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Abstract

In this work we present a matrix analysis of the sensitivity of otherwise
dispersionless 4f and 2f -2f optical systems to misalignments resulting in
spatio-temporal distortions of ultrashort laser pulses. Special attention is
given to the possible creation of a pulse-front tilt (PFT). The exact analyti-
cal expression for the second-harmonic interferometric autocorrelation signal
of an inverted-field autocorrelator is calculated. It confirms the effective
broadening of the ultrashort pulses in the presence of an arbitrary PFT .
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1. Introduction

The pulse front tilt (PFT) is a specific spatio-temporal distortion of (ul-
tra)fast optical pulses - the pulse front is tilted with respect to the direction
of beam/pulse propagation, while its phase front remains perpendicular to
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it. The PFT is one of the major issues in chirped pulse amplification sys-
tems [1, 2, 3]. Most commonly this aberration is caused by misaligned pulse
stretchers and/or compressors. PFT can also occur when femtosecond pulses
are focused [4, 5] or passed through birefrigent crystals [6]. Generally, PFT
leads to an undesired increase of the effective pulse duration. Even the over-
lap of femtosecond pulses is not trivial anymore [7]. However, it should also
be mentioned that in some cases the PFT is in fact useful. When the lifetime
of an amplifying medium is shorter than the driving laser pulse, pump pulses
with tilted pulse fronts offer the possibility to progressively deposit the pump
energy along the gain medium at a speed, equal to the transient speed of the
amplified wave ( [8, 9, 10, 11, 12], just to mention a few). Another exam-
ple is the efficient phase-matched terahertz radiation generation by optical
rectification of femtosecond laser pulses [13, 14] resulting in near-single-cycle
terahertz pulses recently reported in the literature [15, 16].

Specific diagnostic techniques for detecting and measuring PFT are avail-
able: tilted pulse front autocorrelation [17, 18, 19], spectrally resolved inter-
ferometry [20], and Grating-Eliminated No-nonsense Observation of Ultra-
short Incident Laser Light E-fields (GRENOUILLE) [21]. The usual inter-
ferometric second-harmonic autocorrelators based on Michelson- or Mach-
Zehnder-type schemes are not able to detect PFT unless one of the beams/pulses
is inverted in space [22, 23]. In such inverted-field autocorrelators the de-
lay between the pulses depends also on the particular transverse coordinate
across the beam and, hence, the recorded autocorrelation trace contains
information on the effective broadening of the ultrashort pulse due to the
PFT [23, 24].

In this work we first present a matrix analysis of dispersionless optical
systems, in particular 4f - and 2f -2f -systems, which are frequently used for
various pulse shaping applications including creation of spatial phase singu-
larities in broadband femtosecond beams [25, 26, 27]. The analytical results
show that small displacements of a lens and/or a grating inevitably intro-
duce pulse front tilt. In the second part of our analysis we theoretically
calculate the exact PFT-dependent interferometric autocorrelation signal in
an inverted-field autocorrelator and derive a simplified approximate expres-
sion applicable in the case of small PFTs.
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2. Matrix analysis

Our calculations are based on the 4× 4 ray-pulse matrices introduced by
Kostenbauder [28] and generalized by Duarte [29] and Trebino et al. [30]. In
essence, the 4× 4 matrices connect the input and output ray and pulse coor-
dinates to each other. The spatial and temporal characteristics of the pulse
are represented in a ray-pulse vector (x, ϑ, t, f). The spatial coordinates’
position (x) and slope (ϑ) are the same as in the ordinary 2 × 2 matrices.
The coordinate system is defined by the path of a diffraction limited refer-
ence beam of a central Hertzian frequency f and, when thought of as being
temporally transform-limited, can mark a well-defined arrival time t at each
transverse plane [28]. In terms of such coordinates and using a 4× 4 matrix,
the action of an optical element can be described as




xout

ϑout

tout

fout


 =




A B 0 ∂xout

∂fin

C D 0 ∂ϑout

∂fin
∂tout

∂xin

∂tout

∂ϑin
1 ∂tout

∂fin

0 0 0 1







xin

ϑin

tin
fin


 =




A B 0 E
C D 0 F
G H 1 I
0 0 0 1







xin

ϑin

tin
fin


 ,

(1)
where A, B, C, and D are identical to the components of the 2×2 ray matrix.
E = ∂xout/∂fin and F = ∂ϑout/∂fin describe the spatial and angular chirp,
respectively, while H = ∂tout/∂ϑin and I = ∂tout/∂fin stand for the time-to-
angle coupling and for the group delay dispersion. G = ∂tout/∂xin finally is
related to the angle α of the pulse front tilt via [31]

tan(α) =
∂(ctout)

∂xout

= c
∂tout

∂xin

∂xin

∂xout

= cG
∂xin

∂xout

, (2)

where c is the speed of light.

2.1. Analysis of a 4f -system

In Fig. 1 we show a sketch of 4f -system under consideration. We assume
that the two identical gratings are perfectly aligned with their grooves being
parallel. The displacement of one of the two lenses from its nominal position
we denote with δ and the deviation of one of the gratings away from the
focus of the respective lens with ∆. In the following, f and f0 will stand for
the focal length of the lens and the center frequency of the pulse spectrum,
respectively. According to the familiar procedures of matrix analysis one has
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to multiply the respective ray-pulse matrices in reverse order (from the exit
to the entrance), i.e.

M4f = G2Tf+∆FTf+δTfFTfG1. (3)

The explicit form of the matrices for the diffraction gratings is

G1 =




− sin(φ)
sin(ψ)

0 0 0

0 − sin(ψ)
sin(φ)

0 cos(φ)−cos(ψ)
f0 sin(φ)

cos(ψ)−cos(φ)
c sin(ψ)

0 1 0

0 0 0 1


 , (4)

G2 =




− sin(ψ)
sin(φ)

0 0 0

0 − sin(φ)
sin(ψ)

0 cos(ψ)−cos(φ)
f0 sin(ψ)

cos(φ)−cos(ψ)
c sin(φ)

0 1 0

0 0 0 1


 . (5)

Note that the incident angle ψ of the ray on the first grating is changed to
the respective angle φ at the second grating. The transition matrices have a
much simpler form:

Tf =




1 f 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ; Tf+∆ =




1 f + ∆ 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ; (6)

and

Tf+δ =




1 f + δ 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ; F =




1 0 0 0
−1/f 1 0 0

0 0 1 0
0 0 0 1


 . (7)

In this way we arrive for the modeled 4f -system at the matrix M4f

M4f =




−1 + δ∆
f2 −∆ sin2(ψ)

sin2(φ)
0 ∆[cos(φ)−cos(ψ)] sin(ψ)

f0 sin2(φ)
δ sin2(φ)

f2 sin2(ψ)
−1 0 0

δ∆[cos(ψ)−cos(φ)]
cf2 sin(ψ)

∆[cos(φ)−cos(ψ)] sin(ψ)

c sin2(φ)
1 −∆[cos(φ)−cos(ψ)]2

cf0 sin2(φ)

0 0 0 1




.

(8)
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From this last matrix it is evident that the misalignment ∆ of the grating
determines the signs of the introduced group-delay dispersion (GDD), of the
spatial chirp (SC) and of the time-to-angle coupling (T-AC):

GDD =
∂tout

∂fin

=
−∆

cf0

[cot(φ)− cos(ψ)/ sin(φ)]2; (9)

SC =
∂xout

∂fin

=
∆[cos(φ)− cos(ψ)] sin(ψ)

f0 sin2(φ)
; (10)

T− AC =
∂tout

∂ϑin

=
∆[cos(φ)− cos(ψ) sin(ψ)]

c sin2(φ)
. (11)

Simultaneously misaligned lenses and gratings introduce pulse front tilt,
where the angle of slope α can be determined from the relation

tan(α) = cG
∂xin

∂xout

=
δ∆[cos(ψ)− cos(φ)]

(δ∆− f 2) sin(ψ)
. (12)

When at least one of these two elements is aligned at its nominal position
there will be no PFT according to Eq. 12.

2.2. Analysis of a 2f -2f system

A sketch of the 2f -2f system to be analyzed is shown in Fig. 2. The
notations are the same as in Fig. 1, except for additional designations for
the different orders of diffracted beams. Multiplying the matrices of the
individual optical elements in the following (reverse) order:

M2f−2f = FG2T2f+∆FT2f+δG1 (13)

with matrices G1, G2, and F being the same as in the previous case, and

T2f+∆ =




1 2f + ∆ 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , T2f+δ =




1 2f + δ 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

(14)
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we derive the matrix M2f−2f of the misaligned 2f -2f system

M2f−2f =


−∆+f
f

−Γ sin2(ψ)

f sin2(φ)
0 ΓΩ sin(ψ)

ff0

∆+f−f [
sin(φ)
sin(ψ)

]2

f2

−f(δ+f)+Γ[
sin(ψ)
sin(φ)

]2

f2 0 −Ω{∆(δ+f)+δf cos(2φ)−Γ cos(2ψ)}
2f2f0 sin(ψ)

∆[cos(φ)−cos(ψ)]
cf sin(ψ)

ΓΩ sin(ψ)
cf

1 −ΓΩ[cos(φ)−cos(ψ)]
cff0

0 0 0 1




,

(15)
where Γ = ∆f + δ(∆+ f) and Ω = [cos(φ)− cos(ψ)]/ sin2(φ). In this way we
obtain the following relations for the group-delay dispersion (GDD), spatial
chirp (SC) and time-to-angle coupling (T-AC):

GDD =
∂tout

∂fin

= − [∆f + δ(∆ + f)][cos(φ)− cos(ψ)]2

cff0 sin2(φ)
, (16)

SC =
∂xout

∂fin

=
[∆f + δ(∆ + f)][cos(φ)− cos(ψ)] sin(ψ)

ff0 sin2(φ)
, (17)

T− AC =
∂tout

∂ϑin

=
[∆f + δ(∆ + f)][cos(φ)− cos(ψ)] sin(ψ)

cf sin2(φ)
. (18)

Note that these three spatio-temporal perturbations depend in the same way
on the grating and grating-lens-pair offsets. The result for the pulse front
tilt angle α is:

tan(α) =
∆[cos(ψ)− cos(φ)]

(∆ + f) sin(ψ)
. (19)

This means that the source of the PFT in a beam after its passage through
such a system is the displacement ∆ of the grating-lens pair. The offset δ of
the middle lens alone does not cause PFT.

3. Second-harmonic autocorrelation signal in the presence of pulse
front tilt

In this section we consider a Gaussian beam/pulse of width x0 and dura-
tion t0. In the absence of a PFT the electric field of this wave is described
by

E(x, t) = E0 exp[−(x/x0)
2 − (t/t0)

2] exp(iωt). (20)

Fig. 3 is intended to visualize the difference between pulses without and with
PFT. The right frame of Fig. 3 corresponds to the valid perception that, at
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a fixed plane perpendicular to the beam propagation direction, a difference
in arrival time that depends on the transverse beam coordinate means an
effective pulse lengthening. In a standard Michelson-type autocorrelator the
PFT remains hidden [23] (see Fig. 4, left). The picture drastically changes in
the inverted-field autocorrelator, where one of the beams is rotated in space
by 180◦ (Fig. 4, right). Corresponding setups for interferometric inverted-
field autocorrelation which are suitable for the detection of tilted pulse fronts
are described in the literature [22, 23]. Our goal here is to derive an exact
analytic expression for the second-harmonic interferometric autocorrelation
signal for an arbitrary large pulse front tilt.

Starting with the optical field amplitudes E1 and E2 of the beams/pulses
with opposite pulse front tilts −α and +α, respectively (inverted-field auto-
correlator geometry), the intensity I2ω of the second harmonic that is gener-
ated is

I2ω = |E2ω(x, t, α, τd)|2 =
∣∣∣[E1(x, t,−α) + E2(x, t, α, τd)]

2
∣∣∣
2

. (21)

Here τd is the time delay between the pulses. With a wide aperture photode-
tector and a detector rise-time much longer than the typical pulse length (con-
ditions easily met with ultrashort pulses) the normalized second-harmonic
autocorrelation signal has the form

PAK
2ω (α, τd) =

∫∞
−∞

∫∞
−∞ I2ω(x, t, α, τd)dxdt

2
∫∞
−∞

∫∞
−∞

∣∣∣
(
Ei(x, t, α, τd)

)2∣∣∣
2

dxdt

, (22)

where i = 1, 2. The natural normalization to the energy of the second-
harmonic signal generated from each pulse separately yields a correlation
peak-to-background ratio of 8 : 1 at zero tilt of the pulse front. The most
time-consuming but straightforward step in this analysis is the correct rota-
tion of the electric field amplitude (20) by an angle −α and α, respectively.
Following the procedure described above, we derived a general expression for
the interferometric autocorrelation signal for an arbitrary large pulse front
tilt α

PAK
2ω (α, τd) = 1+2

√
2x0t0

{8 exp[−A(α)τ2
d

B(α)
] cos(ωτd)√

B(α)
+

exp[− τ2
d

C(α)
][2 + cos(2ωτd)]√
D(α)

}
,

(23)
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where
A(α) = 12[(x2

0 + t20) + (x2
0 − t20) cos(2α)]

B(α) = 3x4
0 + 26x2

0t
2
0 + 3t40 − 3(x2

0 − t20)
2 cos(4α)

C(α) = t20 cos2(α) + x2
0 sin2(α)

D(α) = x4
0 + 6x2

0t
2
0 + t40 − (x2

0 − t20)
2 cos(4α)

(24)

In Fig. 5 we show numerically calculated interferometric autocorrelation sig-
nals PAK

2ω for different values of α. It is evident that the peak-to-background
signal ratio of 8 : 1 of the correlation function at α = 0 gradually decreases
with increasing the PFT angle α while the amplitudes of the oscillations in
the wings of the correlation functions grow monotonically. This is a clear in-
dication that the autocorrelation curve becomes broader with increasing the
pulse front tilt. The effect is more pronounced when we inspect the envelopes
of the autocorrelation signals (see Fig. 6). It is even intuitively clear that,
at one and the same beam width, the shorter the laser pulse, the stronger
the influence of the PFT. Table 1 summarizes results concerning the relative
pulse broadening ∆t/∆t(α = 0) for different pulse duration to beam width
ratios vs. tilt angle α. As seen, for α = 0.35 rad a decrease of the pulse du-
ration by a factor of 3 results in an increase of the effective pulse broadening
by a factor of more than 2. The shorter pulses appear stronger influenced by
the PFT than the longer ones. In the case of a relatively small pulse front

Table 1: Relative pulse broadening ∆t/∆t(α = 0) for different pulse duration t0 to beam
width x0 ratios vs. pulse-front tilt angle α.

α [rad] t0 = 2; x0 = 16 t0 = 4; x0 = 16 t0 = 6; x0 = 16
0 1 1 1

0.1 1.24 1.06 1.02
0.2 1.80 1.21 1.10
0.3 2.44 1.47 1.21

tilt (tan(α) ≈ sin(α) ≈ α) the derived general expression (23) simplifies to

PAK
2ω = 1 + 4 exp

{
−4τ 2

d

3t20

}
cos(ωτd) + exp

{
− τ 2

d

t20 + x2
0α

2

}
[2 + cos(2ωτd)]. (25)

The validity of this approximation has to be checked carefully. If the tol-
erable deviation of the approximate result from the exact one is within 5%,
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this approximate formula holds for α < 0.1 rad (see Fig. 7). Since nearly
single-cycle laser pulses require a lot of experimental effort and most of the
misalignments of the optical system are probably compensated to reach this
regime, Eq. 25 may appear a reasonable and relatively simple first-order
approximation in analyzing autocorrelation signals in the presence of small
pulse front tilts.

4. Conclusion

In this work we presented a matrix analysis of sensitivity to misalignments
of otherwise dispersionless 4f and 2f−2f optical systems with respect to the
introduced spatio-temporal distortions. Special attention has been given to
the possible creation of a pulse front tilt (PFT). In a 4f -setup, PFT is intro-
duced when the second lens and the second grating are simultaneously shifted
from their exact positions. In a misaligned 2f − 2f setup, the source of the
PFT is the displacement of the grating-lens pair. Since the PFT is expected
to lead to an effective broadening of the ultrashort pulses, we analyzed the
second-harmonic autocorrelation signal in an inverted-field autocorrelator.
The derived exact analytical expression in the case of an arbitrary PFT and
the approximation for the case of such a weak distortion show an effective
pulse broadening, which is well motivated by physical intuition.
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6. Captions for the figures

Fig.1 – Sketch of the analyzed 4f -system. G1, G2 - diffraction gratings
assumed to be aligned with strictly parallel grooves, L - lenses with focal
length f , D - diaphragm, δ and ∆ - lens and grating offsets from the perfect
alignment.

Fig.2 – Sketch of the analyzed 2f − 2f -system. G1, G2 - diffraction grat-
ings assumed to be aligned with strictly parallel grooves, L - lenses with focal
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length f , D - diaphragm, δ and ∆ - grating and grating-lens-pair offset from
the precise alignment.

Fig.3 – Electric field amplitude of an ultrashort pulse without (left) and
with pulse-front tilt (right).

Fig.4 – Snapshot of the electric field amplitudes of ultrashort optical
pulses with pulse-front tilt propagating in a standard (e.g. Michelson-type)
autocorrelator (left) and in an inverted-field autocorrelator (right) at a cer-
tain pulse delay.

Fig.5 – (Color online) Simulated interferometric atocorrelation signal (Eq. 23)
for different values of the PFT angle α.

Fig.6 – (Color online) Simulated envelopes of the interferometric atocor-
relation signals (Eq. 23) for different values of the PFT angle α.

Fig.7 – (Color online) Simulated interferometric atocorrelation signals
by using the exact (Eq. 23) and the approximate analytical result (Eq. 25)
and difference of the calculated signals (bottom curve) for small PFT angle
α = 0.1 rad.

7. Captions for the tables

Table 1 – Relative pulse broadening ∆t/∆t(α = 0) for different pulse
duration t0 to beam width x0 ratios vs. pulse-front tilt angle α.
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