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1. Introduction
Recent years have seen an increased interest and research
about the optical fields possessing screw phase singular-
ities carried by optical vortex beams. The transverse
cross-sections of the optical vortices (OVs) are associ-
ated with isolated point singularities with helical phase
wavefront around them. The central singular point of
the helix possesses undefined phase and therefore the in-
tensity must vanish, leading to a characteristic toroidal
intensity profile (vortex ring). The study of the phase
singularities is important from the viewpoint of both
fundamental as well as applied physics. Light beams
possessing phase singularities are used in the experi-
ments for particle trapping and manipulation [1], atom
trapping and guiding [2], as information carriers [3] for
multiplexing in free-space communications [4], for inter-
ferometry [5], and for realizing of electron vortex beams
[6], just to mention a few.

Only 20 years ago, the Laguerre-Gaussian (LG) laser
modes having an azimuthal mode number different from
zero (eigen modes of a laser cavity described in cylin-
drical coordinates) and other vortex beams having heli-
cal wavefront structure with phase dependence exp(ilϕ)
(where l is an integer and ϕ is the azimuthal coordi-
nate) were recognized to have orbital angular momen-
tum (OAM) l~ per photon in their propagation direc-
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tion [7]. The number l showing the total phase change
2πl over the azimuthal coordinate ϕ is referred as the
topological charge of the OV beam. It was shown that
this OAM can be transferred to a captured microparti-
cle causing its rotation in a direction determined by the
sign of the topological charge (TC) [8].

The intensive research in the field of singular op-
tics has shown that optical vortex beams can be gen-
erated from incident chargeless optical beams by means
of diffractive optical elements (DOEs) with embedded
phase dislocations, such as spiral phase plate (SPP) [9],
helical axicon [10], computer-generated holograms [11],
spiral zone plates [12] as well as fork-shaped gratings
[13–15]. Some of them, when build in dispersionless op-
tical systems, provide a useful means to create phase
singularities in the beams of ultrafast femtosecond lasers
with broad bandwidth [16–18]. OV creation succeeded
even in near-single-cycle regime of ultrashort laser pulse
generation [19] by using thermally tuning reflective spi-
ral micro-electro-mechanical elements [20]. The trans-
formation of the incident vortex beam through some
types of DOEs with encoded phase singularities was
studied in details in [21, 22]. In [21] the authors have
shown theoretically that in the process of diffraction of
LG beam with zeroth radial mode number and arbitrary
azimuthal mode number l, by a fork-shaped grating with
integer forked dislocations p, in the positive and nega-
tive m-th diffraction order, the diffracted beam carries
topological charge s which is determined as an algebraic
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sum s = l + mp or s = l − mp, respectively. In the
paper of Mair and co-authors [23] a fork-shaped grating
is used as a filter for estimating the TC of optical vor-
tices.A photon with angular momentum p~ before the
fork-shaped grating which possesses phase singularity of
order p, can be detected by a mono-mode fiber detector
placed in the negative first diffraction order. In the same
setup a photon with zero angular momentum can be de-
tected by diffracting the beam far away from the forked
section of the grating where the grating isi nearly rec-
tilinear. In this experiment [23] the authors confirmed
the conservation of the OAM of (entangled) photons in
the process of spontaneous parametric down-conversion.
Soskin and co-authors [24] have studied theoretically and
experimentally the behavior of vortices in a beam com-
posed from singular and background Gaussian waves, in
order to check the principle of TC conservation. The
topological charge in nonlinear optics has been studied
by Soskin et al. [25] who suggested its conservation in a
stimulated down-conversion process. The experiment of
Maleev et al. [26] has not shown, however, any evidence
of topological charge conservation. It was recently shown
that the TC conversion in cascaded four-wave frequency
mixing process obeys the transformation law analogous
to the one for the frequency [27]. The conservation of the
TC was demonstrated for the surface plasmons: when
the LG beam having azimuthal mode number l is trans-
ferred through plasmonic vortex lens with TC equal to
m, then surface plasmon vortices with orbital angular
momentum are generated, and inherit the optical angu-
lar momentum of light beams and plasmonic vortex lens,
since their topological charge n was equal to n = l + m
[28].

The aim of this work is to confirm experimentally
the predicted [21, 29] transformation of the topological
charge of the incident vortex beam during the trans-
fer through a fork-shaped grating with embedded topo-
logical defects of integer number. For this purpose we
generate OVs with TCs equal to 2, 3 and 4 by fork-
shaped gratings and let them, subsequently, diffract to
the far field by another singled- and twofold-charged
fork-shaped gratings. The reversed case is also stud-
ied. The theoretical results [21, 29] for the algebraic
transformation of the TCs of the OVs were checked by
making interferograms of the diffracted components and
a plane wave, while the vortex ring radii of the trans-
formed beams were compared by using their radial in-
tensity profiles.

2. Theoretical background
In the experiment described and illustrated by the setup
in Fig. 1, the vortex beam passing normally through the
bottom of the fork-shaped area of the grating 2 (CGH2),
is previously generated by letting a chargeless Gaussian
laser beam to pass normally through the fork-shaped
grating 1 (CGH1). The Gaussian beam axis is pass-
ing through the centre of the forked dislocation of the
CGH1, where the pole of the cylindrical system with
coordinates r′, ϕ′ and z′ is situated. The gratings pos-

sess TCs p1 and p2 , respectively, which are encoded
in the fork-shaped singularities. Recalling the theoret-
ical results in [29], in the process of Fresnel diffraction
the grating 1 (situated in a plane z′ = 0 splits the inci-
dent Gaussian beam U ′(r′, ϕ′, z′ = 0) = exp(−r′2/w′20 )
(where w′0 is its waist radius) into a fan of beams.
The direct zeroth-diffraction-order beam is a charge-
less Gaussian beam. The higher positive and negative
m′-th diffraction-order beams appear as optical vortex
beams carrying phase singularities with TCs m′p1 and
−m′p1, respectively. This can be seen from expression
(17) in the same article. In our experiment we will
use expression (17) adapted to the so-called far-field ap-
proximation (where the distance between the two grat-
ings is such that 1/R(z′) → 0, 1/z′ → 0, Q−1(z′) =
(1/2)[(R−1(z′)− z′−1)− 2i/(kw2(z′))] → −i/(kw2(z′)),
and exp[i arctan(2z′/kw′20 )] → 1). Also, we are inter-
ested in the paraxial region of the OV beam distribu-
tion 0 ≤ r±m′ ≤ w(z′), (instead of the coordinates ρ±m

and ϑ±m in Eq. (17) from [29] we use polar coordinates
r±m′ and ϕ±m′ , and denote with w(z′) the vortex beam
amplitude profile radius at position z′). Therefore, we
will neglect all n 6= 0 members in the sum by which the
Kummer function is represented, i.e. for the far field
M(|m′p1|/2, |m′p1| + 1, r2

±m′/w2(z′)) ≈ 1 . In this ap-
proximation the m′-th diffraction order beam, emerging
from the CGH1, is described by the expression

U±m′(r±m′ , ϕ±m′ , z′) = Cm′p1

[
r±m′

√
2

w(z′)

]|m′p1|

×

exp
(
− r2

±m′

w2(z′)

)
exp[−i(kz′ ∓m′p1ϕ±m′)]. (1)

Here Cm′p1 is the complex amplitude given by

Cm′p1 =
w′0

w(z′)
t±m′

Γ(|m′p1|/2 + 1)

Γ(m′p1 + 1)
√

2|m′p1|
exp(im′p1π/2)

(2)
with t±m′ being the transmission coefficients of the first
grating [29]. Expression (1) is recognized as zero ra-
dial mode LG laser beam with azimuthal mode number
±m′p1 equal to its phase singularity order. The same
approximation for the higher diffraction orders of the
beams generated by fork-shaped grating is used by the
authors in [14, 30–32].

In our experiment z′ is the distance between the two
gratings. The incident beam on the second grating car-
rying TC p2 = p is selected by the first diaphragm
(Fig. 1). It is a vortex beam of type (1) with TC
l = m′p1 having entrance radius w(z′) = w0 of the
transverse amplitude profile. Instead of the coordinates
(r±m′ , ϕ±m′ , z′) now, for simplicity, we will use (r, ϕ, z),
and take l to be a positive integer. Thus, the incident
beam on the second fork-shaped grating is approximated
as LG

(l)
0 mode

U
(l)
0 (r, ϕ, z = 0) = Al,0(r

√
2/w0)l exp(−r2/w2

0) exp(ilϕ),
(3)
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where Al,0 is an amplitude coefficient.

Further, we threat the Fraunhofer (far-field) diffrac-
tion of this singular field by the second fork-shaped grat-
ing with an encoded topological charge p, having trans-
mission function in polar coordinates as follows

T (r, ϕ) =
∞∑

m=−∞
tm exp{−im[(2π/D)r cos(ϕ)− pϕ]}.

(4)
The transmission coefficients of this binary amplitude
grating are: t0 = 1/2, t±m=±(2n′−1) = ∓i/[π(2n′ − 1)],
t±m=±2n′ = 0 (n′ = 1, 2, 3...). The constant D is the
grating period far from its pole. The theoretical results
for the problem of Fraunhofer diffraction of LG

(l)
0 beam

incident with its waist on a fork-shaped grating are pre-
sented in [21]. We will recall here to the main results:
the diffracted wave field amplitude U in the focal plane
with coordinates ρ and θ of a convergent lens with focal
length f is calculated as a sum of a zeroth-diffraction-
order beam (U0) and higher, positive (U+m) and nega-
tive (U−m) diffraction-order beams, deviated from the
incident beam axis z

U(ρ, θ, f) = U0(ρ, θ, f) +
∞∑

m=1

U+m(ρ+m, θ+m, f) +

∞∑
m=1

U−m(ρ−m, θ−m, f). (5)

The pairs of variables (ρ+m, θ+m) and (ρ−m, θ−m) in
the focal plane play the role of plane polar coordi-
nates, related to the centres of the higher-diffraction-
order beams, C+m(mλf/D, 0) and C−m(mλf/D, π), re-
spectively [29].

In the focal plane the zeroth-diffraction-order beam is
found as a LG beam with a phase singularity of topolog-
ical charge l along its propagation axis (ρ = 0), where it
has a vanishing amplitude

U0(ρ, θ, f) = Al,0i(w0/wf )t0 exp[il(θ + π/2)]×
(
√

2ρ/wf )l exp(−ρ2/w2
f ). (6)

In the last equation the notation wf = λf/(πw0) for the
LG

(l)
0 beam waist radius for a focusing lens of a focal

length f is used (λ is the incident beam wavelength).
The beams in the higher positive and negative diffrac-
tion orders are deviated from the z axis (the transverse
Cartesian coordinate system axis, which is perpendicu-
lar to the grating stripes). They have wave amplitudes
described by a product of a Gauss-doughnut function
(ρ±m/wf )|s±m| exp(−ρ2

±m/w2
f ) of order |s±m| and a con-
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Fig. 1. Experimental setup: Nd : Y V O4 laser -
continuous-wave frequency-doubled laser emitting at a wave-
length of 532nm. BS - beam splitters. CGH1, CGH2 - bi-
nary computer-generated holograms. D - iris diaphragms.
L - focusing lens (f = 100cm). M - flat mirrors. CCD -
charge-coupled device camera located at the beam waist.

fluent hypergeometric (Kummer) function M

U±m(ρ±m, θ±m, f) = Al,0i(w0/wf )t±m2l/2 ×

exp[is±m(θ±m ± π/2)]
(

ρ±m

wf

)|s±m|
×

exp

(
−ρ2

±m

w2
f

)
Γ((|s±m|+ l)/2 + 1)

Γ(|s±m|+ 1)
×

M

(
|s±m| − l

2
, |s±m|+ 1;

ρ2
±m

w2
f

)
, (7)

where the following signs are introduced

s+m = l + mp; s−m = l −mp; (m = 1, 2, ...); sm=0 = l.
(8)

From Eq. 7 it can be concluded that, in the ±m-th
diffraction order, a phase singularity of |s±m|-th order
occurs (except for the case when l − mp = 0 is satis-
fied). The topological charge is equal to l + mp and
l−mp, respectively, for the positive and negative m-th-
diffraction-order beams. The transverse intensity pro-
file of the singular beam is a vortex ring with a dark
core, whose radius in the m-th diffraction order, char-
acterized by TC s, (see Eq. (16) in [21]) is calculated
approximately as

ρmax,s= wf

√
(|l ±mp|+ 1)|l ±mp|
|l ±mp|+ l + 2

= wf

√
(|s±m|+ 1)|s±m|
|s±m|+ l + 2

. (9)

Further we will present our experimental scheme and the
obtained results for the transformation of the TCs of the
OVs as well as data for the vortex ring radii, and will
compare them to the above theoretical results.

3. Experimental setup and results
The experimental setup we used is shown in Fig. 1.
The beam of a continuous-wave frequency-doubled Nd :
Y V O4 laser at a wavelength of 532nm is first split by a
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beam splitter (BS) and, later, the object and the ref-
erence beams are recombined by a second BS to in-
terfere at the CCD camera chip. The CCD camera
is carefully located at the beam waist of the focusing
lens L (focal length f = 100cm). In the object arm
of the interferometer the beam illuminates the first bi-
nary computer-generated hologram (CGH1). Both used
holograms are fork-shaped amplitude diffraction grat-
ings produced photolithographically with a grating pe-
riod of 30µm. In these holograms we encoded point
(fork-like) phase singularities with spiral phase profiles
(OVs) with TCs ranging from 1 to 4.The laser beam
diffracts from CGH1 and the desired diffraction order
beam with the desired TC is transmitted by the first iris
diaphragm D. Further we will call it an incident beam
(approximated by Eq. 3). This incident beam illumi-
nates the second computer-generated hologram CGH2
and the desired diffraction order beam is selected by the
second iris diaphragm D. In this way the object beam
is formed. Power density distributions of the resulting
optical vortex beams and the respective interference pat-
terns are recorded by the same CCD camera by block-
ing/unblocking the reference laser beam but keeping the
camera position unchanged.Theh results presented in
this paper are selected out of a much wider set of mea-
surements with different combinations of the OV TCs l
and p.

The first main theoretical result given by Eq. 8 states
that the final TC s of the vortex should be equal to the
TC l of the incident beam plus the diffraction order m
(with its sign) times the TC p encoded in the binary
grating (CGH2, see Fig. 1):

s = l + mp. (10)

In Fig. 2 we show in a simple way what should be the
TC s of the output OV after fulfillment of this trans-
formation rule in the simple case of l = 2 and p = 1,
in different diffraction orders. The relative size of the
black circles is chosen to qualitatively reflect the fact
that the higher the (absolute value of the) topological
charge, the broader the dark OV core and the higher the
radius of the bright vortex ring. In one of the cases one
should expect that the TC of the incident OV beam will
be ”erased” and the TC of the output beam should be
zero. Therefore, there will be no reason to observe a dark
beam nested on the bright background. In Fig. 2 this
case is present in the (−2)-nd diffraction order. Since in
different diffraction orders OVs with equal, as an abso-
lute value, but opposite in sign TCs are expected, the TC
sign change is identified by the reversal of the fork-like
splitting of one of the interference stripes in the recorded
interference patterns.

3.A. Case A: l = 2 and p = 1
In Fig. 3 we present experimental data for the case when
the incident beam carries a twofold-charged OV (l = 2)
and a singly-charged OV is encoded in the binary grat-
ing CGH2 (see Fig. 1; i.e. p = 1). In the first column of

43210
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Final TC s=

for l=2, p=1
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for l=2, p=1 s=l+mp

Fig. 2. Sketch of the TC transformation rule (Eqs. 8) in the
case of l = 2 and p = 1.

this figure, as well as in Figs. 5,7, and 9, we show power
density distributions of the diffracted beams in the focal
plane of the focusing lens. Especially intriguing is the
result for the diffraction in the −2-nd order (m = −2).
According to the TC transformation rule the resulting
topological charge is zero (s = 2+(−2)1 = 0) and we ob-
served a beam with a well formed single peak. This peak
was observed in the focal plane of the lens only. Shifting
the CCD camera around this position we observed flat-
topped and even (at larger offsets) only partially filled
doughnut-like beams. The respective interferogram con-
sists of parallel interference lines confirming that the TC
of the input beam is ”erased” (i.e. set to zero). For the
negative diffraction orders m = −3 and −4 the TC of
the resultant beam is negative (s = −1 and −2, respec-
tively), and the fork-like splitting of one interference line
in 2 and 3 lines is directed downwards. For the ±1-st
and for the 0-th diffracted order beams, as predicted,
the resultant TCs s are positive. This is clearly seen
in the respective interferograms, in which the fork-like
splitting of the interference line is upwards. The exper-
imentally obtained TCs confirm that the predicted TC
transformation rule holds in this case. In Fig. 4 we show
the normalized radial cross-sections of all OV beams and
of the chargeless beam, experimentally generated in this
case (l = 2 and p = 1) in different diffraction orders
and notation of their final TCs. For better visibility in
all such comparisons in this manuscript we normalized
the OV ring peaks to unity avoiding the visual effects
of the very different (decreasing) diffraction efficiency of
CGH2 with increasing the diffraction order m. This is
valid also for the Figures 6, 8 and 10. Qualitatively, the
higher the absolute value of the OV TC, the broader the
vortex ring. The second main theoretical result from
[21] given here by Eq. 9 gives much more - an analyti-
cal estimate of the vortex ring radii ρmax,s in different
diffraction orders m, depending on the input TC l and
on the TC p encoded in the second CGH. By using that
equation we calculated the vortex ring radii ρmax,s (for
different l, p and m values) of the exit beam carrying
TC s, normalized to the vortex ring radius ρ1 of the
singly-charged exit beam (for cases A, B and C). On the



5

Fig. 3. Case A: l = 2 and p = 1. Power density distri-
butions of the OV beams diffracted in different orders m of
CGH2 with an encoded singly-charged OV (left column) and
respective interferograms for identifying the resultant OV TC
s (right column).

other hand side we estimated these normalized vortex
radii ρs/ρ1 from the experimentally obtained intensity
distributions given in Figures 4, 6 and 8 (respectively
for the cases A, B and C). Further we present the com-
parison between the theoretical and experimental values
ofo the relations ρs/ρ1 for cases A, B and C in Table
1. In Table 2, however, by necessity, we present such a
comparison for the vortex ring radii normalized to the
double-charged vortex beam, ρs/ρ2 (case D).

3.B. Case B: l = 3 and p = 1
In Fig. 5, following the same style of presentation, we
show experimental data for the case when the incident
beam carries a threefold-charged OV (l = 3) and, as in
the previous case, a singly-charged OV (p = 1) is en-
coded in the binary grating CGH2. All final topological

Fig. 4. Normalized radial cross-sections of the OV beams
experimentally generated in Case A (l = 2 and p = 1) in
different diffraction orders and their TCs.

charges retrieved from the experiment confirm the the-
oretical prediction in both modulus and sign of the TC
(see right column in Fig. 5, the number of split inter-
ference lines and the direction of splitting). As in Case
A, this time in the −3-rd diffraction order, the TC=3 of
the incident OV beam is erased and a well formed single
peak is seen in the beam waist. Note that for s = 3 and 4
the multiply-charged OVs split into singly-charged ones
but they still remain with highly overlapping cores. For
s = 4 the vortex ring shows a weak azimuthal mod-
ulation which is a result of the binary nature of the
holograms we used. As in the previous case, the respec-
tive radial cross-sections of the recorded vortex rings are
shown in Fig. 6. Ones again, in an agreement with the
physical intuition, the higher the absolute value of the
OV TC, the broader the vortex ring.

3.C. Case C: l = 4 and p = 1
In Fig. 7 experimental data for the case of an inci-
dent beam carrying a fourfold-charged OV (l = 4) are
shown. As in the previous two cases, a singly-charged
OV (p = 1) is encoded in the binary grating CGH2. In
the −4-th diffraction order one can see the ”erasure” of
TC=4 and formation of a single bright peak in the for-
mer large vortex core. In the middle of the correspond-
ing interference pattern the interference lines are paral-
lel, which is an indication for a flat phase profile. Across
a dark ring surrounding the central dominating peak the
outer parts of the interference stripes are shifted with
respect to the central part, which is an indication for
the existence of a surrounding ring dark wave. Such
structure can be seen also in Case B for m = −3 and
s = 0. Generally, the interference patterns observed
in this case (Fig. 7, right column) ones again confirm
the theoretically predicted TC transformation rule. The
OV ring radii obviously increase with increasing the fi-
nal topological charge s, which is also clearly seen in
Fig. 8. In the vortex ring of the charge 5 OV one can
see an azimuthal modulation which is a result of the bi-
nary nature of the holograms we used. The evaluated
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Fig. 5. Case B: l = 3 and p = 1. Power density distri-
butions of the OV beams diffracted in different orders m of
CGH2 with an encoded singly-charged OV (left column) and
respective interferograms for identifying the resultant OV TC
s (right column).

Fig. 6. Normalized radial cross-sections of the OV beams
experimentally generated in Case B (l = 3 and p = 1) in
different diffraction orders and their TCs.

Fig. 7. Case C: l = 4 and p = 1. Power density distri-
butions of the OV beams diffracted in different orders m of
CGH2 with an encoded singly-charged OV (left column) and
respective interferograms for identifying the resultant OV TC
s (right column).

radius of this slightly modulated OV ring, however, per-
fectly matches the theoretical prediction (see Case C,
ρ5/ρ1 = 3.11 in Table 1).

In Table 1 we present a comparison between the the-
oretically predicted (th.) and experimentally estimated
(exp.) vortex ring radii ρs normalized to the ring ra-
dius ρ1 of the singly-charged OV ring for Cases A, B,
and C. In most cases the discrepancy is well below 10%
and one can say that the experimental data fairly well
confirm the theoretical prediction given by Eq. 9.

3.D. Case D: l = 4 to p = 2
This is the last case (see Fig. 9), which we would like to
present out of the much wider set of measurements with
different combinations of TCs l and p. Here the diffrac-
tion takes place from a CGH2 in which a twofold-charged
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Fig. 8. Normalized radial cross-sections of the OV beams
experimentally generated in Case C (l = 4 and p = 1) in
different diffraction orders and their final TCs.

Table 1. Comparison between the theoretically predicted and
experimentally estimated vortex ring radii ρs normalized to
the ring radius ρ1 of the singly-charged OV ring for Cases A,
B, and C. (n.a. – this case is not available experimentally.)

Case (ρ−1/ρ1) (ρ2/ρ1) (ρ3/ρ1) (ρ4/ρ1) (ρ5/ρ1)

A th. 1 1.58 2.07 2.51 2.90

exp. 1.06 1.64 2.12 2.63 3.18

B th. 1 1.60 2.10 2.57 2.98

exp. 1.09 1.68 2.20 2.52 3.16

C th. n.a. 1.64 2.19 2.66 3.11

exp. n.a. 1.64 2.22 2.66 3.11

OV is encoded. Hence, by changing from one diffraction
order to the neighboring one, the final OV topological
charge changes by 2. We selected to present here this
case because for p = 3 and 4 the TCs of the diffracted
waves increase by 3 and 4, respectively. Unfortunately,
for topological charges higher than 6, we observed more
or less pronounced OV ring azimuthal modulation due to
the binary nature of the gratings used. Once again, all
general features of the recorded power density and inter-
ference distributions of the output OVs are in agreement
with the preceding observations:
i) The proposed OV TC transformation rule holds pre-
cisely.;
ii) OV TC can be erased which leads to a well formed
single bright peak at the former position of the OV dark
core.;
iii) The bright OV ring radii increase with increasing the
modulus of the OV TC (see Fig. 10).;
iv) The normalized OV ring radii retrieved from the ex-
periment agree qualitatively with the theoretical predic-
tion (see Table 2).

4. Conclusion

The presented experimental data confirm the predicted
transformation of the topological charge of an incident
optical vortex beam after a second fork-shaped binary

Fig. 9. Case D: l = 4 and p = 2. Power density distri-
butions of the OV beams diffracted in different orders m of
CGH2 with an encoded twofold-charged OV (left column)
and respective interferograms for identifying the resultant
OV TC s (right column).

Fig. 10. Normalized radial cross-sections of the OV beams
experimentally generated in Case D (l = 4 and p = 2) in
different diffraction orders and their TCs.

computer-generated hologram: The final TC of the vor-
tex is equal to the TC of the incident beam plus the
diffraction order (with its sign) times the TC encoded
in the binary grating. As a consequence from this trans-
formation rule, OV TC can be erased in one case when
the resultant TC equals to zero. As a result, in the fo-
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Table 2. Comparison between the theoretically predicted and
experimentally estimated vortex ring radii ρs normalized to
the ring radius ρ2 of the twofold-charged OV ring for Case
D.

Case D (ρ−2/ρ2) (ρ4/ρ2) (ρ6/ρ2)

th. 1 1.63 2.15

exp. 0.99 1.79 2.35

cal plane of a lens (and in the far field) a well formed
single bright peak is formed at the former position of
the OV dark core. The theoretical results [21, 29] for
the algebraic transformation of the TCs of the OVs and
for the vortex ring radii of the transformed beams vs.
final TC are found in a perfect agreement with the ex-
perimental data. By using such experimental setup an
one-dimensional array of OVs (on their own background
beams) with different values and signs of their TCs can
be produced, including a beam which does not possess a
phase singularity. Each of the diffraction-order beams in
that array can be focused into a separate optical trap. If
the OV TC is non-zero it will have a dark vortex core and
carry orbital angular momentum with a specific value
(suitable for trapping low-index micrometer-sized parti-
cles or atoms), or can be with a chargeless bright core (if
the TC is zero; suitable for trapping particles with higher
refractive index than that of surrounding medium) [33].
By using different diffraction order beams one can ar-
range two near-by optical vortices with opposite wave-
front helicities to exert torques with opposite directions
that together can be used to create a microfluidic pump
[34], just to mention two ideas for application of such
OVs.
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and Yu. Kivshar, “Spatial phase dislocations in fem-
tosecond laser pulses,” J. Opt. Soc. Am. B 23, 26–35
(2006).

[19] K. Yamane, Y. Toda, and R. Morita, “Ultrashort
optical-vortex pulse generation in few-cycle regime,”
Opt. Express 20, 18986–18993 (2012).

[20] M. Bock, J. Brunne, A. Treffer, S. König, U. Wallrabe,
and R. Grunwald, “Sub-3-cycle vortex pulses of tunable
topological charge,” Opt. Lett. 38, 3642–3645 (2013).

[21] S. Topuzoski and Lj. Janicijevic, “Fraunhofer diffraction
of a LaguerreGaussian laser beam by fork-shaped grat-
ing,” J. Modern Optics 58, 138–145 (2011).

[22] S. Topuzoski and Lj. Janicijevic, “Conversion of high
order Laguerre-Gaussian beams into Bessel beams of in-
creased, reduced or zero-th order by use of a helical axi-
con,” Optics Commun. 282, 3426–3432 (2009).



9

[23] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “En-
taglement of the orbital angular momentum states of
photons,” Nature 412, 313–316 (2001).

[24] M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov,
J. T. Malos, and N. R. Heckenberg, “Topological charge
and angular momentum of light beams carrying optical
vortices,” Phys. Rev. A 56, 4064–4075 (1997).

[25] M. S. Soskin and M. V. Vasnetsov, “Nonlinear singular
optics,” Pure Appl.Opt. 7, 301–311 (1998).

[26] I. D. Maleev, A. M. Deykoon, G. A. Swartzlander, Jr.,
M. S. Soskin, and A. V. Sergienko, “Violation of conser-
vation of topological charge in optical downconversion,”
in Quantum Electronics and Laser Science Conference,
OSA Technical Digest, p. 99 (Optical Society of Amer-
ica, Washington, D.C., 1999).

[27] P. Hansinger, G. Maleshkov, I. L. Garanovich,
D. V. Skryabin, D. N. Neshev, A. Dreischuh, and
G. G. Paulus, “Vortex algebra by multiply cascaded
four-wave mixing of femtosecond optical beams,” Optics
Express 22, 11079–11089 (2014).

[28] H. Yu, H. Zhang, Y. Wang, S. Han, H. Yang, X. Xu,
Z. Wang, V. Petrov, and J. Wang, “Optical orbital an-
gular momentum conservation during the transfer pro-

cess from plasmonic vortex lens to light,” Nature Sci.
Rep. 3 3191 (2013).

[29] Lj. Janicijevic and S. Topuzoski, “Fresnel and Fraun-
hofer diffraction of a Gaussian laser beam by fork-shaped
gratings,” J. Opt. Soc. Am. A 25, 2659–2669 (2008).

[30] I. V. Basistiy, V. Yu. Bazhenov, M. S. Soskin, and
M. V. Vasnetsov, “Optics of light beams with screw dis-
locations,” Opt. Commun. 103, 422–428 (1993).

[31] W. M. Lee , X.-C. Yuan, and K. Dholakia, “Experimen-
tal observation of optical vortex evolution in a Gaussian
beam with an embedded fractional phase step,” Opt.
Commun. 239, 129–135 (2004).

[32] J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-
Arnold, S. M. Barnett, and M. J. Padgett, “Entangled
topological features of light,” arXiv: 1101.3564v1.

[33] D. Cojoc, V. Garbin, E. Ferrari, L. Businaro, F. Ro-
manato, and E. Di Fabrizio, “Laser trapping and micro-
manipulation using optical vortices,” Microelectron.
Eng. 78-79, 125–131 (2005).

[34] K. Ladavac and D. G. Grier, “Microoptomechanical
pumps assembled and driven by holographic optical vor-
tex arrays,” Optics Express 12, 1144–1149 (2004).


