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A B S T R A C T

In this article as a diffractive optical element we consider a composed four-sector binary grating under Gaussian
laser beam illumination. The angular sectors are bounded by the directions y x= and y x= − , and consist of
parts of a binary rectilinear grating; thereby, two neighboring parts are shifted by a half spatial rectilinear
grating period. The diffracted wave field amplitude is calculated, showing that the straight-through, zeroth-
diffraction-order beam is an amplitude-reduced Gaussian beam, and the higher-diffraction-order beams,
deviated with respect to the propagation axis, are non-vortex beams described by modified Bessel functions. The
transverse intensity profiles of the higher-diffraction-order beams, numerically and experimentally obtained,
have form of a four-leaf clover; they are similar to the Laguerre-Gaussian LG(0,2) beam (with radial mode
number n = 0 and azimuthal mode number l = 2) described by circular cosine function, in a paraxial, far-field
approximation.

1. Introduction

Besides the fundamental mode (Gaussian beam), the Hermite–
Gaussian (HG) and Laguerre–Gaussian (LG) beams are also solutions
of the paraxial wave equation [1]. Lot of research has been done to
analyze their theoretical and experimental properties, and to investi-
gate their applications in the basic optical sciences and in other
scientific fields (see e.g. Ref. 2 and references therein). Linearly
polarized LG beams with nonzero azimuthal mode number are carriers
of screw dislocations and possess orbital angular momentum (OAM)
[3]. They are optical vortex beams. In the field of singular optics the
mostly used are LG beams with zero radial mode number. The family of
LG beams covers the cases of the equiaxial linear combinations
(addition or subtraction) of two LG beams with equal azimuthal mode
number value l, but with opposite signs of l (opposite orientations of
their OAMs), as well. As a result, the two coupled vortex beams create a
beam without OAM (no topological charge), possessing profiles de-
scribed by circular functions lφcos( ) or lφsin( ).

The linearly polarized HG(m,n) beams have degenerate edge
dislocations in their wavefronts and do not possess OAM [3].

Nye and Berry have described, classified and analyzed the wave-
fronts defects in wave trains and monochromatic waves [4]. In laser
beams having structure of transverse cavity modes, edge dislocations
occur as black lines between π-shifted in phase mode spots; the

simplest is the TEM01, where the zeroth-value intensity line divides
the beam into two parts corresponding to phase shift of π. In [5] the
authors showed that, an edge dislocation of the wavefront can be
produced experimentally by using two binary periodic gratings, shifted
by half a period on a line of zero amplitude. Then, in the process of
diffraction, the incident Gaussian laser beam is divided with a dark line
into two bright spots. Whereas, a binary fork-shaped grating with an
edge dislocation in direction θ = 0 produces mixed screw-edge disloca-
tion, as shown experimentally in [5].

The vortex beams are created in laser resonators, or by using
diffractive optical elements which transform the Gaussian beam into a
vortex one, such as spiral phase plate [6–8], helical axicon [9–12],
helical lens [13], computer-generated holograms [14,15], fork-shaped
gratings [16,17] etc. The computer-generated gratings (CGGs) accom-
panied with the photo-reduction methods have an advantage over the
expensive lithographic methods. Except the simple, fast and cheap
production, they make possible the creation of combined gratings,
which can substitute the laser resonators in making new interesting
laser modes. Liquid crystal spatial light modulators make this proce-
dure even more flexible ensuring high efficiency and fast reconfigura-
tion.

In this article we consider a CGG constructed by inserting parts of a
binary rectilinear grating into the four equal angular sectors, bounded
by the directions y x= and y x= − (Fig. 1). Thus, two neighboring parts
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of the grating are shifted by a half spatial grating period along x axis.
We analytically calculate the diffraction pattern obtained by illuminat-
ing the grating with a Gaussian laser beam, which enters into the
grating plane with its waist and intersects the grating plane centre with
its axis. The far-field diffraction patterns of the higher-diffraction-order
(HDO) beams, in a paraxial approximation are similar to Hermite-
Gaussian HG(1,1) or cosine-LG(n=0,l=2) laser mode: four bright spots
are nested in four quadrants divided by crossed one-dimensional phase
dislocations. With this method we create in the HDOs beams with
coupled optical vortices [18] and crossed dark lines, which are of
interest for many applications as optical trapping, optical communica-
tion, angular alignment etc.

2. Construction and transmission function of the grating

The computer generation of this grating consists in inserting parts
of a binary rectilinear grating into the four equal angular sectors,
bounded by the directions y x= and y x= − . The area of each of the
sectors, numbered by n=(1), (2), (3) and (4), is successively covered by
a negative (in (1) and (3)) and positive (in (2) and (4)) gratings, both
possessing the same period d ξ= 2 0 (Fig. 1). In a rectangular coordinate
system, whose ordinate is the axis of symmetry of both types of
gratings, their transmission functions are expressed by the cosine
Fourier series as
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Since we will treat the problem of diffraction of a Gaussian laser
beam by the computer-generated gratings in cylindrical coordinate
system, we will use the polar coordinates r φ( , ) for the grating's plane.
The pole is situated in the intersection point of the y x= and y x= −
lines. Then, the transmission functions t r φ( , )g
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white central line) and t r φ( , )g

− for the negative (with dark central line)
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∑t r φ m π i m π
ξ

r φ

i m π
ξ

r φ

( , ) = 1
2

± 1
2

sinc (2 − 1)
2

exp + (2 − 1) cos

+ exp − (2 − 1) cos .

g
m

±

=1

∞

0

0

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ (2)

In Eq. (1) and Eq. (2) the transmission coefficients are
m π π msinc((2 − 1) /2) = 2(−1) /( (2 − 1))m( −1) m( = 1, 2, 3, ... ), while the

sign “+” in front of the sum stands for the positive grating.
As it is seen in Fig. 1, the n-th quadrant is occupied by one of the

upper mentioned gratings. Each of them is an angular sector of π/
2 rad, which in absence of the grating, is a completely transparent
aperture between the directions φ n π= (2 − 1) /4 and φ n π= (2 + 1) /4.
Using the Heaviside unite step function E φ φ φ φ φ π( − ) = 1 >
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The transmission function of the composed grating in Fig. 1 is a
sum of the four sector transmission functions t r φ t φ t r φ( , ) = ( ) ( , )a
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The grating whose transmission function is given by expression Eq.
(4) will be used as an optical diffracting device in our further investigation.

3. Diffraction of a Gaussian laser beam by the composed
four-sector grating

The Gaussian beam is normally incident on the plane of the grating,
with its propagation axis (z axis of the cylindrical coordinate system)
passing through its centre, and its waist located in the plane of the
grating. Thus, the incident beam is defined by:
U r φ z r w ikr q( , , = 0) = exp(− / ) = exp(− /2 (0))i 2

0
2 2 where w0 is the beam

waist radius, k π λ= 2 / is the propagation constant and q (0) is the beam
complex parameter in the waist plane. If the grating is absent, at
distance z from the origin the beam has a complex parameter
q z z ikw( ) = + /20

2 , with q ikw iz(0) = /2 =0
2

0, and z0 being the beam
Rayleigh distance. The field of the diffracted light is defined by the
Fresnel-Kirchhoff integral
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The polar coordinates ρ θ( , ) characterize the observation plane Π
situated at distance z from the grating. Substitution of the incident
beam and the transmission function Eq. (4) in the diffraction integral
gives
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The part of the solution U ρ θ z∑ ( , , )n m=1
4

=0 defines the zeroth
diffraction order

Fig. 1. The computer-generated four-sector grating.
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Considering that
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To carry out the integration over the radial variable, the referent
integral Eq. 11.4.29 in [19] is used. After replacing its solution in Eq.
(8), we get the zeroth-diffraction-order wave amplitude in the form
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It represents the incident Gaussian beam at distance z from its
waist, being amplitude reduced by 1/2.

The field of the higher diffraction orders is represented by the
second part of expression Eq. (6)
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Before we start performing the integration over the azimuthal
variable, we will do an rearrangement of the exponents with the
variable φ in Eq. (10). By introducing a shorter notation
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we can write the exponents containing the diffraction orders m(2 − 1)
as
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These new local variables Eq. (13) are associated to coordinate
systems whose roots in the observation plane Π ρ θ( , ) are located at
directions θ π= and θ = 0 (for negative and positive HDOs, respec-
tively), at points O ρ m x θ π( = (2 − 1) , = )m(2 −1) 0 and
O ρ m x θ( = (2 − 1) , = 0)m−(2 −1) 0 . Two neighboring roots are found at a

distance O O x λz ξ= 2 = /m m2 +1 2 −1 0 0 from each other. The (2m−1)-th
diffraction order consists of two components deviated at angle
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tion order is defined by
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In Eq. (15) the Jacoby-Anger identity [20] for the Bessel functions:
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in Eq. (14) yields
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while the branches of the (2m−1)-th diffraction orders are given by the
expression
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If instead complex, we use the real parameters of the incident beam,
the following replacements are needed:
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2 being the radii of
the transverse cross-section and of the beam wave front curvature. In
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and treat them as new real parameters of the (2m−1)-th diffraction
order beam, since now: = −

′
k
i

q
zq z w z

ik
R z4

(0)
( )

1
( ) 2 ′ ( )2 .

Considering that the wave field U m± (2 −1) can be written by its
amplitude A m± (2 −1) and phase term F m± (2 −1) as U =m± (2 −1)
A iFexp(− )m m± (2 −1) ± (2 −1) , it is not difficult to see that the amplitude
profile function of the (2m−1)-th diffraction order beam Eq. (21) is

∑

A ρ θ z

m π w
w z

k
iπ R z

i
kw z

ρ
ρ

w z

l
l θ

I
w z

ik
R z

ρ

I
w z

ik
R z

ρ

( , , ) =

2sinc (2 − 1)
2

′
′( )

2 2
′( )

+ 4
′ ( )

exp
−

′ ( )

×
(−1)

2(2 − 1)
cos[2(2 − 1) ]

× 1
′ ( )

−
2 ′( )

− 1
′ ( )

−
2 ′( )

.

m m m

m
m

l

l

m

l m

l m

± (2 −1) ± (2 −1) ± (2 −1)

0
2 ± (2 −1)

± (2 −1)
2

2

=1

∞

± (2 −1)

(2 −1)−1/2 2 ± (2 −1)
2

(2 −1)+1/2 2 ± (2 −1)
2

⎪

⎪

⎪

⎪

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⎫
⎬
⎭ (23)

Due to the decreasing of the series coefficients C = =l l
(−1)

2(2 − 1)

l

l, , , ... ; = 1, 2, 3, 4, ...1
2

1
6

1
10

1
14

, it is possible to ignore series members
with l > 1. We will demonstrate in the next section the effect of the
presence of terms in the sum in Eq. (23) for l higher than 1, on the far-
field diffraction patterns. In the approximation when taking into
account only the term for l = 1, which will be used in our further
investigation, the m(2 − 1)-th diffraction-order beam is defined by
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where ϕ = I η I η
I η I η

Im( ( ) − ( ))
Re( ( ) − ( ))

1/2 3/2
1/2 3/2

and η ρ= −
′w z

ik
R z m

1
( ) 2 ′ ( ) ± (2 −1)

2
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⎛
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⎞
⎠⎟ .

The separate treatment of the beam is possible if it is undisturbed
by interference with the neighboring diffraction-order beams. The
condition to avoid interference is λz ξ w/ > 2 beam0 or z ξ w λ> 2 /beam0 where
wbeam is the beam transverse cross-section dimension. That is the
reason why when the diffraction objects are gratings (which produce
many diffraction orders), the far-field investigation is preferable.

The authors in [22] in Section 4 of their article give a picture
(Fig. 4b) of a CGG as a substitute to the fork-shaped grating. It is
composed of four sectors, bounded by the lines y x= ± , in which the
rectilinear grating parts meet on the boundaries displaced by a rate ξ /20
(the quarter of the binary grating period). The displacements on the
same boundaries, in the case of CGG (Fig. 1), treated in this article, is ξ0
i.e. a half period of rectilinear grating. What are the consequences of
the displacement difference, will be seen in the next section.

4. Discusion of the results in the far-field approximation

By neglecting the terms in the amplitude profile function A m± (2 −1)
which have R z′( ) and z in their denominator, and the small term
ρ z/m± (2 −1)

2 in the phase function in Eq. (24), we get the so called far-
field approximation of Eq. (24)
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In both presentations of the beam field, Eq. (24) and Eq. (25), the
parts which include variables ρ m± (2 −1) and z, are similar in form with
those representing the (2m−1)-th diffraction order of a binary fork-
shaped grating with topological charge p (Eq. (30) in [16]). But, there
are some essential differences. Let us compare solution (25) with the
far-field approximation of the HDOs for the fork-shaped grating having
TC p, given by
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The first difference is the existence of the circular function with
azimuthal variable θcos(2 )m± (2 −1) as a part of the amplitude profile of
expression (25). It modulates the amplitude function with its zero
values. Since θ θ θ θcos(2 ) = (cos − sin )(cosm m m m± (2 −1) ± (2 −1) ± (2 −1) ± (2 −1)

θ+ sin )m± (2 −1) it is clear that its zero values in the observation plane
occur for values of θ m± (2 −1) (m=1,2,3…) which satisfy the equations

θ θ
θ

a

θ θ
θ

b

cos − sin = 0
or tan = 1 ( )

and
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Within the angular interval θ π0 < < 2m± (2 −1) the solutions of Eq.
(27a) are θ π= /4m± (2 −1) and θ π= 5 /4m± (2 −1) , while the solutions of Eq.
(27b) are θ π= 3 /4m± (2 −1) and θ π= 7 /4m± (2 −1) . This indicates that, a
dark crossed modulation of the amplitude profile is present in all
higher diffraction orders of the CGG in Fig. 1, giving the four-leaf clover
look to their transverse intensity cross-sections. There is no phase
singularity in expression (25). When the phase functions of Eq. (25)
and Eq. (26) are compared, it is evident that the m±(2 − 1)-th
diffraction-order beam, generated by the fork-shaped grating, poss-
ess an extra phase expression given by the exponential fun-
ction i m pθexp ⌊± (2 − 1) ⌋m± (2 −1) , which together with the zero
amplitude value at ρ = 0m± (2 −1) , declares the beam as a vortex,
with topological charge equal to m p±(2 − 1) . If we go
back to Eq. (25) and use the exponential representation

θ i θ i θcos(2 ) = ⌊ exp( 2 ) + exp(− 2 )⌋/2m m m± (2 −1) ± (2 −1) ± (2 −1) , we come to a
conclusion that, the HDOs of the CGG in Fig. 1 represent a sum of two
equiaxial vortex beams possessing topological charges +2 and −2.
Similar is the situation with the coupling of two oppositely charged
Laguerre-Gaussian beams with zero radial modes to obtain an un-
charged LG beam
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The intensity profiles of the beams Eq. (25) and Eq. (26) are

I ρ θ z

θ

I I

( , , ) =

× exp − cos (2 )

× −

′
′

′

′ ′

m m m π m

w
w z

ρ

w z

ρ

w z m

ρ

w z

ρ

w z

± (2 −1) ± (2 −1) ± (2 −1)
32 1

(2 − 1) ′ ( )

2

( )

2

( )
2

± (2 −1)

(2−1)/2 ( ) (2+1)/2 ( )

2

m

m

m m

3 2
0 ± (2 −1)

2

2

± (2 −1)
2

2

± (2 −1)
2

2
± (2 −1)
2

2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
(29)

for expression (25), and
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for the beam (26).
Based on Eq. (29) the diffraction pattern in the first diffraction

order is numerically calculated and presented in Fig. 2, at distances
z=0.5 m (a), 1 m (b) and 10 m (c), for parameters w = 1 mm0 and
λ = 530 nm. While in the near field and at distances z z< 0 (z = 5.9 m0 )
behind the grating, the bright spots are followed with secondary
maxima (due to the ringing intensity distribution in radial direction),
in the far field they are absent. In Fig. 2d the experimentally registered
far-field diffractogram is shown. In the experiment binary CGG
produced photolithographically with a grating period of m30 μ , and
continuous-wave, frequency-doubled Nd: YVO4 laser at a wavelength of
532 nm are used. The images are recorded 15 cm out of the artificial
far-field in the focus of a lens (f=75 cm) in order to get better resolution
of the image with the CCD camera.

In Fig. 3 the presented transverse intensity profiles of the first-
diffraction-order beam, at distance z=10 m are calculated on base on
Eq. (23), for: l=1 (a), l=1, 2 (b) and l=1, 2, 3 (c). When higher than one
values of l are taken in the sum, the central part of the diffraction
pattern remains same, but the outer parts of the bright spots are not
sharply defined i.e. they are stretched along the crossed directions. It
can be seen that Fig. 3.a most closely resembles the experimentally
obtained diffractogram.

The radial part of the intensity profile Eq. (29) differs from the
intensity profile Eq. (30) in absence of the diffraction-order value
(2m−1) in the indices of the modified Bessel functions. The product

m p(2 − 1) is replaced by 2 for all diffraction orders in Eq. (29). In [16]
for the doughnut-shaped maximum of the intensity profile Eq. (30), the
approximate radius is calculated ρ w z( ) = ′( )m

m p m p
m p± (2 −1) max

(2 − 1) ((2 − 1) + 1)
(2 − 1) + 2

,

which is in good agreement with the lower diffraction orders in
experimental checking [23]. If the same approximation is applied in
the case of radial part in Eq. (29), we get that the four-leaf clover-
profile maxima are on the radii

w w z θ π π

π m

( ) = ′( ) 3/2 and = 0, /2,

and 3 /2 ( = 1, 2, 3, …)
m beam m± (2 −1) ± (2 −1)

(31)

in all far-field diffraction orders of the CGG in Fig. 1.
The far-field intensity diffractograms of the CGG (Fig. 1) and of the

fork-shaped grating, under Gaussian beam incidence, represent a sum
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Fig. 2. The calculated difraction patterns of the four-sector grating, in the first diffraction order, a distance z=0.5 m (a), 1 m (b) and 10 m (c), and the experimentally obtained
diffraction pattern (d).

Fig. 3. Transverse intensity profiles of the four-sector grating in the first diffraction order, calculated at distance z=10 m, according Eq. (23) for: l=1 (a), l=1,2 (b) and l=1,2,3 (c).
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Fig. 4. Diffractograms of the CGGs: a) The diffractogram of the binary four-sector grating (Fig. 1) consists of equisized four-leaf clover-shaped transverse intensity profiles in the higher
diffraction orders, and a zeroth-diffraction-order Gaussian beam. b) The diffractogram of the fork-shaped binary grating with p=1 consists of growing in size doughnut-shaped rings in
the higher diffraction orders, and a zeroth-diffraction-order Gaussian beam. (The arrows show the direction of rotation of the helicoidal wave fronts).

Fig. 5. Experimentally obtained diffraction patterns near the back focal plane of a converging lens, of a binary four-sectorial grating (a), and a fork-shaped grating with p=1 (b).
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over all intensity profiles of the separate diffraction-order beam
intensities Eq. (29) or Eq. (30). In agreement with the previously
discussed theoretical results, it is possible to draw a schematic picture
of the expected look of the diffractograms (Fig. 4) - the numerical
calculation is done at z=10 m, for parameters w = 1 mm0 and
λ = 530 nm. While, in Fig. 5 the experimentally obtained diffraction
patterns of a binary, computer-generated four-sector grating (a) and a
fork-shaped grating with topological charge p=1 (b), registered near
(15 cm behind) the back focal plane of a converging lens with focal
distance f=75 cm are presented.

The statement that the higher diffraction order beams Eq. (25) are
not vortices can be supported by their interferograms with a plane
wave, tilted by small angle ϑ towards the object beam (Eq. (25)),

U A i ρ θ ikz

A i ρ θ ikz

= exp − (sin ϑ) cos exp(− )

= exp(− cos )exp(− )

π
λ m m

π
D m m

2
± (2 −1) ± (2 −1)

2
′ ± (2 −1) ± (2 −1)

⎛
⎝⎜

⎞
⎠⎟ (where D λ′ = / sin ϑ).

The equations F ρ θ F ρ θ μπ( , ) − ( , ) =m m m m m± (2 −1) ± (2 −1) ± (2 −1) ± (2 −1) ± (2 −1)

(μ = 0, 1, 2, ...), where F ρ θ kz x kz= cos + = +π
D m m

π
D m

2
′ ± (2 −1) ± (2 −1)

2
′ ± (2 −1) is

a phase function of a plane wave front defined in polar coordinate
system with centre in O m± (2 −1), and F m± (2 −1) are the phase functions of
the beams Eq. (25), define the interference fringes. So, in the far-field
approximation, and taking the interferogram plane to be z=constant,

the fringe pattern is defined by equations: x =m
m λz ξ μ

D m ζ± (2 −1)
(2 − 1) / (8 ) − / 2
−1 / ′ ∓ (2 − 1) / (2 )

2
0
2

0
.

It is a system of straight lines, normal to the polar axis of the local
coordinate system. They are modulated by the intensity background
A I ρ θ z+ ( , , )m m m

2
± (2 −1) ± (2 −1) ± (2 −1) , as it is seen in Fig. 6: numerically

Fig. 6. Interference pattern of the beam shown in Fig. 2.c with an inclined plane wave: numerically calculated (a) and experimentally obtained (b).

Fig. 7. Vortex beam obtained with the fork-shaped grating (a) and its interference pattern with inclined plane wave (b), for m=1, p=1 and z=10 m.
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calculated (a) and experimentally obtained (b) pattern. In Fig. 6.a the
following parameters are used: A=1, m=1, z=10 m, w = 1 mm0 and
λ = 530 nm (as in the rest of the numerical calculations). If the
interference of the tilted plane wave occurred with one of the beams
Eq. (26), the fringe pattern is defined by x mpθ μπ∓ =π

D m
2

′ ± (2 −1) ,
showing that is a fork-shaped pattern over the intensity background
A I ρ z+ ( , )m m

2
± (2 −1) ± (2 −1) with the doughnut ring around the fork-

shaped part, as a modulator (Fig. 7.b). In the computer calculation of
Fig. 7 we have set: A=1, m=1, p=1 and z=10 m.

5. Conclusion

In this article we investigated a computer-generated grating
composed by parts of a binary rectilinear grating nested into four
equal angular sectors, bounded by the directions y x= and y x= − ,
along which each two neighboring parts are shifted by a half spatial
grating period. Through the analytical method we have derived the
wave field amplitude and intensity distribution in the observation plane
behind the grating, in the process of Fresnel diffraction of an incident
Gaussian beam. The far-field diffraction pattern was numerically and
experimentally obtained. While the zeroth-diffraction-order beam is
ordinary Gaussian, the odd HDOs are found as equal in size X-
modulated beams; They look similar to the linear combination of two
LG modes with radial mode number equal to zero, and opposite
azimuthal mode numbers +2 and −2, or as HG(1,1) mode. Thus, this
type of CGG can be used as a substitute to the laser resonator in order
to produce four-leaf clover-shaped intensity profile with chargeless
central dark spot. It can be used for precise angular alignment, in
optical trapping, where the azimuthally nested bright spots can be used
as separate traps for particles with higher refractive index than the
surrounding medium, and in fiber optics for transfer of information.
The studies of the escape and synchronization of a particle between two
adjacent bright spots, acting as optical traps in azimuthal direction,
could be of interest in statistical physics research, similarly as the
intensity profile obtained by optical elements constructed as phase
layers with cosine-profiled periodicity in the azimuthal direction [24]
can be used for.
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