-
teraction between the vortices significantly.

Those basic results were generalized to more complex structures, namely
three in a line vortices and for vortices on a square. It was found that the
square lattice array of vortices with alternating topological charge will de-
velop into an ordered structure of filaments in the self-focusing case. The
mutual attraction of adjacent vortices with different topological charge in
conjunction with the reshaping of the background beam due to self-focusing
gives rise to a stable propagation of the lattice-like structure with the bright
filaments located off-site in between the vortex cores. Although the model
presented here does not include any temporal effects and others like satu-
ration of the nonlinearity (i.e. via ionization), we believe that vortices can
in principle be used as a means of spatial control in the filamentation of
high-intense laser pulses in Kerr nonlinear media.
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Figure 10: Middle OV double-charged oppositely to the side-lying OVs. Intensity (left)
and phase profiles (right) at z = 5LNL for negative (upper row) and at z = 1.5LNL for
positive Kerr nonlinearity (lower row). Initial vortex-to-vortex distances 42pix. The gray
scale for the lower left frame is 2 times higher than this for the upper left frame. The
arrows in the phase profiles indicate the cores of the vortices. Some 4.6% of the total
computational area are shown.
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Figure 11: Four OVs with alternating TCs. Intensity (left) and phase profile (right) at
z = 1LNL for positive Kerr nonlinearity. Initial vortex-to-vortex distances 42pix. Some
3.8% of the total computational area are shown.

   
 

a b c 
Figure 12: Large rectangular array of OVs at OV-to-OV distance 42pix. Linear evolution
(a) and propagation in self-defocusing regime (b) up to z = 5LNL. Ordered multiple
filaments created off-site with respect to the vortex array in self-focusing regime at z =
1.5LNL (c). In the nonlinear regimes I = 1.268IOV

SOL. 40% of the total computational area
are shown.
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