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We study numerically and experimentally the propagation of pulsed singular beams, including
dark crosses and optical vortices, in self-focusing nonlinear media, resulting in filamentation and
supercontinuum generation. Our results show that the singular beams survive the process of mod-
ulation instability and appear well preserved in both the near and far-field.
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I. INTRODUCTION

The study of waves with spatial phase dislocations has
became increasingly intriguing with the advent of various
applications of singular beams, including particle micro-
manipulation [1], imaging [2], interferometry [3], and
quantum information [4]. Phase dislocations in the wave-
front of a beam determine its intensity structure, where
at the dislocation line or point, the intensity vanishes.
Important examples of beams with phase dislocation are
the optical vortices (OVs) and the one-dimensional (1D)
odd dark stripes. OVs are associated with an isolated
point singularity with a 2π helical phase profile around,
while the odd dark stripes contain π step-like phase dislo-
cation along a line. Importantly, two or more dark stripes
can be crossed in the transverse plane of the beam to form
dark crosses (DCs) with flat phase distribution [5].

Phase dislocations also play an important role in non-
linear science, with notable examples of vortex filamen-
tation [6, 7] and supercontinuum (SC) generation [8].
Nonlinear optics benefits greatly from the development
of ultra-short-pulse laser sources due to their high peak
intensities. However, encoding phase dislocation into
pulsed beams with wide spectral bandwidth becomes a
challenging task. In the case of short pulses with small
spectral bandwidths, phase masks or computer generated
holograms (CGHs) can create phase dislocations with-
out the need for additional dispersion compensating el-
ements [9]. In contrast, for sub-50-femtosecond laser-
pulses with broad spectral bandwidth, special disper-
sion compensating techniques such as dispersionless 4f
setups [10, 11], 2f − 2f setups [12, 13], double-pass grat-
ings [14], or prism compressors [15] need to be employed.
Other successful techniques make use of achromatic vor-
tex lens [16], uniaxial crystals [17, 18], axially symmetric
polarizers [19] or pair of closely spaced and parallel vol-
ume phase holographic gratings [20].

While the propagation of singular beams in self-
defocusing nonlinear media (NLM) has been widely stud-
ied [21], their evolution in self-focusing NLM is less ex-
plored [22–24]. This is somewhat surprising because self-
focusing materials are more common in nature, but it

could be explained by the intrinsic azimuthal and modu-
lation instabilities of the beams. While the process of vor-
tex break-up resulting from such instabilities have been
studied in the past [7, 25–27], the process of SC gener-
ation, that also stems from the self-focusing nonlinear-
ity [28], has only recently been explored with OVs [8].
However, deeper understanding of the singular beam dy-
namics in such media is required to bring this process to
practical importance.

Here we study numerically and experimentally the ori-
gin of filamentation and the subsequent SC generation of
short laser pulses carrying DCs or OVs. We show that
the trigger of the filamentation process in DCs is the am-
plitude modulation resulting from the hologram-to-NLM
free space propagation. For the case of OVs, such fila-
mentation pattern is only observed when weak azimuthal
perturbations are included. Experimentally, we also ob-
serve that the propagation of the singular beams leads
to the generation of ordered structures of hot-spots (fila-
ment patterns) that seed the SC white light generation.
An important observation is that both the DCs and the
OVs survive the modulation instability process and pre-
serve their characteristic phase profiles.

II. NUMERICAL RESULTS

A. Model

As initial conditions we consider short Gaussian pulses
with a DC on a super-Gaussian background beam or an
OV imprinted on a Gaussian beam. The regime of propa-
gation involves (i) free space propagation (from the CGH
to the NLM), (ii) nonlinear evolution in the regime of
dominating nonlinearity (inside the NLM), and (iii) free-
space propagation to the plane of observation. The gen-
eral model for pulsed-beam propagation in a nonlinear
medium is based on the (3+1)D nonlinear Schrödinger
equation for the slowly varying field envelope A,
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Here z and (x, y) are the normalized longitudinal and
transverse coordinates, respectively. (x, y) are normal-
ized to the dark beam widths w0, while the longitudinal
coordinate z is expressed in units of diffraction lengths
LDiff = kw2

0. In the above equation, k = 2πn/λ with
n being the refractive index of the NLM and λ - the
wavelength of light in vacuum. LNL = 1/(k|n2|I) stands
for the nonlinear length and n2 > 0 is the self-focusing
nonlinear Kerr coefficient. The intensity I = |A|2 is nor-
malized to the intensity needed to form a 1D dark soliton
I1D
sol in the case of defocusing nonlinearity (n2 < 0).
Because in our experiment we use 150 fs pulses and

short (5 mm) NLM, the dispersion length inside the NLM
(∼ 75 cm) is much longer as compared to both the diffrac-
tion and nonlinear lengths (and to the length of the NLM
itself). Therefore, we can assume that the pulse profile
does not change inside the medium, hence we can treat
the time coordinate as a parameter in our model. While
the pulse shape can change at high enough nonlinearity
even with weak dispersion [29], this is not the case in our
experiments with moderate pulse peak powers. As such,
the filamentation process is closely linked to the spatial
modulation instability of the beam, without a complete
spatiotemporal collapse of the filaments [30]. In this case,
Eq. (1) can be reduced to an effective (2+1)D model.

In order to account for the time variation of the pulse,
we assume a Gaussian pulse of width t0 and divide it into
4N time slices, each one having duration τslice = t0/N .
The total beam intensity distribution is then calculated
as a time-integrated picture over all 4N slices. The to-
tal slice number used in the simulations (N = 64) is
determined from the energy conservation and the repro-
ducibility of the transverse intensity distribution in the
time-integrated picture against doubling the number of
slices. We note that Eq. (1), with a time coordinate
treated as a parameter, does not describe the true process
of SC generation, however provides a clear description of
the initial stages of self-focusing and hot-spots generation
that are precursors for the continuum generation.

The input DC beam is modeled by

A(r, θ, t) = A0C(t)B(r) tanh(r cos θ/w0) tanh(r sin θ/w0),
(2)

with θ = 45◦, while the OV is described by [31]

A(r, θ, t) = A0C(t)B1(r)(r/w0)|m| exp(imθ), (3)

where r =
√

x2 + y2, θ, and t are the radial, azimuthal,
and time coordinates, respectively. m is OV topo-
logical charge. B(r) = exp[−(r/r0)14], and B1(r) =
exp[−(r/w0)2] describe the super-Gaussian and Gaus-
sian bright background beams, respectively. C(t) =
exp[−(t/t0)2] is the pulse temporal profile. The initial
intensity and phase profiles of both singular beams at
local time t = 0 (at the pulse peak) are shown in Fig. 1.

In a real experiment these initial profiles are perturbed
by experimental noise that can trigger the instabilities.
While such noise is specific to each particular experiment,
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FIG. 1: Intensity and phase profiles of DC beam (left) and
an unperturbed OV m = 1 (right) at t = 0.

for simplicity we consider initial (at z=0) periodic az-
imuthal perturbation,

Ap(r, θ, t) = A(r, θ, t)[1 + δ cos(κθ)], (4)

where κ is the integer azimuthal wavenumber and
A(r, θ, 0, t) is given by Eq. (3). We note that even though
such perturbation is far from the realistic experimental
conditions it helps to capture the important qualitative
characteristics of the instability process.

For the case of DCs, the background beam oscillations
induced during the free-space propagation from the CGH
to the NLM are sufficient for initiating the beam’s mod-
ulation instability. Other perturbations can only enrich
the instability patterns, but are not prerequisite. For our
numerical simulations we use beam propagation method,
where for each time slice we use a computational grid of
1024 × 1024 points. The total beam energy density dis-
tribution is calculated as time-integrated picture from all
256 temporal slices.

We first discuss the numerical results for the propaga-
tion of DCs, followed by the results on the azimuthally
perturbed OVs. In order to keep the slowly varying am-
plitude envelope approximation, under which Eq. (1) is
valid, in the numerical calculations we restrict the input
background beam intensity and the length of the NLM
such that the maximum output intensity of the central
temporal slice with the self-focusing hot spots remains
always below 20I1D

sol . In the presented numerical simula-
tions of propagation of DCs, the NLM length is 1.6LDiff

and the initial peak intensity of the central temporal slice
is in the range [0.6−0.8]I1D

sol . In order to match the max-
imum OV beam intensity to I1D

sol we take A0 = 1.474.
However, only after increasing the field amplitude by a
factor of 2, a well pronounced bright vortex ring self-
focusing is clearly seen at z = 6LDiff . In all cases of OVs
we use initial modulation δ = 0.05 [see Eq. (4)].

B. Dark crosses

To examine in details the evolution of the DCs inside
the NLM, we first perform numerical simulations. Here
we change the position of the nonlinear media only (with
steps of 2LDiff), while keeping its length and all other
initial parameters unchanged. These simulations give us
the opportunity to vary the free-space propagation from
the CGH to the NLM, which is needed to separate the
first-order diffracted beam from the CGH with the DC
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FIG. 2: Intensity (upper row) and phase profiles (lower row)
of the DC central temporal slice at the exit of the NLM. The
NLM is placed at 1.65LDiff (first column), 4LDiff (second col-
umn), 8LDiff (third column) and at 12LDiff (last column) be-
hind the CGH. The normalized initial intensity of the central
temporal slice is I(t = 0)/I1D

sol = 0.6. The length of the NLM
is 1.6LDiff . 51% of the total computational area are shown. 

 

  
 

  

    
 

t =0 t/t0=0.5 t/t0=1.0 t/t0=1.5 

FIG. 3: Normalised intensity (upper row) and phase profiles
(lower row) of the DCs at the exit of the NLM located at
8LDiff for local times (left to right) t/t0 = 0, 0.5, 1.0, and 1.5.
I(t = 0)/I1D

sol = 0.75. The length of the NLM is 1.6LDiff . 34%
of the total computational area are shown.

nested in. Experimentally, this is analogous to trans-
lating the 5 mm thick CaF2 sample with respect to the
focusing lens. In Fig. 2 we present the evolution of the
central temporal slice of the pulse for different positions
of the NLM. When the initial free-space propagation is
relatively short, e.g. 1.65LDiff , the central hot spots are
dominating, whereas the satellites almost do not differ
from the background. Increasing the initial propagation
distance to the NLM, the satellite hot spots become more
intense. By increasing the CGH-to-NLM free space prop-
agation distance up to 8LDiff (third frame in Fig. 2), the
sub-structure of the beam changes - the satellite hot spots
become more intense than the central (initial) ones. In-
creasing the distance further (up to 12LDiff) the beam
changes again – the satellite hot spots diffract stronger
and the nonlinearity forces the central hot spots to dom-
inate again (last frame in Fig. 2).

Next, we examine the profiles of the DCs at differ-
ent local times within the pulse envelope (i.e. at differ-
ent intensities) at the exit of the NLM, when the initial
free-space propagation is 8LDiff . In this case we have
relatively strong satellite hot spots (see Fig. 2). The
obtained numerical results are shown in Fig. 3. As ex-
pected, the decrease of the beam intensity at longer local
times, in the pulse wings, results in weaker confinement

 
 

 

 
 
FIG. 4: Time-integrated energy density profiles of DCs at the
entrance (top row) and at the exit of the NLM (bottom row)
for a NLM located at 1.6LDiff (left) and 8LDiff (right). The
length of the NLM is 1.6LDiff . 34% of the total computational
area are shown.

of the bright sub-beams. Because all frames are nor-
malised to the maximum intensity in the frame, the im-
age with the strongest focused filaments (left upper frame
in Fig. 3) appears darkest. We note that despite the non-
linear phase modulation, the step-like phase dislocations
of π along the two crossed dark lines are present in each
time slice, i.e. for each local intensity within the pulse en-
velope. Hence, the DCs should survive the entire pulsed
beam filamentation and should be also present in the
time-integrated energy-density distribution of the beam.
This is shown in Fig. 4 for two different free-space prop-
agation distances. As seen, an easy way to control the
relative intensity of the self-focused satellite sub-beams
with respect to the central ones is by changing the free-
space propagation to the NLM.

C. Optical vortices

Next we study the dynamics of an OV inside the NLM
and we focus on charge-one OVs (m = 1). Under perfect
numerical conditions (no azimuthal perturbation) and
sufficiently high input beam intensity, we observe shrink-
ing of the bright vortex ring without any vortex break-up.
The azimuthal instability, however is clearly seen when
we impose an initial azimuthal amplitude perturbation
[Eq. 4] onto the bright OV ring. In this case, each per-
turbed time slice evolves in a different manner in space
inside the NLM due to its different local intensity. While
in the peak of the pulse (at a local time t = 0) we have
vividly pronounced break-up of the vortex beam into hot
spots, at lower intensities (in the pulse wings), we see
weaker modulation instability (decay in lower number of
sub-beams rotating at different angles for the different
pulse intensities). For four azimuthal modulation peri-
ods (κ = 4) we observe symmetric decay of the vortex
ring into four sub-beams (not shown) that self-focus (at
sufficiently high intensity I(t = 0)/I1D

sol = 2.2− 4), repel
each other and rotate as an ordered structure.

A better match with the experimental observations
(see Sec. III) is achieved in the case of an amplitude az-
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t=0 t/t0=0.5 t/t0=1.0 t/t0=1.5 

FIG. 5: Normalized intensity (upper row) and phase profiles
(lower row) of the azimuthally perturbed vortex ring (κ =
12, left column) and the intensity profiles at the exit of the
NLM at local times (left to right) t/t0 = 0, 0.5, 1.0, and 1.5.
Note that the spiral phase profile is present in each time slice.
I(t = 0)/I1D

sol = 0.8 and z/LDiff = 0.375. Some 3.8% of the
total computational area are shown in each frame.

imuthal perturbation of 12 periods (κ = 12, upper left
frame in Fig. 5). In this case, the input vortex ring is 4
times wider as compared to the vortex ring in Fig. 1. The
peak intensity is I(t = 0)/I1D

sol = 0.8 and the nonlinear
propagation is z = 0.375LDiff . At high intensity the az-
imuthal perturbation forces the vortex ring to decay into
axially-symmetric set of 12 sub-beams (Fig. 5, frame at
t = 0). The decrease of the local intensity (at increased
local times) decreases the growth-rate of the instability
and the OV experiences weaker and weaker self-focusing,
approaching the regime of linear diffraction far in the
leading and trailing edges of the pulse. This tendency
is clearly seen in Fig. 5. Note that despite the nonlin-
ear vortex ring beak-up, the helical 2π phase profile and
the point phase dislocation are present at all local times
within the pulse envelope. Hence, the OVs survive the
filamentation instability process and should be present in
the time-integrated energy-density distribution.

The numerical results shown in Fig. 6 clearly demon-
strate this behavior, both at the exit of the NLM (left)
and after linear propagation distance z = 1.125LDiff be-
hind the NLM (right images). The left image in Fig. 6
corresponds to the data in Fig. 5 and presents the time-
integrated energy-density distribution in the case of 12
periods of 5% initial azimuthal perturbation. It is im-
portant to note that, in an agreement with the experi-
ment, OVs fully recover after relatively short free-space
propagation distance (see Fig. 6, right image). If we in-
tentionally saturate right image in Fig. 6, one can also
see the broad background caused by the diffracting self-
focused filaments, which is only intuitively reminiscent of
the SC white light seen in the experiment [8].

III. EXPERIMENTAL RESULTS

A. Experimental setup

In our experiments we first imprint an OV or a a DC
onto an intense pulsed background beam and then study
the process of hot spot formation in a bulk NLM. Our
experimental setup is similar to the one recently used

FIG. 6: Time-integrated pictures of OVs for κ = 12 for I(t =
0)/I1D

sol = 0.8. Left: at the exit of the NLM; Right: after
free-space propagation of z = 1.125LDiff behind the NLM.

in Ref. [8]. We utilize a 250 Hz repetition rate chirped-
pulse amplification system (CPA-2001, Clark-MXR Inc.)
delivering 150 fs pulses and peak power of 15 MW, at a
central wavelength of 775 nm. For DCs and OVs genera-
tion, we use a CGH, fabricated by etching the respective
interference pattern onto a glass substrate. The efficiency
of the holograms is ∼ 30%, and the large grating period
of 80 µm was found to cause negligible chromatic disper-
sion over the pulse bandwidth. An iris diaphragm, lo-
cated about 100 cm behind the CGH and 200 cm in front
of the focusing lens, is used to select the singular dark
beam formed in the first diffraction order of the holo-
gram. The beam polarization state can be controlled by
a λ/4 waveplate. The NLM is 5 mm thick CaF2 crystal
that is continuously rotated in order to prevent possible
damage due to thermal effects.

In order to smoothly control the beam intensity in-
side the NLM, we vary the position of the beam waist
with respect to the CaF2 sample, keeping the sample-to-
imaging lens distance unchanged. The data acquisition
system consists of a color CCD camera and a fiber-optic
spectrometer. Our experimental setup allows for simul-
taneous measurements of the field intensity profiles at the
output of the medium and the far-field intensity distri-
bution (Fourier domain).

B. Dark cross beams

We monitor the evolution of the DCs in both near
(Fig. 7) and far field with increasing beam intensity
(i.e. by changing the focusing lens-to-sample distance).
As indicated in our numerical simulations (Figs. 3, 4)
the beam diffraction from the CGH to the NLM causes
background-beam oscillations parallel to the dark stripes
(Fig. 7, upper row). These appear as natural precursors
for the filamentation in the high-power regime as seen in
Fig. 7(lower row). In agreement with the numerical sim-
ulations, well preserved DCs are observed in both near-
and far-field.

At high laser powers, the beam generates bright SC,
which spectrum is shown in Fig. 8 together with the spec-
trum of the initial laser pulse. The output profiles of
the SC is recorded in our experiment on a color CCD
camera. An interesting observation can be made at the
initial stage of the SC generation when (vibrating) inter-
ference fringes and lattices can be seen with both OVs
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FIG. 7: Near-field DCs observed for low power (upper row,
0.5mW) and high power (bottom row, 15mW) at decreas-
ing focusing lens-to-sample distance: (a) 3 mm, (b) 2 mm, (c)
1mm, and (d) 0mm. In case (d) clear filamentation is ob-
served above 6mW. Each frame is 360 µm wide.

FIG. 8: Spectra of the SC generated in CaF2 at P = 15 mW
(solid curve) and the laser source (dashed curve).

and DCs. We attribute these structures to interference
of coherent supercontinua generated from different (but
low in number) hot spots. The observed tendency is that
the brighter the SC, the lower the visibility of the in-
terference structures. The visibility of the interference
patterns seen at high-power (∼ 6 − 8mW) however is
better with DCs due to the well defined number of fil-
aments. In Fig. 9 we show experimental picture of the
typical interference lines. For better visualization, in the
left frame we have slightly adjusted the intensity of the
red components, whereas in the right frame we show the
same, but in inverted colors, for better visibility.

 

  
 

FIG. 9: Far-field of the DC with generated white-light inter-
ference fringes, at a power near the SC generation threshold.
Left - image with slightly adjusted intensity of the red com-
ponents; right - the same, but in inverted colors.
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 FIG. 10: Near-field OV rings observed for low power (upper

row) and vortex ring self-focusing and hot spots formation for
high power (bottom row; 22 mW average power) at decreas-
ing focusing lens-to-sample distance: a) 3mm; b) 2mm; c)
1mm; d) 0mm. In case d) SC generation starts at 8mW.
Full horizontal scale of each frame is 360 µm.

C. Optical vortices

When OVs are focused inside the CaF2 sample, again
we see the generation of a broad SC (in the far-field)
above a certain power threshold. The SC does not carry
any phase singularities and appears as an incoherent su-
perposition of a large number of continua that are trig-
gered by the individual hot spots. Similar to the SC
generated from DCs, near the SC threshold, unstable in-
terference fringes can be seen in different colors. How-
ever, in the far field we always observe a well preserved
OV beam in the background of the generated SC.

The origin of the SC was clarified by inspecting the
transverse near-field intensity distribution of the pump
beam at the exit of the sample. In Fig. 10 we show a
comparison between the low power (upper row) and high
power (22mW average power, bottom row) OV intensity
distribution. In the linear regime (upper row), it can
be seen how the OV becomes focused with decreasing
the focusing lens-to-sample distance. In the nonlinear
regime (bottom row), the vortex ring is shrinking and
self-focusing but is well pronounced and is accompanied
by increasing [from (a) to (c)] number of hot spots in the
beam. These hot spots generate the SC radiation which,
because of its much stronger diffraction after the exit of
the NLM, appears in the far-field as a white-light back-
ground for the vortex. In agreement with our numerical
simulations (Fig. 6, left), the hot spots appear arranged
along the vortex ring, i.e. at the positions of high local
peak intensity. Despite some deformation, the symmetry
of the OV as well as the OV core remain well preserved.

IV. CONCLUSIONS

Numerical simulations carried out on the base of
the (2+1)-dimensional nonlinear Schrödinger equation,
treating the time as a parameter, showed that at high
intensities of the femtosecond pulses, the dark crosses
and optical vortices undergo self-focusing and formation
of multiple hot spots due to the modulation instabil-
ity. These hot spots trigger, in real experimental situ-
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ation, SC generation. We experimentally demonstrate
femtosecond SC generation in a bulk nonlinear medium
by OVs and DCs. The results show that the spatial pro-
files of the DCs and the OVs remain well preserved in the
process of SC generation. However, the generated con-
tinuum appears as a white-light background surrounding
the fundamental singular beams. We have deducted that
strong diffraction of the SC generated from each filament
is the reason for the observed white-light background.
Near the threshold for SC generation, a low number of
hot spots can generate several continua that interfere,
resulting in pronounced interference patterns for certain
spectral components. However, when a large number of
colorred self-focusing sub-beams are created, the specific

phases of the DCs and the OV beam are not transferred
into the SC spatial profile, likely due to the initial noise
on the initial singular optical beams.
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