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Abstract

We study the evolution and interaction of semi-infinite dark beams carrying
phase dislocations, where step- and screw-like phase profiles are combined.
Similar to dark beams with a finite length, semi-infinite dark beams tend
to move in transversal direction with respect to their background beam.
In addition, they develop a snake-like instability and optical vortices detach
from their bending ends. We are looking for appropriate conditions to control
the process of concatenating and crossing the ends of several such semi-
infinite dark beams in a way suitable for probe-beam branching and routing
in self-defocusing Kerr nonlinear media. Collinear and perpendicular probe
beam propagation in the optically-induced guiding structures is modeled and
analyzed with respect to the branching efficiency to respective virtual output
channels.
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1. Introduction

The propagation of optical beams in nonlinear media (NLM) has been a
subject of continued interest for more than four decades due to the possi-
bility of creating reconfigurable waveguides through an intensity-dependent

∗Corresponding author. Tel.: (+359 2) 8161 611; fax: (+359 2) 868 89 13.
Email address: ald@phys.uni-sofia.bg (Alexander Dreischuh)

Preprint submitted to Opics Communications March 30, 2012



refractive index change [1, 2]. Such optically-induced waveguides can guide
weak signal beams and pulses [3, 4]. This motivates the investigation of
novel techniques for manipulating the transverse beam dynamics and opens
possibilities for the realization of waveguides with complex geometries. Be-
sides their intriguing physics, the particular interest in dark spatial solitons
(DSSs) is motivated by their ability to induce gradient optical waveguides in
bulk self-defocusing NLM [1, 4, 5, 6, 7, 8].

The only known truly two-dimensional (2D) DSSs are optical vortex soli-
tons [5] whereas in one transverse spatial dimension the DSSs manifest them-
selves as dark stripes [9]. Generating the fundamental 1D DSS requires a
phase profile with odd parity as an initial condition. This corresponds to a
π-phase jump centered along the irradiance minimum of the stripe (i.e. to a
step-like phase dislocation). Optical vortex solitons, in contrast, have a heli-
cal (screw-type) phase profile described by an exp(imϕ) phase factor, where
ϕ is the azimuthal coordinate and the integer number m is the so-called
topological charge. 1D and 2D fundamental DSSs of these types have the
common feature of zero transverse velocity with respect to the background
beam if no perturbations are present. A variable number of quasi-2D dark
spatial solitons of adjustable transverse velocities can be generated [10] either
by a proper choice of the initial phase profile (odd or even parity), or the
width of the crossed 1D dark beams, or the background-beam intensity.

On the other hand the field of singular optics also knows dark (or grey)
waves that slowly change their parameters even when they are generated from
perfectly odd initial conditions. A classical example is the ring dark solitary
wave [11, 12, 13, 14]. In their pioneering analysis [15], Nye and Berry con-
jectured that phase dislocations with a combination of a step- and screw-like
phase profile (fractional vortex dipoles, FVDs) cannot exist. Nonetheless,
indications for their existence were found [16, 17] for two interacting optical
vortices of opposite topological charges. Moderate saturation of the medium’s
third-order nonlinearity enabled the suppression of the snake instability of
crossed 1D dark solitons and the identification of 1D odd dark beams of
finite length containing mixed-type (step-screw or edge-screw) phase dislo-
cations [18, 19]. Later on, such odd dark beams with step-screw phase dis-
locations were experimentally generated under controllable initial conditions
by computer-generated holograms [20]. The data confirmed [20] that one can
effectively control the steering dynamics of such beams by varying the mag-
nitude and/or the length of the 1D part of the phase jump. Although two
different schemes for directional coupling of signal beams by steering FVD
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beams were proposed in Kerr media with negative nonlinearities [21], the first
successful experiment was conducted only recently in biased photorefractive
medium with a positive nonlinearity [22].

In this work we numerically analyze two different nontrivial interaction
schemes between ordered semi-infinite FVDs in a local self-defocusing NLM
and model the branching and routing of probe beams inside the optically-
induced reconfigurable interconnects. The first interaction scenario modeled
is collinear - i.e. both the dark (pump) and the bright (probe) beam prop-
agate in parallel through the NLM. In the second scenario the probe beams
propagate perpendicular to the propagation direction of the dark beams, i.e.
parallel to the dark beams themselves. Within a certain distance along the
NLM, the inherently restless semi-infinite FVDs concatenate to form struc-
tures resembling cross-connects. The ability of these cross-connects to guide
and redirect probe beams propagating perpendicularly are numerically in-
vestigated.

2. Numerical procedure

The mixed edge-screw phase dislocation of the FVD consists of an one-
dimensional phase step of length 2b, which ends, by necessity, with pairs of
phase semi-spirals with opposite helicities. The phase profile of this mixed-
phase dislocation can be described by

ΦES(x, y) =
∆Φ

2π

[
arctan

(
y

x + b

)
− arctan

(
y

x− b

)]
, (1)

where ∆Φ stands for the magnitude of the step portion of the dislocation
and x and y denote the transverse Cartesian coordinates parallel and per-
pendicular to the dislocation. An increase in the odd dark beam’s transverse
velocity can be achieved [20] by decreasing ∆Φ. Here, however, we refrain
from exploiting this in order to keep the dark beam contrast and the refrac-
tive index modulation as high as possible. All the data in this work refer
to ∆Φ = π. A surface plot of the edge-screw phase dislocation is shown in
Fig. 1. The slowly-varying electric field amplitude of a single FVD with such
mixed edge-screw phase dislocation is assumed to be tanh-shaped and, when
centered on the background beam, of the form

EES(x, y, z = 0) =
√

I0B(x, y) tanh[rα,β(x, y)/a] exp[iΦES(x, y)]. (2)
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Here
rα,β(x, y) = [α(x + βb)2 + y2]1/2 (3)

is the effective radial coordinate and the parameters α and β are defined as
follows

α =





0 if |x| ≤ b

1 and β = −1 for x > b.

1 and β = 1 for x ≤ −b

(4)

In order to avoid any influence of the finite background beam of super-
Gaussian form

B(x, y) = exp{−[(x2 + y2)/w2]8}, (5)

its width w is chosen to exceed the initial dark beam width a by a factor of
more than 20.

The numerical simulations of the FVD propagation along the local Kerr
NLM are carried out using the (2+1)-dimensional nonlinear Schrödinger
equation

i∂E/∂(z/LDiff ) + (1/2)∆T E − γ|E|2 = 0, (6)

which accounts for the evolution of the slowly-varying optical beam envelope
amplitude E under the combined action of local nonlinearity and diffraction.
Here ∆T is the transverse part of the Laplace operator and γ = LDiff/LNL,
where LDiff = ka2 and LNL = 1/(k|n2|I) stand for the diffraction and non-
linear length of the dark beam respectively. The minus sign in Eq. 6 means
that a self-defocusing nonlinearity is used, which is a necessary conditions
for dark spatial soliton formation and for waveguiding by dark beams. In the
above notations, k is the wave number inside the medium and I is the peak
field intensity. The transverse spatial coordinates (x and y) are normalized
to the odd dark beam width a. Equation 6 was solved numerically by means
of the split-step Fourier method with a computational window spanning over
1024 × 1024 grid points. As a standard test we modeled the formation of
a fundamental 1D dark spatial soliton and compared it to the diffraction-
compensated dark beam formed by a quasi-infinite FVD (dipole much longer
than the background beam; 2b >> w) (Fig. 2, open circles and solid curve,
respectively). The figure shows that the vanishing transverse velocity of this
self-sustained FVD dark beam makes it indistinguishable from an 1D dark
spatial soliton. For comparison, the dashed curve in Fig. 2 shows the input
FVD beam diffracted at a distance z = 6LDiff , i.e. in the absence of a non-
linear medium. Unless stated otherwise, the background beam intensity in
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Figure 1: Edge-screw mixed phase dislocation (fractional vortex dipole, FVD) described
by Eq. 1.
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Figure 2: Cross-sections of the input quasi-infinite FVD (solid red curve) and of the
fundamental 1D DSS at z/LNL = 6 (open circles). Dashed curve – FVD diffracted at the
same distance.

the following simulations is kept equal to that needed to form a fundamental
1D DSS of infinite length (I = I1D

SOL, i.e. γ = 1).

3. Evolution of the fractional vortex dipoles

As shown in previous analyses of odd dark beams with mixed step-screw
dislocations [20, 21], the background-beam intensity has a weak influence on
the dark beam’s steering. Negative nonlinearity however is important for
keeping the optically induced refractive index modulation (e.g. dark beam
profile and refractive index profile) steep, which is crucial for all-optical guid-
ing, deflection, and switching of signal beams or pulses. Generally, odd dark
beams of finite-length and mixed phase dislocations become shorter and flat-
ter during their propagation in nonlinear media. This causes a power density
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Figure 3: Upper row - Power density distributions of an infinite FVD beam at the entrance
of the NLM (a) and at a nonlinear propagation distance z/LNL = 6 (b). Middle and
bottom rows - Power density (c,d) and phase distributions (e,f) of a semi-infinite FVD
beam at the same distances. I = I1D

SOL. The lower four images are truncated to show
the significant parts of the computational windows only. An animation of the FVD beam
propagation can be found here.

redistribution on the background beam that creates peaks behind the odd
dark beams. The self-defocusing nonlinearity tends to suppress the peak’s
growth and contributes (along with diffraction) to their broadening [23].
When the length 2b of the FVD beam is much larger than the background
beam diameter (and the computational window) and one end of the FVD is
centered on the background beam, we will denote this FVD beam as ”semi-
infinite”. In the upper row in Fig. 3 we show the power density distribution
of a quasi-infinite FVD beam at the entrance of the NLM (Fig. 3a) and
at z/LNL = 6 (Fig. 3b) for I = I1D

SOL. Fig. 3b is identical to that of the
one-dimensional fundamental DSS (see also Fig. 2). In the second row we
show the input (Fig. 3c) and output power density distribution (Fig. 3d) of
a semi-infinite FVD at the same nonlinear propagation distance. It can be
seen that the semi-infinite FVD beam develops a snake-like instability [24]
and that a vortex detaches from the rest of the dark beam. Closer inspection
of the respective phase profile (Fig. 3f) shows that four vortices with alter-
nating topological charges are formed, three of them with highly overlapping
cores. As a next step let us consider the structure and evolution of two semi-
infinite FVDs oriented in opposite directions (see Fig. 4). In order to get
a higher modulation depth in the interaction region near the center of the
background, we shifted the ends of the FVD beams out of the center, which
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Figure 4: Power density (odd rows) and phase distributions (even rows) of pairs of over-
lapping (∆ = 2.6a) inline semi-infinite FVD beams in the case of opposite (left column)
and equal helicities (right column) of the phase semi-spirals. Top two rows - z = 0, bottom
two rows - at the exit of the NLM (z/LDiff = 6). I = I1D

SOL.

results in an overlap of the two FVDs of ∆ = 2.6a. The two characteristic
cases – opposite (left column) and equal phase helicities (right)– are shown
in Fig. 4. In both cases the overlapping of the FVD beams causes a larger
modulation in the center as compared to the remaining part of the compos-
ite dark beam. This excess ”lack of energy” is emitted as dispersive waves
perpendicular to the FVD beams. In the case of opposite helicities (Fig. 4,
left column), the phase distribution in the overlapping region resembles a
mixed phase dislocation of limited length and the FVDs move in transverse
direction, which is characteristic for beams with such dislocations. In the
present situation the signature of this effect is the bending of the dark stripe.
In the second case, i.e. FVDs with opposite helicities (Fig. 4b,d), the ends
of the semi-infinite beams move in opposite directions and evolve almost like
independent semi-infinite FVD (see frames d) and f) in Fig. 3).

For the further discussion, let us concentrate on the following three pos-
sible cases:

Case A: Pair of two parallel one-dimensional dark beams with pure one-
dimensional phase dislocations of magnitude π. For consistency, the larger
dark beam width in their central parts is identical to cases B) and C) where
it is a result of an intentional overlapping of the FVD beams.

Case B: Pair of two inline semi-infinite FVD beams for which the over-
lapping FVDs have opposite helicities, whereas the two pairs have opposite
phase distributions.

Case C: Pair of two inline FVD beams for which the overlapping semi-
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infinite FVDs have equal helicities, whereas the two pairs of semi-infinite
FVDs have phase distributions with the same gradients.

In all three cases the distance over which the FVD beams overlap is
∆ = ±1.3a and the vertical offset from the background beam diameter is
∆y = ±1.8a. Although the amplitude distributions in all three cases are
identical (Fig. 5, second row), the entirely different phase profiles (Fig. 5,
first row) govern distinctive transverse dynamics along the NLM. It is worth
mentioning that when two identical semi-infinite FVDs are aligned on a line,
the neighboring phase semi-spirals have opposite helicities, no matter if the
FVDs overlap or not. The phase profile of a single FVD beam of limited
length ends also by semi-spirals with opposite helicities (see Fig. 1). Since
the steering direction is phase-dependent [20, 21] the FVD beam overlapping
does not alter it.

In Case A we simply have propagation and interaction (weak repulsion
in a local NLM [25, 26]) of closely-spaced one-dimensional dark spatial soli-
tons. The modulation in the middle of these beams leads to an emission of a
dispersive wave causing a perturbation (Fig. 5, left column, z = 3LNL). As
a result, the dark beams slightly bend but do not develop a snake instability
and also do not decay into pairs of vortices (up to z = 6LNL) (Fig. 5, left
column). For probe signals entering the NLM both collinearly and perpendic-
ularly to the background beam, the optically-induced waveguiding structure
in this case consists essentially of two parallel planar waveguides.

In Case B, due to the specific orientation of the phase profiles of the FVD
beams, the central parts of the dark beams bend inwards and overlap, thus
forming a cross-like structure at z = 3LNL. When the nonlinear propagation
path length is increased up to z = 6LNL, the beams in this region repel
each other, bend, split, and decay into four (still highly overlapping) optical
vortices. Hence, the proper position for the probe beam to enter the NLM
at right angles is at z = 3LNL. The effective waveguide structure for the
probe beam in this case is a symmetric X-junction (input inline with one of
the outputs). In the collinear configuration the situation will be qualitatively
the same.

The effective waveguiding structure for perpendicularly propagating probe
beams that develops Case C resembles bent planar waveguides. If the probe
beam enters the NLM at z = 1LNL, it will see the upper left planar waveguide
merging into the lower right waveguide. At smaller and longer propagation
distances for the pump the connection between the FVDs (and the effective
waveguide) is broken. Qualitatively, the four FVD beams evolve more or
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Figure 5: Phase profiles (upper row) and power density distributions of pairs of inline semi-
infinite and overlapping FVDs at the entrance of the NLM and at distances z = 3LNL and
6LNL for case A and case B and at z = 1LNL and 2LNL for case C. Hyperlinks-respective
avi-movies.

less independently for Case C. Of course, because of the inherent dynamics
of the FVD beams, the probe beam guiding efficiencies can not be expected
to be 100%. In cases B and C therefore one can expect certain (different)
branching ratios for the incoming signal beams. Moreover, in the transverse
pump-probe geometry the effective nonlinear interaction length extends over
the pump beam cross section only.

4. Branching of probe beams inside the optically-induced guiding
structures

The incoming probe beams are modeled to be Gaussian with widths equal
to the vertical extent of the one-dimensional dark soliton shown in Figs. 2
and 3. The NLM can be visualized as a cuboid (see Fig. 6). Its depth
(along the z-axis) extends up to 6LNL in the cases A and B, and up to 2LNL

in case C. In the collinear propagation regime, both dark FVD beams and
bright probe beams propagate along the z-axis. The probe beam evolution is
modeled separately from the pump beam propagation by solving the (linear)
slowly-varying envelope equation for the probe beam amplitude S

i∂S/∂z + [1/(2LDS)](∂2/∂x2 + ∂2/∂y2)S − |E|2S/LNL = 0. (7)

When the probe beam enters the NLM perpendicularly at z = 3LNL (cases
A and B) or at z = LNL (case C) it evolves along the propagation coordinate
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Figure 6: Schematic view of the background beam carrying the FVD beams inside the non-
linear medium with the used notation of the coordinate system axes. Collinear propagation
is along the z-axis, perpendicular propagation – along the x-axis. The thin horizontal and
vertical (color) lines cross approximately at the positions where the probe beams enter the
NLM.

x diffracting and experiencing the refractive index modulation mainly in the
(y, z) plane due to the background beam with the embedded FVDs (see
Fig. 6). This is modeled separately, by solving the equation

i∂S/∂x + [1/(2LDS)](∂2/∂y2 + ∂2/∂z2)S − |E|2S/LNL = 0. (8)

Here LDS = kSa2
S is the diffraction length of the bright probe beam of width

aS such that LDS = LDiff = LNL. The computational grid for the probe
beams spans over 256 × 256 grid points in order to use the stored 256 dis-
tributions for the pump electric-field amplitude and to follow the evolution
of the probe wave. Each probe beam enters the induced waveguides exactly
in the center (at z = 1LNL for case C, and at z = 3LNL for cases A and B).
In Fig. 6 we show a schematic view of the NLM with the used notation of
the coordinate system axes. The blue (green) line cross the red line approxi-
mately at the position where the collinear (perpendicular) probe beam enters
the NLM. In addition, the intensity distribution of the background beam is
shown for Case A.
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4.1. Collinear probe beam propagation

The obtained numerical results are summarized in Fig. 7 and in Table 1.
For better visibility, in each frame in Fig. 7 only some 8% of the total com-
putational area is shown. In this case the input probe beams (IN) enter the
NLM centered in the respective dark-beam-induced waveguides as marked
in Fig. 6. The parallel pump and probe beam propagation is along the z-
axis. The power density profiles of the probe beams at the exit of the NLM
(z = 6LDiff for cases A and B; z = 2LDiff for case C) are labelled ac-
cordingly. The horizontal probe beam spreading in case A is indicative for
the probe beam diffraction at z = 6LDiff . The horizontal dashed (yellow)
line denotes the (x, z) symmetry plane separating the two imaginary output
channels in cases A and B. In case C the parallel solid lines denote the three
virtual output channels for which the probe-beam branching efficiencies are
shown in Table 1. In cases A and B where two virtual output channels are
considered, the guiding efficiency in the middle one (M) is marked as ”not
related” (n.r.). The 100%-mark in column IN in Tables 1 and 2 denotes which
probe beam is launched in the respective input channel. The accuracy in esti-
mating the efficiencies is 2%. The first three rows (upper–U , middle–M , and
lower–L) refer to the probe beam entering the upper guiding structure (with
99% efficiency), the lower three rows – to probe beam entering the lower dark
structure. Generally, the dark guiding structures evolve symmetrically with
respect to the (x, z)-plane and the probe beam branching ratios should be the
same (but inverted) for both probe beams. The small asymmetry (70%/30%
vs. 65%/35%) is a result of an intentional shift of the border between the
two imaginary output channels in case A and B to locate it at the maximal
modulation depth of the branched signal. In case C the different branching
ratios for the signal beams entering the upper and lower guiding structure
result from the lack of symmetry of the type present in the first two cases.

4.2. Perpendicular probe beam propagation

The results for this case are shown in Fig. 8 and in Table 2. The presence
of strong refractive-index gradients along the y-axis for I = I1D

SOL improves
the linearly redistributed signal (see Fig. 8, column L) to channels 1 and
2 from 44%/20% to 72%/18% when channel 1 is initially addressed (see
Table 2). When the probe beams is entering initially channel 2, the (inverted)
proportionality is quite similar. By changing the phase profiles of the pairs of
overlapping pump FVD beams the cited 72% guiding efficiency when input
channel 1 is addressed, can be changed to 66% (case B) and to 61% (case
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Figure 7: Collinear propagation: Input probe beams (IN) entering the NLM being cen-
tered in both dark beam-induced waveguides as marked in Fig. 6 and propagating along
the z-axis parallel to the pump. The power density profiles of the probe beams at the exit
of the NLM in the nonlinear regimes (γ = 1) for cases A, B, and C are correspondingly
denoted. The horizontal dashed (yellow) line indicates the (x, z) symmetry plane separat-
ing the two imaginary output channels in cases A and B. The parallel solid lines in case C
separate the virtual three output channels for which the probe-beam branching efficiencies
are also summarized in Table 1.

C). The behavior is qualitatively the same when input channel 2 is initially
addressed. The second part of Table 2 refers to a separate set of simulations
for I = 2I1D

SOL. In this way the branching ratios can be changed from e.g.
72%/18% to 82%/14% in case A and from 66%/25% to 69%/21% in case B
when initially channel 1 is addressed only. As seen from Table 2, the general
tendency in cases A and B is that the increase of the background-beam
intensity leads to a deeper modulation of the refractive index in the straight
parts of the waveguides and to a somewhat weaker probe beam branching in
the interaction region. In case C, one optically-induced waveguide becomes
coupled to another one whereas the other two become decoupled only (Fig. 5,
right column, z = LDiff ), so the higher intensity leads to a weak increase
of the coupling efficiency into one of the channels and to a decrease of this
efficiency into the other channel.
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Table 1: Collinear propagation: Probe beam branching efficiencies in two (cases A,
B; z = 6LDiff ) and in three output ports (case C; z = 2LDiff ), respectively, for γ =
I/I1D

SOL = 1 . (IN)-input; (n.r.)-not related.
Channel IN A B C

U 99% 30% 42% 21%
M n.r. n.r. n.r. 52%
L 1% 70% 57% 26%
U 1% 65% 54% 16%
M n.r. n.r. n.r. 47%
L 99% 35% 45% 36%

Table 2: Perpendicular pump and probe beams: Probe beam branching efficiencies
in the different propagation regimes; (L)-linear; (A), (B), and (C) - nonlinear propagation
regimes for cases A, B, and C, respectively, for γ = I/I1D

SOL = 1 and γ = 2. (IN)-input.
Channel IN L A B C

1 100% 44% 72% 66% 61%
γ = 1 2 0% 20% 18% 25% 25%

1 0% 20% 19% 24% 20%
2 100% 44% 68% 63% 58%
1 100% 44% 82% 69% 54%

γ = 2 2 0% 20% 14% 21% 26%
1 0% 20% 14% 15% 15%
2 100% 44% 81% 60% 60%
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Figure 8: Perpendicular pump and probe beams: Input probe beams (IN) entering
the NLM perpendicularly to the pump, in the center of the imaginary cell containing the
NLM (Fig. 6) and propagating along the x-axis. (L): Output power density distributions
of the probe beams propagating linearly to the exit of the cell (x/LDiff=3.5). The results
for the probe beams at the exit of the NLM in the nonlinear regimes for cases A, B, and
C are correspondingly denoted. γ = 1. The horizontal dashed (yellow) line indicates the
(x, z) input symmetry plane, whereas the solid lines denote the virtual output channels
for which the probe-beam branching efficiencies are summarized in Table 2.

5. Conclusion

The existence and evolution of ordered structures of odd dark beams of
semi-infinite length carrying edge-screw phase dislocations (fractional vor-
tex dipoles) were studied in a local self-defocusing Kerr nonlinear medium.
We found appropriate conditions for controlling the process of crossing dark
beams in a way suitable for probe-beam cross-switching. The proposed tech-
nique strongly relies on the features of these beams that a quasi-infinite vor-
tex dipole (dipole much longer than the background beam) evolves into an
one-dimensional dark spatial soliton and that a single semi-infinite fractional
dipole bends and develops a snake-like instability near the dark beam end.
Depending on their phase profiles, four parallel semi-infinite fractional vortex
dipoles aligned to initially form two dark stripes can evolve into two differ-
ent cross-connects able to partially redirect collinearly- and perpendicularly-
propagating probe optical beams at different branching efficiencies. While
being still far from discussing particular practical applications, the desirable
high-efficient routing of probe beams by fractional vortex dipoles seems feasi-
ble provided the interaction length in the overlapping region of the fractional
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vortex dipoles and the probe beams becomes longer. The presented results
provide a reasonable first step for further optimization of such schemes. The
presented results provide a reasonable first step for further optimization of
such schemes. Since the eventual medium nonlocality can have a substantial
(not necessarily detrimental) impact [26, 27, 28, 29] on the fractional vortex
dipole interaction and stability, further numerical simulations for realistic
nonlinear media are under way.
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7. Captions for the figures

Fig.1 – Edge-screw mixed phase dislocation (fractional vortex dipole,
FVD) described by Eq. 1.

Fig.2 – Cross-sections of the input quasi-infinite FVD (solid red curve)
and of the fundamental 1D DSS at z/LNL = 6 (open circles). Dashed curve
– FVD diffracted at the same distance.

Fig.3 – Upper row - Power density distributions of an infinite FVD beam
at the entrance of the NLM (a) and at a nonlinear propagation distance
z/LNL = 6 (b). Middle and bottom rows - Power density (c,d) and phase
distributions (e,f) of a semi-infinite FVD beam at the same distances. I =
I1D
SOL. The lower four images are truncated to show the significant parts of the

computational windows only. An animation of the FVD beam propagation
can be found here.

Fig.4 – Power density (odd rows) and phase distributions (even rows) of
pairs of overlapping (∆ = 2.6a) inline semi-infinite FVD beams in the case of
opposite (left column) and equal helicities (right column) of the phase semi-
spirals. Top two rows z = 0, bottom two rows - at the exit of the NLM
(z/LDiff = 6). I = I1D

SOL.
Fig.5 – Phase profiles (upper row) and power density distributions of pairs

of inline semi-infinite and overlapping FVDs at the entrance of the NLM and
at distances z = 3LNL and 6LNL for case A and case B and at z = 1LNL

and 2LNL for case C. Hyperlinks-respective avi-movies.
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Fig.6 – Schematic view of the background beam carrying the FVD beams
inside the nonlinear medium with the used notation of the coordinate system
axes. Collinear propagation is along the z-axis, perpendicular propagation -
along the x-axis. The horizontal and vertical tiny (color) lines cross approx-
imately at the positions where the probe beams enter the NLM.

Fig.7 – Collinear propagation: Input probe beams (IN) entering the
NLM being centered in both dark beam-induced waveguides as marked in
Fig. 6 and propagating along the z-axis parallel to the pump. The power
density profiles of the probe beams at the exit of the NLM in the nonlinear
regimes (γ = 1) for cases A, B, and C are correspondingly denoted. The
horizontal dashed (yellow) line indicates the (x, z) symmetry plane separating
the two imaginary output channels in cases A and B. The parallel solid lines
in case C separate the virtual three output channels for which the probe-beam
branching efficiencies are also summarized in Table 1.

Fig.8 – Perpendicular pump and probe beams: Input probe beams
(IN) entering the NLM perpendicularly to the pump, in the center of the
imaginary cell containing the NLM (Fig. 6) and propagating along the x-axis.
(L): Output power density distributions of the probe beams propagating
linearly to the exit of the cell (x/LDiff=3.5). The results for the probe
beams at the exit of the NLM in the nonlinear regimes for cases A, B, and
C are correspondingly denoted. γ = 1. The horizontal dashed (yellow) line
indicates the (x, z) input symmetry plane, whereas the solid lines denote the
virtual output channels for which the probe-beam branching efficiencies are
summarized in Table 2.

8. Captions for the tables

Table 1 – Collinear propagation: Probe beam branching efficiencies in
two (cases A, B; z = 6LDiff ) and in three output ports (case C; z = 2LDiff ),
respectively, for γ = I/I1D

SOL = 1. (IN)-input; (n.r.)-not related.
Table 2 – Perpendicular pump and probe beams: Probe beam

branching efficiencies in the different propagation regimes; (L)-linear; (A),
(B), and (C) - nonlinear propagation regimes for cases A, B, and C, respec-
tively, for γ = I/I1D

SOL = 1 and γ = 2. (IN)-input.
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