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Abstract: Experiments performed with different vortex pump beams
show for the first time the algebra of the vortex topological charge cascade,
that evolves in the process of nonlinear wave mixing of optical vortex
beams in Kerr media due to competition of four-wave mixing with self-
and cross-phase modulation. This leads to the coherent generation of
complex singular beams within a spectral bandwidth larger than 200nm.
Our experimental results are in good agreement with frequency-domain
numerical calculations that describe the newly generated spectral satellites.
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1. Introduction

As an intriguing phenomenon in nature, vortices have becomean important topic in many
fields of physics, spanning from fluid dynamics [1], optics [2] to Bose-Einstein condensates
[3]. Extensive research on both linear and nonlinear singular waves has been performed, il-
lustrating the universality of vortices in the physical domain: Topological charge conservation
using the concept of pseudo angular momentum was demonstrated in the harmonic generation
of acoustic vortices [4], leading to the formation of angular shock waves [5]. Transfer of angular
momentum from light to excitons in GaN was demonstrated by Ueno et al. [6]. Particularly in-
teresting is the analogy between optical vortices and theiratomic counterparts, coherent vortex
wave functions in Bose-Einstein condensates [7], especially because angular momentum can be
transferred between both [8]. Due to the close analogy between the Gross-Pitaevskii equation
that governs BEC dynamics and the Nonlinear Schroedinger equation of nonlinear optics, the
results presented here are also applicable to BECs and superfluids: While four-wave mixing
of wave functions in BECs [9] and the generation of vortices by means of different methods
[3, 10, 11, 12] have been demonstrated, the combination of both has not yet been observed.
In this paper we present results of the analogous process in optics, and show, for the first time,
cascaded nonlinear angular momentum mixing and coherent transfer of phase singularities over
multiple orders.

In the optical domain, vortices are identified as helical phase profiles within a light beam,
with a characteristic dependenceexp(imφ) on the transverse angular coordinateφ [13]. The
central singular point of this helix possesses no defined phase and therefore the intensity must
vanish, leading to a characteristic cusp-like vortex core [14]. Such beams carry photon an-
gular momentum, which can also be transferred to matter [15]. The angular momentum is
proportional to the topological charge (TC)m of the optical vortex, associated with the total
phase changem· 2π after one revolution around the core. Optical vortex beams have found
various useful applications, namely in optical tweezers [16], coronagraphs [17] or as poten-
tial information carriers in data processing [18]. Of particular interest are nonlinear processes
involving vortex beams, where conservation of the total orbital momentum determines particle-
like dynamics of the filaments resulting from the modulational instability (MI) induced vortex
break-up [19]. Conservation of the total orbital momentum also plays a profound role in second
harmonic generation [20], parametric down-conversion [21] and stimulated Raman scattering
[22] involving optical vortices.

Because of their high peak power, short laser pulses are highly beneficial for nonlinear optics.
However, most nonlinear vortex experiments to date use relatively long-pulses or cw-lasers.
This is because most methods for vortex generation suffer from chromatic aberrations. Nev-
ertheless, depending on the spectral extent of the incidentpulses optical vortices can also be
imprinted on femtosecond laser beams using spectrally compensating techniques [23, 24, 25],
or spiral phase plates [26]. Such generation of dispersion-free high-intensity vortex beams en-
ables studies of nonlinear vortex propagation in a much wider range of (even weakly) nonlinear
materials. As such, nonlinear vortex beam filamentation in air [27] and water [28] has been
investigated.

An important benefit of using high intensity short pulses is the possibility to observe cascaded
nonlinear processes, such as cascaded Raman scattering [29, 30] and nondegenerate four-wave
mixing [31, 32, 33]. To date, no cascaded nonlinear four-wave mixing process with singular
optical beams as predicted in [29] has been experimentally demonstrated. While the genera-
tion of white-light supercontinuum from vortex beams has been attempted in glasses [34], the
breakup of the vortex ring into single filaments fully destroyed the spatial coherence of the
beam. An important practical issue to address here is a precision control of the nonlinearity
strength required to reduce the effect of filamentation and improve the coherent transfer of the



Fig. 1. Algebra of vortex beams with increased topological charge due tocascaded four-
wave mixing. The experimental double-peak input spectrum is shown in red, together with
simulated intensity (top) and phase (bottom) profiles after nonlinear propagation for the
mixing of a Gaussian beam with a vortex of unit TC. The magnitude of the TC changes
by 1 with the order of the cascading process, which can be seen in the steeper phase spi-
rals further away from the pump beams. The intensity profile in 3rd orderalready shows
distortion due to strong intensity dependence.

phase throughout the nonlinear cascade.

2. Vortex four-wave mixing

Here we demonstrate the generation of broad spectrum singular beams through cascaded four-
wave mixing (FWM). By careful intensity control and the use ofdual frequency pump pulses
we are able to identify the process of cascaded FWM and reduce the (multi-)filamentation of
the vortex beam. Experiments performed with vortex beams ofdifferent TC show cascaded
nonlinear TC mixing up to 3rd order and are in excellent agreement with frequency-domain
numerical simulations. Starting with pump pulses of bandwidth of 43nm, vortices can be ob-
served within>200nm after nonlinear propagation. FWM is a third-order nonlinear process,
where four optical fields interact in a nonlinear Kerr medium: ωd = ωa+ωb−ωc. In our case,
initially only two distinct pump beams of frequenciesω0 >ω1 are present. Energy conservation
dictates the resulting photon energy when combining any three photons of those pump beams,
generating spectral satellitesωn = ω0−n∆ω. This process becomes cascaded if the intensity
of the generated side-bands is sufficiently high, leading ultimately to a frequency comb, where
side-bands are spaced by the difference frequency∆ω = ω0−ω1, similarly to what has been
observed in ring microcavities, see, e.g. [35]. The TC conversion in the cascaded process has
to obey the transformation law analogous to the one for the frequency:mn = m0−n∆m with
∆m= m0−m1 [29, 31]. Labelling the pump beamsω0 =”blue” and ω1 =”red” (for obvious
reasons) with TCsm0,m1, the TC of the spectral satellitesn=−1,±2,±3, . . . can thus be cal-



Fig. 2. Experimental setup. i) Vortex generation and FWM, ii) referencebeam generation,
iii) output characterization. D: Iris, DBS: dichroic beamsplitter, VL: vortex lens, SP: short-
pass filter, LP: long-pass filter, BS: beamsplitter, FM1: focusing mirrorf=2m, GC: gas cell,
FM2: collimating mirror f=3m, FM3: collimating mirror f=4m, ND: ND filter, CCD: CCD-
camera, SM: spectrometer, HCF: hollow-core fiber (filled with Ne gas),FM4: collimating
mirror f=1m, DLY: delay stage.

culated. Each spectral satellite carries a defined TC, whichrepresents an arithmetic progression
of the topological charge in the spectral satellites, as shown in Fig. 1.

3. Experimental setup

In order to generate pump beams with sufficient spectral separation, an 11.5mJ, 38fs, 1kHz
Ti:Sapphire amplified pulse is split with a dichroic beam splitter (cut-on wavelength 800nm)
(see Fig. 2). The resulting spectral peaks are centered at 775nm (”blue”) and 805nm (”red”).
A helical phase with TCm= ±1 can be imprinted on either or both beams with 16-step, AR-
coated spiral phase plates (also called vortex lenses / VLs). After additional spectral filtering
and recombination with a low-dispersion broadband beamsplitter, the remaining average power
is 2.0W, with approximately equal intensity in both beams.

The vortex beams are then focused with a f=2m spherical mirror (FM1 in Fig. 2) into a gas
cell. The Fresnel reflection from the entrance window is usedto ensure spatial overlap of the
pump beams in the focus. Temporal overlap is achieved by maximizing the white light emission
when the cell is filled with Argon. For the actual measurement, the gas cell is evacuated and
nonlinear wave mixing is observed in the 3mm thick fused silica entrance window only. In
this way, deteriorating effects especially due to plasma inthe focus are avoided, and the peak
intensity within the window can be controlled by adjusting the distance between the focusing
mirror FM1 and the gas cell. Nonlinear effects in the exit window play a negligible role due
to large distance from the focus and smaller window thickness (1mm). The diffraction length
of the beam isLD=4cm, while the nonlinear lengthLNL (corresponds to a nonlinear phase



shift of 1) can be tuned from few hundreds of microns to several centimetres. By adjusting the
ratio LNL/LD we can control the amount of spectral broadening and delay development of the
modulational instability across the beam profile. With the setup adjusted for low fluctuation at
the output, the peak intensity inside the entrance window isestimated to be 1.1 ·1010W/cm2.
This results in a nonlinear phase shiftB= k0

∫ L
0 n2Ipeak(z)dz≈ 0.1 inside the entrance window

glass. After the gas cell, the beam is recollimated and interfered with a reference beam from a
gas-filled hollow-core fibre (see Fig. 2). This beam, usuallyused for few-cycle pulse generation,
possesses a near-Gaussian spatial profile and covers the full visible spectral range, thus making
it a suitable reference for interferometric spatial phase measurements.

The interference pattern and intensity profiles are observed on another CCD camera in
slightly focused geometry. As a signature of the vortex helical phase, the dislocation is visible
as a fork-like splitting of the interference stripes. The direction of the splitting (”fork up”/”fork
down”) corresponds to the direction of the angular phase slope (clockwise/counter-clockwise),
whereas the number of fork rakes indicates the topological chargem+1 (for integer values of
m).

The images are recorded after spectral edge-pass filters with cut-on wavelengths correspond-
ing to the gaps between the expected central wavelengths of the spectral satellites. This method
is justified because the generation efficiency is expected todecrease rapidly with the cascading
order of the process. This way, only the dominant part of the spectrum close to the filter edge is
contributing to the interference pattern. The signal vanishes when either of the two arms in the
first interferometer is blocked, as expected for a nonlineargeneration mechanism. For the out-
ermost spectral regions, multiple shots (5-10) had to be integrated. This leads to blurring of the
interferograms, but the TC can still be determined from the different number of fringes on top
and bottom of the vortex ring. Apart from that, the data shownare all single-shot measurements.

4. Experimental results

Fig. 3 shows the obtained phase-dependent interference patterns and intensity profiles for three
different fundamental scenarios: The top row [Fig. 3(a)] shows pump beams with equal TC
m0 = m1 =+1, ∆m= m0−m1. This is an important case because all spectral satellites have the
same topological charge (mn = +1), which allows the generation of white-light vortex contin-
uum in the multiply cascaded process. Although a single vortex beam of sufficient bandwidth
could be used in this case, we keep the two peak spectrum for consistency. Indeed vortices of
chargemn =+1 are observed throughout the entire accessible spectral bandwidth of the beam,
which is only limited by increasing disintegration of the intensity profile for very remote wave-
lengths. The respective numbers of the spectral satellitestogether with their theoretical central
wavelengths are denoted in the top row.

The mixing of a vortex with a Gaussian beam is shown in the second row. In this case, the
topological charge increases/decreases by one with the order of the satellite peak. Fig. 3(b)
shows only the case for a ”red” Gaussian mixed with a ”blue” vortex, because the results are
qualitatively similar for the reversed case. Yet interesting to note is the fact that we observe
stronger generation of satellites on the spectral side adjacent to the vortex pump. The measured
beam profiles for this case are also given in Fig. 3(c). Withinthe outermost spectral satellites,
disintegration of the vortex ring by the modulational instability is observed [28], due to larger
sensitivity to shot-to-shot fluctuations. Finally, we examine the case of two counter-rotating
vortices of chargem0 = +1 andm1 = −1 [fourth row - Fig. 3(d)]. In this case, since∆m=
2, we observe the expected increase (decrease) of the vortexcharge by 2 with the order of
the cascaded process. We are able to record interference patterns up to 3rd order (charge +7)
on the blue side, and up to 2nd order (charge -5) on the red sideof the spectrum. For this
largest TC difference between the two pump beams, we observethe cleanest beam profiles



Fig. 3. Experimental interferograms and beam profiles for differentvortex pump beams
after nonlinear four-wave mixing. The pump beams are highlighted in grey. The respective
central frequencies and wavelengths of the spectral satellite/pump beamalong with the
cascading order of the FWM process are denoted on top. a) Two vortices of equal TCm0 =
m1 = +1, b) Vortex and Gaussian TCsm0 = +1 andm1 = 0, c) corresponding intensity
profiles for case b), d) Two vortices of opposite TCsm0 = −m1 = +1. Contrast has been
enhanced slightly for the -3rd order interferograms. The number in each box indicates TCs
of the generated vortices.

with very low disintegration of the vortex intensity ring. This effect can partially be attributed
to the almost identical divergence of the two pump beams due to the same modulus of the TC.
It is known that vortices of TC|m| > 1 are unstable against perturbation even in the linear
regime. In all cases where we generate higher-order vortex charge states|m| > 1, we observe
decay into singly-charged vortices. This decay is a generalfeature of vortices generated from
nonlinear processes, where the nonlinearity acts as a perturbation of the background beam. In
self-focusing Kerr media as well as attractive BECs this leads to break-up of the vortex ring into
spiralling filaments, which finally can collapse [36, 37]. Inmost cases however, the fundamental
vortices remain closely together, so that a dark core can be observed. Since the relatively stable
vortices are observed in our experiment and the frequency spectrum is equidistant, we can
conjecture that the spatiotemporal spiralling predicted in [29] is a likely to be present, but not
yet characterized, feature of our observations.

5. Numerical Simulations

The theoretical model describing the interaction between the different vortex beams is a set of
10 coupled nonlinear Schroedinger-type equations in the spectral domain. The slowly-varying
amplitudesAn with respective wavenumberskn follow the equations

i
∂An

∂z
+L0

DknAn+
k0

2kn
∆⊥An+ γ(|An|

2An+2 ∑
n 6=m

|Am|
2An+Hn) = 0. (1)



Fig. 4. tanh-vortices: Intensity (odd rows) and phase (even rows) ofthe pump waves at
770nm and 800nm and of 6 of the newly generated waves in the observation plane (one
diffraction lengthL0

D away from the exit of the nonlinear medium of lengthL0
D). The outer-

most spectral components are left out due to already too strong diffraction. Case a/ - pump
vortices with identical charges; Case b/ - pump vortex and Gaussian beams; Case c/ - pump
vortices of opposite charges. Separators - central wavelengths of thesimulated waves and
estimated conversion efficiencies. Some 16% of the total computational window is shown
in each frame. See text for further details.

The model accounts for linear dispersion and diffraction, as well as nonlinear self- and cross-
phase modulation, four-wave mixing and saturation of the nonlinearity viaγ = γ0/(1+ I/Isat).
For reasons of simplicity, we show here the termsHn and corresponding phase mismatches∆ki

for a 4 wave model only (2 pump beamsn= 0,+1 and 2 signal beamsn=−1,+2):

H+2 = 2A∗
−1A0A+1exp(i∆k1zL0

D)+A∗
0A2

+1exp(i∆k2zL0
D),

H+1 = 2A−1A∗
0A+2exp(i∆−k1zL0

D)+2A0A∗
+1A+2exp(−i∆k2zL0

D)

+A∗
−1A2

0exp(i∆k3zL0
D),

H0 = 2A−1A∗
+1A+2exp(i∆−k1zL0

D)+2A−1A∗
0A+1exp(−i∆k3zL0

D)

+A2
+1A∗

+2exp(i∆k2zL0
D),

H−1 = 2A0A+1A∗
+2exp(i∆k1zL0

D)+A2
0A∗

+1exp(i∆k3zL0
D),

(2)



Fig. 5. r-vortices: Intensity (odd rows) and phase (even rows) of thepump waves at 770nm
and 800nm and of the newly generated waves in the observation plane (one diffraction
lengthL0

D away from the exit of the nonlinear medium of length 0.5L0
D). Case a/ - pump

vortices with identical charges; Case b/ - pump vortex and Gaussian beams; Case c/ - pump
vortices of opposite charges. Separators - central wavelengths of thesimulated waves and
estimated conversion efficiencies. Some 16% of the total computational window is shown
in each frame. See text for further details.

∆k1 = k0−k−1+k+1−k+2,

∆k2 = 2k+1−k0−k+2,

∆k3 = 2k0−k−1−k+1.

(3)

The initial values for the simulation were chosen as follows: All spectral components except
for the central pump beams (n = 0,+1) are set to an effective zero (ten orders of magnitude
weaker than the pump components). The pump beams are modeledas either fundamental r-
vortices with a continuously varying azimuthal phase

A(r,φ) = A0(r/r0)
|m|exp(−r2/r2

0)exp(imφ), (4)

or as tanh-vortices with a 16-level stepped phase profile, asin the experiment

A(r,φ) = A0exp(−r2/r2
BG) tanh(r/r0)exp{i ×m× (2π/16)× int[16φ/(2π)]}. (5)

.
In the tanh case, the core widthr0 is chosen to reflect the experimentally measured beam

profiles andr0 < 10rBG. The longitudinal coordinate is normalized to the diffraction length
L0

D = k0r2
0 of the OV beam at frequencyω0, and the intensity in the simulations is kept iden-

tical to the one needed to form a one-dimensional dark spatial soliton of the same widthr0

(calculated from inverting the sign ofγ). All relevant FWM nonlinear termsHn in the model



equations 2 were generated by using a program for symbolic computations and were subse-
quently exported to a program code written in Objective-C, which realized a modification of
the split-step Fourier method. The computational grid for each wave spanned over 1024x1024
grid points. The numerical results obtained after 2L0

D free-space propagation from the vortex
lens (VL) to the entrance of the nonlinear medium of length 1L0

D, followed by one diffraction
length free-space propagation to the observation plane, are summarized in Fig. 4. Cases a/ and
c/ correspond to pump vortices of equal and opposite topological charges, respectively, whereas
case b/ presents the results for vortex and Gaussian pump beams. The pump beams are chosen
to have central wavelengths of 770nm and 800nm. All necessary refractive indices (and wave
numbers) are calculated according to the revised Sellmeierequations [38] at the indicated pump
and signal wavelengths, which are also used as separator in Fig. 4. The second row of numbers
in the same figure shows the estimated conversion efficiencies (100% initial signal in each
pump wave and 0.1% integration accuracy). For better visibility we present in Fig. 4 only six
newly generated spectral components, in which the vorticesare clearly formed. Inspecting the
phase profiles of the generated spectral satellites one can see that their TCs follow the expected
relationmn = m0−n∆m with ∆m= m0−m1, whereω0 corresponds to 770nm,ω1 to 800nm,
andn is the (cascading) order of the process. In Fig. 5 we present results obtained after 1L0

D free
space propagation of the pump beams carrying r-vortices from the VL to the entrance of the
nonlinear medium (NLM) of length 0.5L0

D followed by 1L0
D free space propagation to the obser-

vation plane. Because for r-vortices the widths of the vortex core and the background beam are
coupled (see Eq. 4) the length of the NLM was chosen to be shorter in order to keep the slowly-
varying envelope approximation of the model equations 2 valid by keeping the pump-induced
satellite-beam’s focusing reasonably weak. Qualitatively, the results for the FWM TC transfer
with r-vortices confirm these for tanh-vortices. We also developed a 28 component model able
to more accurately account for the broadband pump. Since it confirms the main predictions of
the presented 10-component model, we would like to only mention that its results for the output
supercontinuum spectrum fairly well reproduce the measured one when starting the simulations
with the measured input pump spectra. These results confirm that the generation of ultra-broad
spectrum vortex beams takes place mainly through cascaded four-wave frequency mixing pro-
cess, whereas spectral broadening due to nonlinear self- and cross-phase modulation remains
relatively weak. While our model neglects the full spatiotemporal dynamics of the process and
accounts in a simplified way for the influence of the generatedplasma in the gas cell, in view
of the presented experimental data it accurately captures the spectral reshaping and the spatial
structure of the newly generated spectral satellites in theoutput beam.

6. Discussion and Conclusions

The presented results agree well with the performed frequency-domain numerical simulations.
In contrast to the numerical simulations, the experiment isdone with pump beams of finite
bandwidth, which gives rise to competing four-wave mixing between frequencies of thesame
pump pulse. This effect increases the bandwidth of the pump pulses (and satellites of sufficient
intensity), yet it only generates TCalready presentin the respective spectral peak. The basic
interaction scenario between adjacent spectral peaks is therefore unaffected, as long as spectral
overlap (interference) remains small. To account for the finite bandwidth of the pump pulses,
the numerical simulation is extended to use more than one frequency per pump beam. This
quasi-pulse regime however qualitatively preserves all features predicted in the dual-frequency
pump model.

The presented method is applicable if the acquired nonlinear phase remains reasonably
low, so that self-focusing of beam inhomogenities remains limited. Since nonlinear interaction
is stronger in the most intense parts of the beam, a homogenous background beam (super-



Gaussian or flat-top) appears to be desirable here. Obviously a trade-off between achieved
bandwidth and vortex-ring integrity has to be made due to modulational instability [28]. An
approach to limiting deteriorating effects appears to be the use of saturable nonlinear media,
e.g. via competing higher-order nonlinearities, which would make the process more control-
lable [39].

In conclusion, we have demonstrated broadband cascaded mixing of vortex beams in a self-
focusing Kerr medium. The nonlinear generation process, although not phasematched, is effi-
cient enough to allow for observation of vortices over a bandwidth larger than 200nm. This con-
stitutes the first measurement of topological charge for a multiply cascaded four-wave mixing
process with vortex beams. Topological charge conservation for the nonlinear wave mixing
process is found to be fulfilled, and decay of higher-order vortices into fundamental vortices
has been observed due to instability arising from the nonlinear self-focusing. The presented
results constitute basic scenarios for the interaction between fundamental topological modes,
which can be seen as basic ”building blocks” to generate complex coherent broadband wave
fields with a defined phase structure, which could be used e.g.as elaborate pump/probe beams
in coherent control applications or excitation and manipulation of BECs. In the case of identical
pump beams (which can be seen as a special case of a single broadband vortex pump beam), the
four-wave mixing even preserves the TC, thus rendering the method suitable for the generation
of supercontinuum white light vortex beams. Unlike Raman scattering, FWM can be employed
in a collinear geometry, eliminating the need for additional angular dispersion compensation.
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