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Abstract

In this work we numerically study the evolution and interaction of one-
dimensional (1-D) dark spatial solitons and semi-infinite dark stripes (SIDSs)
in a local self-defocusing Kerr nonlinear medium. The experimental results
in the linear regime of propagation confirm that the SIDS bending and fu-
sion with the infinite 1-D dark beam modeled for negative nonlinearity is due
to the opposite phase semi-helicities of SID beam ends. Results for several
interaction scenaria show that bending ends of the semi-infinite dark stripes
splice to the 1-D dark beam to form structures resembling waveguide cou-
plers/branchers. Well pronounced modulational stability of 1-D dark spatial
solitons under strong symmetric background beam modulation from decaying
SIDSs is predicted.
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1. Introduction

Optical vortices (OVs) [1] and one-dimensional dark beams [2] with their
characteristic helical and step-like phase profiles [3] are classical entities in
the field of singular optics [4]. Due to the presence of a two-dimensional
(2-D) point phase dislocation on the axis of the OVs and the presence of a
one-dimensional (1-D) phase dislocation along a line for the 1-D dark beam,
the phase of the optical field becomes indeterminate and the field amplitude
vanishes at the dislocation point(s) [5]. It is known that the relative phases
of interacting singular beams determine their coherent interaction in both
the linear and the locally nonlinear propagation regime [6, 7, 8]. This also
holds when singular beams are arranged to form optical lattices [9, 10].

Propagation of optical beams in nonlinear media (NLM) has been a sub-
ject of continuing interest for more than four decades due to the possibility
for creation of reconfigurable waveguides through the intensity-dependent re-
fractive index change [11, 12]. Such optically induced waveguides can guide
weak signal beams and pulses [13, 14], which motivates the investigation of
novel techniques for the manipulation of the transverse beam dynamics and
opens possibilities for realization of waveguides with complex transient ge-
ometries. Besides their intriguing physical picture, particular interest in dark
spatial solitons (DSSs) is motivated by their ability to induce gradient optical
waveguides in bulk self-defocusing NLM [6, 14, 15, 16, 17]. The only known
truly 2-D DSSs are the OV solitons [1] whereas in one transverse spatial
dimension the DSSs manifest themselves as self-supporting dark stripes [2].

On the other hand, the field of singular optics also knows dark (or grey)
waves that slowly change their parameters even when they are generated from
perfectly odd initial conditions. A classical example is the ring dark solitary
wave [18, 19, 20, 21]. In their pioneering analysis [22], Nye and Berry con-
jectured that phase dislocations with a combination of a step- and screw-like
phase profile (fractional vortex dipoles, FVDs) cannot exist. Nonetheless,
indications for their existence were found [23, 24] for two interacting op-
tical vortices of opposite topological charges. Moderate saturation of the
medium’s third-order nonlinearity enabled the suppression of the snake in-
stability of crossed 1D dark solitons and the identification of 1-D fractional
vortex dipoles (FVDs) of finite length [25, 26]. Later on, such FVDs with
step-screw phase dislocations were experimentally generated under control-
lable initial conditions by computer-generated holograms [27]. Although two
different schemes for directional coupling of signal beams by steering FVD
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beams were proposed in Kerr media with negative nonlinearities [28], the
first successful experiment was conducted years later in a biased photore-
fractive medium with a positive nonlinearity [29]. The evolution of ordered
structures of semi-infinite FVDs was studied for the first time [30] in a self-
defocusing Kerr nonlinear medium. The results showed that depending on
their phase profiles, four parallel semi-infinite FVDs aligned to initially form
two dark stripes can evolve into two different cross-connects able to partially
redirect collinearly- and perpendicularly-propagating probe optical beams at
different branching efficiencies.

Let us here clarify the terminology adopted in this paper: The semi-
infinite dark stripes (SIDSs) are in essence fractional vortex dipoles (FVDs)
with one screw-like dislocation nested on the background while the second
one is located far outside the background.

In this work we numerically analyze the evolution and interaction of 1-D
dark spatial solitons (DSSs) and semi-infinite dark stripes (SIDSs) in a local
self-defocusing Kerr nonlinear medium (NLM). The presented experimen-
tal results in the linear regime of propagation confirm that the SIDS-beam
bending and fusion with the 1-D DSS predicted numerically for the nonlinear
regime is due to the (suitably chosen) opposite phase semi-helicities of SIDS
beam ends. Results for several interaction scenaria are shown - single DSS
interacting with one, two, and four parallel SIDSs. Within a certain propaga-
tion distance along the NLM, the inherently restless ends of the semi-infinite
dark stripes splice to the 1-D DSS to form structures resembling waveguide
couplers/branchers. The ability of such 2-to-1 and 3-to-1 couplers to guide
and merge probe waves is numerically investigated. In some cases the in-
teraction of 1-D DSS and SIDSs steering away from the DSS is investigated
for comparison too. A well pronounced modulational stability of the 1-D
DSSs under strong symmetric background beam perturbations from decay-
ing SIDSs is observed.

2. Numerical model and calibration

The pure 1-D phase dislocation of the dark beam is given by (see Fig. 1a)

Φ1D(y) =

{
+∆Φ/2 for y ≤ 0

−∆Φ/2 for y > 0.
(1)

The mixed (edge-screw, ES) phase dislocation of the FVD consists of a 1-D
phase step of length 2b, which ends with pairs of phase semi-spirals with
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opposite helicities. The phase profile of this mixed-type phase dislocation
can be written in the form

ΦFV D(x, y) =
∆Φ

2π

[
arctan

(
y

x + b

)
− arctan

(
y

x− b

)]
. (2)

In both equations ∆Φ stands for the magnitude of the dislocation phase
step and x and y denote the transverse Cartesian coordinates parallel and
perpendicular to the dislocation. In order to keep the dark beam contrast
and the refractive index modulation as high as possible, all data in this work
refer to ∆Φ = π. The semi-infinite dark stripes (SIDSs) analyzed in this
work (FVDs much longer than the background beam diameter) are modeled
by shifting the respective amplitude and phase distributions to place one of
the FVD beam ends initially at the center of the background beam while the
second one is far outside the background (and the computational window).
A surface plot of the phase of the semi-infinite dark stripe beam is shown
in Fig. 1b. The slowly-varying electric field amplitude of each dark beam is
assumed to be tanh-shaped of width a and, when centered on the background
beam, of the form

EJ(x, y, z = 0) =
√

I0B(x, y) tanh[rα,β(x, y)/a] exp[iΦJ(x, y)], (3)

where J = 1D or J = SIDS. Here the effective coordinate rα,β(x, y) is

rα,β(x, y) = [α(x + βb)2 + y2]1/2, (4)

where for the 1-D dark beam α = 0, while for the SIDS beam

α =





0 if |x| ≤ b

1 and β = −1 for x > b.

1 and β = 1 for x ≤ −b

(5)

The finite background beam carrying the singular beams is chosen to be of
a super-Gaussian form

B(x, y) = exp{−[(x2 + y2)/w2]8}, (6)

and its width w is chosen to exceed more than 20 times the initial dark beam
width a. The numerical simulations of the dark beam propagation along
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Figure 1: One-dimensional step phase dislocation (a) and semi-infinite edge-screw mixed
phase dislocation of a semi-infinite dark stripe (b) described by Eq. 1 and Eq. 2, respec-
tively.

the local Kerr NLM are carried out using the (2+1)-dimensional nonlinear
Schrödinger equation

i∂E/∂(z/LDiff ) + (1/2)∆T E − γ|E|2E = 0, (7)

which accounts for the evolution of the slowly-varying optical beam envelope
amplitude E under the combined action of nonlinearity and diffraction. Here
∆T is the transverse part of the Laplace operator, γ = LDiff/LNL, and
LDiff = ka2 and LNL = 1/(k|n2|I) stand for the diffraction and nonlinear
length of the dark beam respectively. The minus sign in Eq. 7 implies a self-
defocusing nonlinearity, a necessary condition for dark spatial soliton (γ = 1)
formation and for waveguiding by dark beams. In the above notations, k is
the wave number inside the medium and I is the peak field intensity. The
transverse spatial coordinates (x and y) are normalized to the odd dark beam
width a. Eq. 7 was solved numerically by means of the split-step Fourier
method with a computational window spanning over 1024×1024 grid points.
As a standard test we modeled the formation of a fundamental 1-D dark
spatial soliton up to z = 5LNL and compared it to the initial tanh-shaped 1-
D dark beam profile. As shown in previous analyses of odd dark beams with
mixed step-screw dislocations [27, 28], the background-beam intensity has a
weak influence on the FVD beam’s dynamics. Negative nonlinearity however
is important for keeping the optically induced refractive index modulation
gradients (e.g. dark beam profile and refractive index profile) steep, which
is crucial for all-optical guiding, deflection, and switching of signal beams
or pulses. The background beam intensity in the following simulations is
kept equal to that needed to form this fundamental 1-D DSS (I = I1D

SOL, i.e.
γ = 1).

The incoming probe beams used in generating Fig. 8 are assumed to be
Gaussian and of widths a, equal to the initial width of each of the dark
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beams. The numerical window containing the NLM is a cuboid, with the
dark beams propagating along the z-coordinate, whereas the probe beams
propagate and evolve along the coordinate x under the influence of diffraction
and the induced refractive index modulation in the (y, z) plane. To model
this, we solved the equation

i∂S/∂x + [1/(2LDS)](∂2/∂y2 + ∂2/∂z2)S − |E|2S/LNL = 0. (8)

Here LDS = kSa2
S is the diffraction length of the bright probe beam of width

aS such that LDS = LDiff = LNL. Since the evolution of the 1-D DSS and
the SIDS(s) is followed up to z = 4LNL and from each simulation for the
pump beams we stored 256 E-field amplitude and phase distributions, the
computational grid for the probe beams spans over 256 × 256 grid points.
Each probe beam enters well centered the induced waveguides at the wing of
the background beam and at location z = 1LNL.

3. Results and discussion

In the upper left frames in Fig. 2 we show the significant parts of the
intensity (top left) and the phase profiles of a semi-infinite dark stripe. In
this and in all other cases reported here, the desired phase distribution of
the dark beam(s) is sent to a reflective liquid-crystal spatial phase modula-
tor (HOLOEYE) and the linear beam evolution is experimentally followed
up to z = 3LDiff . In these measurements we used the attenuated output of
a Ti:Sapphire laser with a central wavelength of λc = 795nm and a charge-
coupled device camera (Allied Vision Technologies Pike F-505B, 2452×2054
pix., 3.45µm pixel size). The diffraction length LDiff is calibrated with re-
spect to the spatial spreading (due to the diffraction) of the pure 1-D dark
beam (see Fig. 3, lower left frame). All the presented linear measurements
show that the scenaria of the interactions between the 1-D dark beam and
the SIDSs are phase-dependent. Compensating for the diffraction, the self-
defocusing nonlinearity keeps the dark beams narrow and the respective re-
fractive index gradients steep, which is important for potential all-optical
guiding applications (see Fig. 8). In the right column in Fig. 2 we show
the nonlinear evolution of a single SIDS along the local self-defocusing Kerr
NLM. As seen, the SIDS beam develops snake instability [31] near its end
and one vortex becomes clearly separated from the bending rest of the dark
stripe for z > 3LNL. The respective phase profile (see e.g. the bottom right
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Figure 2: Upper left frames: Intensity (top left) and phase profiles of a semi-infinite dark
stripe (SIDS) and experimentally recorded SIDS evolution up to z = 3LDiff (lower left
frame). Right column: Nonlinear evolution of a single semi-infinite dark stripe along the
local self-defocusing Kerr nonlinear medium (NLM). An animation (avi-file) of the SIDS
beam evolution can be found in the supplementary material.

frame in Fig. 3 in [30]) shows that four vortices with alternating topological
charges are formed, three of them with highly overlapping cores. (An anima-
tion (avi-file) of the SIDS beam evolution can be found in the supplementary
material).

In Fig. 3, following the same style of presentation, we show the results
obtained for a pure 1-D dark beam in the linear regime (lower left frame;
z = 3LDiff ) and the 1-D dark spatial soliton formation up to z = 4LNL

(right column). The inevitable nonlinear background beam broadening in
the self-defocusing NLM is clearly visible.

In Fig. 4 we show the interaction between a 1-D dark beam and a sin-
gle SIDS. The semi-infinite dark stripe is placed along the diameter of the
background beam and the 1-D dark beam is shifted upwards as in generat-
ing Fig. 3. The intensity and phase profiles of the interacting (fusing) dark
beams are shown in the upper left frames in Fig. 4. The SIDS beam bending
towards the 1-D dark beam in the linear regime is clearly pronounced in the
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Figure 3: Upper left frames: Intensity (top left) and phase profiles of a one-dimensional odd
dark beam (1-D ODB) and experimentally recorded 1-D ODB evolution up to z = 3LDiff

(lowest left frame). Right column: Nonlinear evolution of a 1-D ODB along the local
self-defocusing Kerr nonlinear medium demonstrating the formation of a 1-D dark spatial
soliton (see also Fig. 2). An animation (avi-file) of the 1-D DSS formation can be found
in the supplementary material.

experimentally recorded lower left frame (z = 3LDiff ). In the second col-
umn in Fig. 4 we show the evolution of the interacting dark beams along the
NLM. Dark beam fusion is clearly observable near z = 1LNL. Later on, the
1-D dark beam separates (z = 2LNL) and is moved upwards by the repulsion
from the SIDS beam. The bending end of the SIDS connects to the remain-
ing unshifted part of the 1-D dark stripe. At larger nonlinear propagation
distances both SIDS and 1-D dark beam develop snake instability near the
background-beam center.

In contrast to Fig. 4, Fig. 5 presents the interaction between a 1-D dark
beam and a pair of surrounding SIDSs. For suitably chosen and opposite
helicities of the SIDS phases (left column, second frame), even in the linear
regime of propagation the SIDS beams bend towards the central 1-D dark
beam (experimentally recorded lower left frame; z = 3LDiff ). The same
beam fusion in the nonlinear regime is clearly seen near z = 1LNL. During
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z=3Ldiff    Figure 4: Upper left frames: Intensity (top left) and phase profiles of a 1-D ODB and a

semi-infinite parallel SIDS and experimentally recorded dark beam evolution up to z =
3LDiff (lowest left frame). Right column: Nonlinear evolution of the dark beams along
the local self-defocusing Kerr nonlinear medium demonstrating dark beam fusion. An
animation (avi-file) can be found in the supplementary material.

propagation along the NLM the dark beam repulsion becomes stronger and
the dark beam connections break up again. Hence, the proper nonlinear
propagation distance for modeling the performance of a beam coupler/splitter
based on this configuration is around z = 1LNL.

The same conclusion can be drawn from the results shown in Fig. 6. Here
we show the evolution and interaction of a 1-D dark beam and two pairs of
surrounding SIDSs. The experimentally-recorded linear interaction structure
is not as clear as in the preceding cases but the bending of the dark beam
ends is indicative for the pair-wise bending of the ends of the SIDSs towards
to the central 1-D dark beam. Similar pair-wise beam fusion to the 1-D
dark beam in the nonlinear regime is clearly seen near z = 1LNL. With
increasing the propagation distance along the NLM, the outer-lying SIDS
beams become detached from the fusion region (near 2− 3LNL), followed by
the inner-lying SIDSs (near 4LNL). After detaching from the fusion region,
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z=3Ldiff    Figure 5: Upper left frames: Intensity (top left) and phase profiles of a 1-D ODB and
a pair of side-lying semi-infinite parallel dark stripes and experimentally recorded dark
beam evolution up to z = 3LDiff (lowest left frame). Right column: Nonlinear evolution
of the dark beams along the local self-defocusing Kerr nonlinear medium demonstrating
dark beam fusion (z = 1LNL). An animation (avi-file) can be found in the supplementary
material.

the SIDS beams develop a snake instability. It is worth mentioning that
the 1-D dark beam exposed to strong symmetric perturbations clearly shows
modulational stability and keeps propagating as a 1-D dark spatial soliton
(see right columns in Figs. 5 and 6).

In Fig. 7 we show the interaction of a 1-D dark beam with a single SIDS
(left column) and with a pair of surrounding SIDS (right column) when
the initial phase(s) ofo the SIDS (Fig. 7, upper frames) are oriented in the
opposite direction compared to the cases shown in Figs. 4 and 5. When
a single SIDS is initially present on the background (Fig. 7, left column)
its end bends away from the 1-D dark beam. Since the type of dark beam
interaction is governed by topology, we observe dark beam repulsion (see the
increasing distances between the parallel dark beams in the background-beam
wing). The development of snake instability is clearly observed. The snake
instability of the 1-D dark beam, however, is absent when the surrounding
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Figure 6: Upper left frames: Intensity (top left) and phase profiles of a 1-D dark beam
and two pairs of semi-infinite parallel dark stripes and experimentally recorded dark beam
evolution up to z = 3LDiff (lowest left frame). Right column: Nonlinear evolution of the
dark beams along the local self-defocusing Kerr nonlinear medium demonstrating dark
beam fusion (at z = 1LNL). An animation (avi-file) can be found in the supplementary
material.

pair of SIDS beams initially move away from the 1-D beam (Fig. 7, right
column). We emphasize here the remarkable stability of the 1-D dark beam
against such strong symmetric perturbations. The detailed analysis showed
that under such perturbations it essentially evolved like 1-D dark spatial
solitons.

Summarizing the findings up to this point, we may say that a single DSS
interacting (eventually) with one or two parallel SIDSs can form 1-to-1, 2-to-
1 and 3-to-1 couplers to guide and merge probe waves. We analyzed the two
non-trivial cases numerically by solving Eq. 8. In Fig. 8a we show a schematic
of the interaction geometry inside the NLM. The weak in-phase bright probe
beams (the arrows in Fig. 8a) enter well centered the dark-beam-induced
waveguides at z = 1LNL (see the upper frames in Figs. 4 and 5) and propagate
perpendicularly to the background beam carrying the dark structures. The
obtained results for the probe beams are presented in Fig. 8b,c as beam cross-
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Figure 7: Upper frames: Initial intensity (first row) and phase profiles (second row) of
a 1-D dark beam and of syde-lying single (left) and pair of SIDS (right) which ends
later steer away from the 1-D dark beam. Lower block of frames: Nonlinear evolution
of the dark beams along the NLM. Note the presence (left lower frames) and absence
(lower right frames) of modulational instability of the 1-D dark beam in dependence of
the absence/presence of symmetry of the transverse perturbations.

sections. The curves with hollow circles denote the probe beam profiles at the
exit of the interaction region in the pure linear regime of propagation. The
red solid curves represent the output probe beam profiles in the nonlinear
regime. Because of the two interacting dark beams in the 2-to-1 coupler, there
is a small shift between the location of the center of mass of the incoming
probe beams (dashed curves in Fig.8b) with respect to the combined output
probe beam in the nonlinear regime (red solid curve). This is due to the
initial asymmetry (one 1-D dark beam and one side-lying SIDS) resulting in
a waveguide moving in the transverse direction. The symmetric dark beam
disposition in the case of the 3-to-1 coupler ensures transverse stationarity
of the waveguides (at least up to z = 1LNL). That is why the center of mass
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of the input (Fig. 8c, dashed curve) and of the output probe beams (red
solid curve) coincide. Assuming that each probe beam carries initially one
unit of energy (total of two and three units of probe wave energy for the two
respective cases considered), at the exit of the 2-to-1 nonlinear coupler the
probe wave carries 1.04 units of energy, i.e. the nonlinear output coupling
efficiency is ∼ 52%. In the purely linear regime only 26% of the total input
energy is transferred to the same output virtual channel (of a width a equal to
the width of the input dark beam). The calculations for the 3-to-1 nonlinear
coupler showed that the output probe wave carries 1.86 units of energy of
the total 3 units of input energy (efficiency ∼ 62%). In the purely linear
regime the output coupling efficiency is 36% only. This moderate coupling
efficiency is due to the lack of effective refractive-index modulation (and
induced waveguiding) for the probe beams along the z-axis (see Fig. 8a).
Still being far from discussing particular practical applications, the desirable
high-efficiency coupling/splitting of probe beams by interacting 1-D dark
beams and semi-infinite dark beams seems feasible and the presented results
provide a reasonable first step for further optimization of such interaction
schemes.

4. Conclusion

The presented results show that the interaction between infinite 1-D dark
beams and semi-infinite dark stripes (SIDSs) is governed by their spatial
phases. The medium’s nonlinearity, when negative, smoothes out the oscilla-
tions on the background beam due to the SIDS beam bending and dark beam
repulsion. In view of potential all-optical guiding/switching applications, the
negative nonlinearity has the important role to keep the dark beams narrow
and the respective refractive index modulation gradients steep. The news
here can be summarized as follows: i) The known repulsion between coher-
ent 1-D dark beams (solitons) holds true also for the interaction between a
1-D dark beam and semi-infinite FVD(s). The bending end of the FVD(s)
develops a snake instability; ii) Steering SIDSs can split an infinite 1-D dark
beam into two new SIDSs (Fig. 4; lower two frames in the middle column).
Eventually, the input SIDS beam end(s) can connect to the 1-D beam or
to the one of the newly born SIDSs to form an optically-induced nonlinear
coupler (see Figs. 4-6) or a curved waveguide (see Fig. 4); iii) One dimen-
sional dark spatial solitons remain stable under strong symmetric spatial
perturbations induced by SIDSs. Numerical calculations show reasonably
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high efficiencies for couplers that consist of interacting 1-D dark beams and
semi-infinite dark beams, subject to optimization and further investigation
of these all-optical guiding and switching schemes.
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6. Captions for the figures

Fig.1 – One-dimensional step phase dislocation (a) and semi-infinite edge-
screw mixed phase dislocation of a semi-infinite dark stripe (b) described by
Eq. 1 and Eq. 2, respectively.

Fig.2 – Upper left frames: Intensity (top left) and phase profiles of a
semi-infinite dark stripe (SIDS) and experimentally recorded SIDS evolution
up to z = 3LDiff (lower left frame). Right column: Nonlinear evolution of a
single semi-infinite dark stripe along the local self-defocusing Kerr nonlinear
medium (NLM). An animation (avi-file) of the SIDS beam evolution can be
found in the supplementary material.

Fig.3 – Upper left frames: Intensity (top left) and phase profiles of a one-
dimensional odd dark beam (1-D ODB) and experimentally recorded 1-D
ODB evolution up to z = 3LDiff (lowest left frame). Right column: Non-
linear evolution of a 1-D ODB along the local self-defocusing Kerr nonlinear
medium demonstrating the formation of a 1-D dark spatial soliton (see also
Fig. 2). An animation (avi-file) of the 1-D DSS formation can be found in
the supplementary material.

Fig.4 – Upper left frames: Intensity (top left) and phase profiles of a 1-
D ODB and a semi-infinite parallel SIDS and experimentally recorded dark
beam evolution up to z = 3LDiff (lowest left frame). Right column: Non-
linear evolution of the dark beams along the local self-defocusing Kerr non-
linear medium demonstrating dark beam fusion. An animation (avi-file) can
be found in the supplementary material.

Fig.5 – Upper left frames: Intensity (top left) and phase profiles of a
1-D ODB and a pair of side-lying semi-infinite parallel dark stripes and ex-
perimentally recorded dark beam evolution up to z = 3LDiff (lowest left

14

http://quantum.phys.uni-sofia.bg/dreischuh/Switch_FVD/Fig2.avi�
http://quantum.phys.uni-sofia.bg/dreischuh/Switch_FVD/Fig3.avi�
http://quantum.phys.uni-sofia.bg/dreischuh/Switch_FVD/Fig4.avi�


frame). Right column: Nonlinear evolution of the dark beams along the lo-
cal self-defocusing Kerr nonlinear medium demonstrating dark beam fusion
(z = 1LNL). An animation (avi-file) can be found in the supplementary
material.

Fig.6 – Upper left frames: Intensity (top left) and phase profiles of a
1-D dark beam and two pairs of semi-infinite parallel dark stripes and ex-
perimentally recorded dark beam evolution up to z = 3LDiff (lowest left
frame). Right column: Nonlinear evolution of the dark beams along the lo-
cal self-defocusing Kerr nonlinear medium demonstrating dark beam fusion
(at z = 1LNL). An animation (avi-file) can be found in the supplementary
material.

Fig.7 – Upper frames: Initial intensity (first row) and phase profiles (sec-
ond row) of a 1-D dark beam and of syde-lying single (left) and pair of SIDS
(right) which ends later steer away from the 1-D dark beam. Lower block
of frames: Nonlinear evolution of the dark beams along the NLM. Note the
presence (left lower frames) and absence (lower right frames) of modulational
instability of the 1-D dark beam in dependence of the absence/presence of
symmetry of the transverse perturbations.

Fig.8 – a) Schematic view of the background beam carrying the 1-D dark
beam and two SIDSs inside the nonlinear medium (NLM) with the used
notations of the coordinate system axes. The dark beams propagate along the
z-axis, the probe beams - perpendicularly, along the x-axis, entering the NLM
at z = 1LNL. The tiny (color) lines cross the x − y-plane approximately at
the position of the background beam propagation axis. b) and c): Coupling
of two b) and three input probe beams c) into a single output channel by
all-optical guiding structures formed by fusing 1-D dark beam and a singlel
SIDS (Case b); see Fig. 4 at z = 1LNL) and by fusing 1-D dark beam and a
pair of surrounding SIDSs (Case c), see Fig. 5 at z = 1LNL). Dashed curves -
cross-sections of the input probe beams. Hollow circles - output probe beams
in the linear regime. Red solid curves - cross-sections of the output probe
beams in the nonlinear regime.
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Figure 8: a) Schematic view of the background beam carrying the 1-D dark beam and
two SIDSs inside the nonlinear medium (NLM) with the used notations of the coordinate
system axes. The dark beams propagate along the z-axis, the probe beams - perpendic-
ularly, along the x-axis, entering the NLM at z = 1LNL. The tiny (color) lines cross the
x − y-plane approximately at the position of the background beam propagation axis. b)
and c): Coupling of two b) and three input probe beams c) into a single output channel
by all-optical guiding structures formed by fusing 1-D dark beam and a single SIDS (Case
b); see Fig. 4 at z = 1LNL) and by fusing 1-D dark beam and a pair of surrounding
SIDSs (Case c), see Fig. 5 at z = 1LNL). Dashed curves - cross-sections of the input
probe beams. Hollow circles - output probe beams in the linear regime. Red solid curves
- cross-sections of the output probe beams in the nonlinear regime.
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