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In this work we show both experimentally and by numerical simulations that the presence and evolution of
ring dark beam and/or on-axis optical vortex nested on a bright background beam noticeably perturb the host
background. In a photorefractive nonlinear medium (crystal SBN) these perturbations can initiate self-focusing
of the background. By changing the dark ring radius and the presence of an optical vortex and keeping all
other experimental parameters unchanged, we can control the dynamics at the initial stage of longitudinal self-
focusing and the type of self-focusing structure (single peak or bright ring of variable radius). The presented
results may appear especially important in experiments that involve cascaded nonlinear frequency mixing of
singular beams, in which accelerated dark beam spreading is accompanied by self-focusing of certain portions
of the perturbed host beam.
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1. Introduction
Optical vortices (OVs) are associated with isolated point
singularities with a 2π helical phase profile around them,
while ring dark waves (RDWs) contain π step-like phase
discontinuities curved in a ring and flat phase profiles
in- and outside this ring. In the case of continuous-wave
laser emission and even in short pulses with small spec-
tral bandwidths single phase masks [1] or computer gen-
erated holograms (CGHs, [2, 3]) can create such phase
dislocations without the need for additional dispersion
compensating elements. Possible methods of creating
OVs and RDWs in sub-50-femtosecond laser fields em-
ploy CGHs or spatial light modulators aligned within
optical schemes with spatial dispersion compensation -
dispersionless 4f- [4, 5] or 2f-2f setup [6, 7] or a double-
pass grating [8] or prism compressor [9]. In the par-
ticular case of OVs successful techniques make use of
achromatic vortex lens [10], uniaxial crystal [11, 12] or
axially symmetric polarizer [13].

In contrast to the evolution of singular beams in self-
defocusing nonlinear media (NLM), their behavior in
self-focusing NLM is relatively less explored [14–17]. As
self-focusing materials are more common in nature, this
is somewhat surprising and could be explained by the
intrinsic azimuthal and modulational instabilities of the
beam [18–21]. However, many intriguing perturbative
nonlinear processes (e.g. cascaded four-wave mixing as-
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sisting the white light generation) and non-perturbative
processes like high harmonic generation take place in
transparent nonlinear media with positive nonlineari-
ties. For example, the generation of dispersion-free high-
intensity OV has allowed the investigation of nonlinear
vortex beam filamentation in air [22] and water [21]. The
use of high intensity beams increases the possibility to
observe cascaded nonlinear processes [23, 24]. Experi-
mental evidence of cascading has only been shown, how-
ever, in terms of modulated intensity profiles [25], and
nonlinear interaction has only been observed up to first
cascading order [26]. It was recently shown [27] that the
OVs, impressed on the fundamental pump beam, survive
the highly nonlinear process of high-harmonic generation
[28, 29] reaching the extreme ultra-violet spectral range.

Particular interest in singular dark beams (OVs, one-
dimensional dark beams, and RDWs) is motivated by
their ability to propagate as dark spatial solitons or dark
solitary waves and to induce gradient optical waveguides
in bulk self-defocusing NLM [30–32]. Necessary but not
sufficient condition for this is to propagate them in a
NLM of negative nonlinearity, in which the dark beam
diffraction is compensated for by the nonlinearity of the
medium. In contrast, the positive (e.g. Kerr or pho-
torefractive) nonlinearity leads to accelerated dark beam
broadening and energy density redistribution on the host
background beam. As a result, controllable initiation of
self-focusing of the bright structures on the host back-
ground could be expected [15, 33, 34].

In this work we show both experimentally and by nu-
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merical simulations that the presence and evolution of
ring dark beam and/or on-axis optical vortex nested on
a bright background beam are noticeably perturbing the
host background beam and, in a photorefractive nonlin-
ear medium, can initiate its self-focusing. Geometry-
controlled conditions here are the dark ring radius and
the presence of an optical vortex. Thus, at the initial
stages of the processes, we can relatively easily control
the self-focusing longitudinal dynamics and the type of
self-focusing structure (single peak or bright ring of vari-
able radius).

2. Experimental setup

To demonstrate this concept, in the reported experi-
ment we used a continuous-wave frequency-doubled Nd :
Y V O4 laser at a wavelength of 532nm. The experimen-
tal setup is shown in Fig. 1. The desired phase singular-
ities are generated by a set of binary CGHs, fabricated
photolithographically with a grating period of 30µm.
The first-order diffracted beam carrying the phase dis-
location(s) was focused by a lens FL at the front face
of a 6mm long SBN photorefractive crystal of a cross-
section 6mm×10mm. When focusing the incoming pure
Gaussian background beam down to 20µm at the front
facet we measured it to be 310µm wide at the exit facet.
This implies that the 6mm long NLM ensures nonlinear
beam propagation length of about six Rayleigh diffrac-
tion lengths Ld. The polarization of the laser beam was
parallel to the crystalline c-axis, thus the beam expe-
rienced strong photorefractive nonlinearity due to the
high electro-optic coefficient r33 in the SBN. The crys-
tal was biased by an externally applied electric field E0

ranging from 300V/cm to 400V/cm. The front or the
back facet of the crystal was imaged with a lens IL onto
a charge-coupled device (CCD) camera, both moving on
a common translation stage (see Fig. 1). Special atten-
tion is paid to the alignment of the CGHs in order to
place the dark singular beams well centered with respect
to the illuminating beam. The power of the background
beam was adjusted in order to initiate only weak self-
focusing of the pure Gaussian beam (see e.g. Fig. 4, left
graph and lower left pair of frames; 6intensity, close to
the 10When nesting a ring dark wave the beams peak
intensity remains the same at large ring radii and de-
creases at relatively small ring radii. The key point in
this work is that under these self-focusing conditions the
nonlinearly-accelerated dark beam broadening is able to
initiate well pronounced bright background beam self-
focusing. We refrained from increasing further the back-
ground beam power and the crystal illumination time to
more than 240s in order to avoid filamentation in the
SBN in a necklace-like bright beam structure and to keep
the slowly-varying envelope approximation of the model
equation (1) valid.

3. Numerical model

To numerically simulate the beam propagation inside
the biased photorefractive SBN crystal (dc field applied
along the x direction parallel to the crystalline c axis),
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Fig. 1. Experimental setup: B - Gaussian background beam
illuminating the computer-generated hologram (CGH). D -
diaphragm selecting the first-order diffracted beam. FL -
focusing lens (f = 3.5cm). SBN - biased photorefractive
crystal with marked orientation of the c−axis. Horizontal
arrow - beam’s polarization. IL and CCD - imaging lens and
charge-coupled device camera moving on a common transla-
tion stage to image the input or output facet of the crystal.

one has to solve the following system of equations [35, 36]

i
∂Aj
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(
∂2

∂x2
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∂y2

)
Aj − γ(Esc + E0)Aj = 0 , (1)

for the transverse components Aj of the slowly-varying
optical field amplitude. γ = (1/2)(2π/λ)2x2

0n
4
0reff is

a nonlinear material parameter accounting for the cor-
responding term of the electrooptic tensor (reff = r33

for SBN). When positive, γ accounts for the self-focusing
nonlinear response of the crystal. Esc is the space-charge
field related to the electrostatic potential Φ (Esc =
−∂Φ/∂x). E0 is the external field applied along the
c axis perpendicular to the beam propagation direction.
The electrostatic potential Φ is modeled by the equa-
tion [34, 35]

∇2Φ +∇Φ · ∇ ln(1 + I) = E0
∂

∂x
ln(1 + I) , (2)

where I = |A1|2 + |A2|2 is the total light intensity nor-
malized to the dark irradiance of the SBN crystal. The
last term in Eq. 2 accounts for the drift of the charge
carriers. In the above notations, the refractive index of
the medium is modulated via the Pockels effect accord-
ing to the relation n2 = n2

0 + n4
0r33∂Φ/∂x, assuming

that the incident beams are polarized along x direction
(crystalline c axis). All material parameters used in the
numerical simulations correspond to the typical values
of SBN crystals [37, 38] (r33 = 180pm/V , n0 = 2.3 and
γ = 4.3.10−4m/V ) and E0 is set to 400V/cm. In all
measurements presented here the beam’s polarization is
kept parallel to the crystaline c axis. That is why we set
|A2(z = 0)| << |A1(z = 0)| and, effectively, I ≈ |A1|2.

The input electric-field amplitude of the beam carry-
ing the optical vortex is assumed to be of the form

A1(x, y, z=0)=B(x, y) tanh[r(x, y)/r0] exp[iφ(x, y)] ,
(3)

where r and φ are the radial and azimuthal polar co-
ordinates corresponding to the Cartesian coordinates x
and y. The width w of the super-Gaussian background
beam

B(x, y) = B0 exp{−[
√

(x2 + y2)/w2]14} , (4)
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is chosen to be more than 10 times larger than the OV
width r0. We generated the optical vortices by binary
amplitude computer-generated holograms in which the
point phase dislocation is encoded in one interference
line with a fork-like splitting. In that case the vortex
beam is described with confluent hypergeometric func-
tion even in many articles this beam is approximated as a
Laguerre-Gaussian (LG) mode [39]. r-vortices described
by LG functions are found, for example, in beams emerg-
ing from cylindrical waveguides. In this case the OV
core half-width at half-intensity maximum r0 is related
to the width of the background Gaussian beam w by
r0 ≈ 0.59w [40]. Function tanh is used, for example,
to describe optical vortex solitons [31] and solitons in
Bose-Einstein condensates [41] for which the width of the
bright background beam should be much larger than this
of the dark beam. In our experiment we measured that
the width of the OV is equal to this of the background
beam. Moreover, in our simulations we had to provide
“additional space” on the background for a RDW. That
is why we used tanh-function for describing the input
dark beams. The 7-th power of the super-Gaussian beam
was chosen arbitrary and was found to have a negligible
influence on the numerical data.

When the beam is carrying a single ring dark wave of
radius ∆ and ring arc width r0, the input electric-field
amplitude of the beam is assumed to be of the form

A1(x, y, z=0) = B(r) tanh{|r−∆|/r0} exp[iψ(r)] . (5)

The initial phase ψ(r) = −π/2 for r < ∆ and ψ(r) =
+π/2 for r > ∆ of the RDW clearly shows the presence
of a pair of diametrical phase jumps across the dark ring.

We solved the model equations by means of a modi-
fication of the split-step Fourier method with a compu-
tational window spanning over 1024x1024 grid points.
As a standard test (for calibration purposes only and
inverting the sign of the nonlinear parameter γ to be
negative) we modeled the formation of a fundamental
one-dimensional tanh-shaped dark spatial soliton. All
further numerical simulations were carried out at this
background beam intensity. Since the presence of an
optical vortex and/or ring dark wave decrease the ini-
tial peak intensity of the background in dependence of
the particular dark structure, we will further express
all propagation distances in units of diffraction lengths
Ld = (2π/λ)n0r

2
0.

We carefully inspected our data during the calcula-
tions and restricted the propagation distances to lengths,
at which the peak intensities remained less than 6 times
higher than the initial one. This was done in order
to keep the slowly-varying envelope approximation valid
(see Eq. 1). That is why we will present numerical results
for propagation distance z/Ld = 2. It is worth mention-
ing, that at this distance the pure Gaussian background
beam, under perfect conditions and at the already spec-
ified intensity, increases its intensity by 6% only, close
to the 10% value estimated from the experimental data
(see Fig. 2, last column).
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∆=1 ∆=2 ∆=3 ∆=4 ∆=5 ∆=6

z=0

z=2Ld

0.78 0.93 0.99 1.00 1.00 1.00 1.00

2.01 5.54 5.29 3.63 2.89 2.22 1.06

        ∆∆∆∆/r0=       1           2           3           4           5           6 

z=0 

z=2Ld 

Fig. 2. Upper block of frames: Input beams (at z = 0)
and their numerically simulated reshaping at the exit of the
photorefractive NLM (at z = 2Ld, after weak self-focusing)
for dark rings of initial normalized radii ∆/r0. Number below
each frame - background beam peak intensity at the respec-
tive propagation distance. Lower row of frames: Exper-
imental beam profiles recorded at the exit of the 6mm long
SBN crystal for the same initial values of ∆/r0. Numbers
below each frame - relative increase of the beam’s peak inten-
sity at the exit facet of the crystal. Last column - nonlinear
evolution of a pure Gaussian background beam.

4. Results and discussion

Quite an intriguing insight into the bright beam reshap-
ing and self-focusing initiation can be gained when fol-
lowing the background beam evolution along the NLM
with initial dark rings of different normalized radii ∆/r0

nested on it (see Fig. 2). In the upper block of frames
in Fig. 2 we show the input beams (at z = 0) and their
numerically simulated reshaping at the exit of the pho-
torefractive NLM (at z = 2Ld, after weak self-focusing)
for different ∆. The numbers below each frame indi-
cate the background beam peak intensity at the respec-
tive propagation distance. In the lower row of frames
in Fig. 2 we show experimental beam profiles recorded
at the exit of the SBN crystal for the same initial val-
ues of ∆/r0. Numbers below each of these frames indi-
cates the relative increase of the beam’s peak intensity
at the exit facet of the crystal. For comparison, the
last column presents the nonlinear evolution of a pure
Gaussian background beam. The typical crystal expo-
sure time was 90s, except for ∆/r0 = 1 (240s). The bias
voltage in this measurement was set to 300V and the
crystal illumination was terminated (as done in all mea-
surements) prior to saturate the CCD camera. Note,
that in this set of simulations, in agreement with the ex-
periment, the fastest longitudinal dynamics is observed
for ∆/r0 = 2. For ∆/r0 = 1 the most intense parts of
the beam are initially located outside the dark ring and,
as seen in both simulations and experiment, a ring of
relatively large radius starts to self-focus. For ∆/r0 = 2
and 3, however, the intense areas of the bright beam are
near its axis and self-focusing in a single filament ini-
tiates, but with quite different intensity growth rates.
It is worth mentioning that, in contrast to the previous
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Fig. 3. Horizontal cross-sections of some of the experimental
frames shown in Fig. 2. Left graph - ∆/r0 = 1 and 2. Right
graph - ∆/r0 = 5 and 6. Bias voltage - 300V . Crystal
illumination time - 240s for ∆/r0 = 1 and 90s in all other
cases.

cases, for ∆/r0 = 3 the discrepancy between the calcu-
lated and measured transverse beam profiles and peak
fluxes is relatively large. The reason for this remains
still an open question. For ∆/r0 = 4 the central part
of the background starts to self-focus in a ring with a
small radius. Since for ∆/r0 = 5 and 6 the most intense
parts of the background are within the dark ring and
become compressed in space by its broadening, the pat-
terns become richer containing on-axis peaks surrounded
by shrinking bright rings of different radii. Note that in
all cases the peak power densities exceed this of a pure
Gaussian beam at the same nonlinear propagation dis-
tance. The close inspection of the pairs of numerical and
experimental data for the same initial ∆/r0 shows that
the ring ellipticity in our simulations is slightly higher
than in the experiment due to the SBN anisotropy, but
the agreement is qualitatively good.

In Fig. 3 we show horizontal cross-sections of some of
the recorded experimental frames presented in Fig. 2.
The curves in the left graph refer to ∆/r0 = 1 and
2, whereas in the right graph we show the data for
∆/r0 = 5 and 6. As seen (Fig. 3, left, solid curve),
the most confined dark ring with ∆/r0 = 1 gives birth
to a central peak and a surrounding ring of nearly equal
peak power densities. In contrast, the initially wider ring
with ∆/r0 = 2 forces the central part of the background
to self-focus in a dominating on-axis peak, whereas the
self-focusing of the outer-lying ring is negligible (Fig. 3,
left, dashed curve). For the two broadest rings with
∆/r0 = 5 and 6 (Fig. 3, right graph) the on-axis peak
is still dominating the surrounding pairs of rings, but
the peak-to-peak ratio is smaller. The positions of the
peaks (i.e. the ring radii (see Fig. 2)) also depend on
∆. All curves shown in Fig. 3 can be directly compared,
since all conditions and CCD camera settings are kept
unchanged during these measurements.

Next we studied the background-beam reshaping and
initial self-focusing in the NLM when two coaxial dark
rings were nested on it. Special attention was paid to
the evolution of the Gaussian background beam. Its cw
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Fig. 4. Left graph: Initial (t = 0) horizontal cross-section
of the Gaussian background beam at the output of the SBN
crystal (solid curve) and the same after illumination time
t = 180s (dashed curve). Right graph: The same for
Gaussian background beam carrying two coaxial dark rings.
Bias voltage 300V , beam power 110µW . Respective pairs
of images: Experimental frames from which the horizontal
cross-sections are extracted.

power was chosen to be 110µW - just enough to initiate
weak background beam self-focusing in the NLM (Fig. 4,
left graph, dashed curve). Under the same conditions
the input host beam carrying the coaxial RDWs (Fig. 4,
right graph, solid curve) shows clear self-focusing of its
central peak and narrowing of the broad coaxial bright
ring (same graph, dashed curve). The increase in the
peak power density is approximately four times. The
exposure time (180s) and the bias voltage (300V ) were
chosen in a way to ensure data recording without any
CCD camera saturation. We show the respective pairs
of images from which the horizontal cross-sections are
extracted below each graph. Note that the left frame
below the right graph in Fig. 4 is intentionally saturated
to make the input outer bright ring (and the subsequent
initiation of self-focusing) visible. The curves, however,
are extracted directly from the raw experimental data.
This figure strongly confirms that the accelerated broad-
ening of the coaxial RDWs and the energy density re-
distribution on the host background beam are able to
initiate controllable self-focusing of the bright structures
on the background.

In the last series of measurements presented here
(Fig. 5) we compare the nonlinear evolution of a host
beam carrying single OV, single RDW, and an OV with
a coaxial RDW. In order to ensure the same experi-
mental conditions using the whole dynamic range of the
CCD camera we set the beam power to 80µW and the
bias voltage to 400V . The only difference (in order to
avoid detector saturation) was the SBN crystal illumi-
nation time - 120s for the single ring dark wave, and
240s in the two other cases. In the respective graphs
we show the initial (solid curves) and final horizontal
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cross-sections (dashed curves) from the recorded frames.
To the right of each graph we show numerically calcu-
lated (for z = 2Ld) and experimentally recorded (at the
exit facet of the SBN crystal) power densities of the sin-
gular beams carried by the bright background beams.
The rigthmost images are interferograms confirming the
presence of phase jumps or abrupt phase changes on the
OV axes and across the RDWs after the initiation of the
beam’s self-focusing. Clear indication for the OV point
phase singularity is the splitting of one of the interfer-
ence fringes in two (see the left arrows in the first and in
the last interferogram). In the second and in the third
interferogram the right arrows are intended to guide the
eye to regions in which interference fringes terminate
due to abrupt radial phase changes across the RDWs.
Note also the difference in the fringe periods on the left
hand side of the RDW vs. the same period on the right
hand side of the same RDW due to the ”terminated”
fringes (better visible in the middle interferogram). It is
clearly seen that, depending on the particular singular
dark beam and due to their accelerated broadening along
the medium with positive nonlinearity, one can control-
lably force the background beam to start self-focusing in
a single ring (Fig. 5, upper row), in a single dominating
peak (same figure, middle row), or in a pair of coax-
ial bright rings with nearly equal local power densities
(Fig. 5, lower row).

The numerical simulations shown in Fig. 6 provide
some additional insight into the possibility to rule the
host beam self-focusing by changing the RDW radius
when an on-axis OV is present. For RDWs with small
initial radii (∆/r0 = 1 and 2) the wings of the RDW
and the OV overlap too much and the region of high
local intensity is lying outside the RDW. Thus, initial
background beam self-focusing in relatively broad rings
should be expected. In contrast, for reasonably broad
initial RDWs (∆/r0 = 4 and 5 in Fig. 6) the points where
the intensities are the highest form a circle between the
OV and the RDW. Hence, the background beam should
start to self-focus in rings of smaller radii (in isotropic
NLM) or in smaller ellipses when anisotropic NLM is
used. In the intermediate case ∆/r0 = 3 we observed
(see Fig. 6) inner ring decaying into two peaks (which
rotate along the NLM due to the presence of the OV) and
outer self-focusing ellipse. In the limiting case ∆/r0 = 6
the initial stage of the self-focusing within the broad
ring is accompanied by modulational instability, which is
most pronounced along the c axis of the photorefractive
material.

5. Conclusion
In this work we show both experimentally and by nu-
merical simulations that the presence and evolution of
ring dark beam and/or on-axis optical vortex nested
on a bright background beam are noticeably perturbing
the host background and, in a photorefractive nonlinear
medium, can initiate self-focusing of the background.
Geometry-controlled conditions here are the dark ring
radius and the presence of an optical vortex. In pho-

Fig. 5. Initial (t = 0; solid curves) and final (t = 240s/120s;
dashed curves) power density distributions of background
beams carrying an optical vortex (upper row), a ring dark
wave (middle row) and coaxial optical vortex and ring dark
wave (lower row) at the exit of the SBN crystal. The dashed
curves in the 2-D graphs are extracted from the respective
experimental frames shown to the right. For comparison, the
corresponding numerical data are shown too. Bias voltage -
400V , beam power - 80µW , illumination time t = 120s for
the single ring dark wave, and t = 240s in the two other
cases, in which an on-axis vortex is present. Right experi-
mental frames - interferograms at the NLM exit of the weakly
self-focused singular beams with a reference Gaussian beam
with a spherical wavefront. Arrows are provided to guide the
eye to local features of the interference patterns confirming
the presence of spatial phase dislocations.

torefractive media the presented results indicate that
parallel all-optical guiding of optical signals (see Fig. 6
in [42]) may appear feasible at wavelengths, for which
the NLM is not photosensitive. The results may appear
especially important in experiments which involve cas-
caded nonlinear frequency mixing of singular beams, in
which accelerated dark beam spreading is accompanied
by self-focusing of certain portions of the perturbed host
beam.
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∆=1 ∆=2 ∆=3 ∆=4 ∆=5 ∆=6

z=0

z=2Ld

0.77 0.67 0.64 0.80 0.85 0.86

1.84 1.74 1.99 3.43 4.17 2.16

        ∆∆∆∆/r0=        1              2             3             4              5             6 
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Fig. 6. Input beams (at z = 0) and their numerically sim-
ulated reshaping at the exit of the photorefractive NLM (at
z = 2Ld, after weak self-focusing) in the presence of both
singly-charged on-axis vortex and outer ring dark wave of
varying radius ∆/r0. Number below each frame - background
beam peak intensity at the respective propagation distance.
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and Yu. Kivshar, “Spatial phase dislocations in fem-
tosecond laser pulses,” J. Opt. Soc. Am. B 23, 26–35
(2006).

[9] A. Schwarz, W. Rudolph, “Dispersion-compensating
beam shaper for femtosecond optical vortex beams,”
Opt. Lett. 33, 2970–2972 (2008).

[10] G. A. Swartzlander, Jr., “Achromatic optical vortex
lens,” Opt. Lett. 31, 2042–2044 (2006).

[11] A. Volyar, V. Shvedov, T. Fadeyeva, A. S. Desyatnikov,
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nikov, W. Królikowski, and Yu. S. Kivshar, “Observa-
tion of polychromatic vortex solitons,” Opt. Lett. 33,
1851–1853 (2008).

[13] Yu. Tokizane, K. Oka, and R. Morita, “Supercontin-
uum optical vortex pulse generation without spatial or
topological-charge dispersion,” Opt. Express 17, 14517–
14525 (2009).

[14] D. Buccoliero, A. S. Desyatnikov, W. Królikowski, and
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