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Abstract
On-demand generation and reshaping of arrays of focused laser beams is highly desired 
in many areas of science and technology. In this work, we present a versatile approach for 
laser beam structuring in the focal plane of a lens by triple mixing of square and/or hex-
agonal optical vortex lattices (OVLs). In the artificial far field the input Gaussian beam is 
reshaped into ordered arrays of bright beams with flat phase profiles. This is remarkable, 
since the bright focal peaks are surrounded by hundreds of OVs with their dark cores and 
two-dimensional phase dislocations. Numerical simulations and experimental evidences 
for this are shown, including a broad discussion of some of the possible scenarios for such 
mixing: triple mixing of square-shaped OVLs, triple mixing of hexagonal OVLs, as well as 
the two combined cases of mixing square-hexagonal-hexagonal and square-square-hexag-
onal OVLs. The particular ordering of the input phase distributions of the OV lattices on 
the used spatial light modulators is found to affect the orientation of the structures ruled 
by the hexagonal OVL. Reliable control parameters for the creation of the desired focal 
beam structures are the respective lattice node spacings. The presented approach is flex-
ible, easily realizable by using a single spatial light modulator, and thus accessible in many 
laboratories.
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1  Introduction

Ever since their discovery (Nye and Berry 1974), optical vortices have been subject of 
intense research interest. Due to their characteristic screw phase profiles, they are the 
only known truly two-dimensional (2-D) phase singularities. The phase at the singular-
ity point of an optical vortex (OV) is not defined and, therefore, the intensity must van-
ish, leading to a doughnut-shaped bright beam (Rozas et al. 1997a; Desyatnikov et al. 
2005). OVs were proven to carry orbital angular momentum (OAM) (Allen et al. 1992) 
which led to a new understanding of the relation between quantum effects and macro-
scopic optics. OAM is independent of the beams’polarization and can be transferred to 
matter (He et al. 1995; Padgett 2017). It is referred to as the topological charge (TC) m, 
i.e. an integer number with sign, describing the total phase change 2 �m around the OV 
beam axis in azimuthal direction. Although the entire physical picture is far richer, we 
will restrict our analysis to the canonical phase vortices, whose phase changes linearly 
in azimuthal direction.

In the past few decades, OVs have become a research topic in many areas of physics, 
including cold atoms in Bose-Einstein condensates (Matthews et al. 1999), nonlinear optics 
(Kivshar and Agrawal 2003; Hansinger et  al. 2014, 2016), fluid dynamics (Brandt et  al. 
2002), optical communications (Li and Wang 2017), spectroscopy (Picón et al. 2010,Picón 
et  al. 2010), interferometry (Fürhapter et  al. 2005), and optical metrology (Wang et  al. 
2006b, a), just to mention a few. Ingenious applications include optical manipulation of 
small particles (Grier 2003), optical vortex coronagraph (Foo et al. 2005), high-resolution 
microscopy and lithography (Scott et al. 2009), and multiplexing of information for data 
transfer using complex optical fields (Trichili et al. 2016; Gregg et al. 2016; Wang et al. 
2012; Larocque et al. 2017; Liu et al. 2018). OVs play an important role in super-resolution 
stimulated emission depletion (STED) microscopy (Hell and Wichmann 1994) and in the 
practical realization of optical tweezers (Grier 2003; Paterson et al. 2001).

For a better understanding of the obtained results presented here, we have to recall the 
basic results regarding the formation of stable elementary cells of OVs (Neshev et al. 1998; 
Stoyanov et  al. 2019a) placed on a common background beam. This is a necessary step 
for the creation of rigid OV lattices (OVLs) of square or hexagonal type (Stoyanov et al. 
2018a, b). Pairs of singly and equally charged OVs rotate and repel inside a laser beam 
as it propagates. When the TCs are opposite, the vortices attract each other and translate 
perpendicularly to an imaginary line connecting their cores (Rozas et  al. 1997a, b). The 
smaller the OV-to-OV separation, the stronger the attraction/repulsion. The processes of 
rotation and repulsion within a rotational-symmetric ensemble composed of vortices with 
equal TCs can be cancelled by positioning an additional control OV with an opposite TC 
at its center (Neshev et al. 1998; Stoyanov et al. 2019a). Based on this, stable free-space 
propagation of large square-shaped and hexagonal OV lattices (even to the artificial far-
field) was reported for the first time experimentally in (Neshev et al. 1998; Stoyanov et al. 
2018a, b). These results were extended towards controllable beam reshaping in the focal 
plane of a lens by (twofold) mixing of square, hexagonal or square and hexagonal OV lat-
tices with the same or different lattice constants (i.e. distances between two neighboring 
vortices in any vortex lattice) (Zhekova et al. 2019; Stoyanov et al. 2019b, c). The possibil-
ity for an additional beam structuring of each of the peaks of the focal arrays by hosting 
1-D and quasi-2-D phase dislocations or even a singly-charged OV was also proven there. 
The potential control parameters for reshaping the desired bright beam focal pattern were 
discussed as well (Zhekova et al. 2019; Stoyanov et al. 2019b, c).
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Here, we present a versatile method for beam structuring in the focal plane of a lens 
(artificial far field) based on a triple mixing of square (sq.) and/or hexagonal (hex.) optical 
vortex lattices (OVLs). The possibility for arranging different focal patterns is numerically 
simulated and proven experimentally. We present detailed data for three possible scenarios 
for OV lattices mixing-(i) triple mixing of square OVLs, (ii) triple mixing of hexagonal 
OVLs, as well as (iii) mixing of the type hexagonal-square-square OVLs. Additional data 
for square-hexagonal-hexagonal OVL mixing is provided in the Supplementary Material to 
this paper. Reliable control parameters for the creation of the desired focal beam structures 
are the OV node spacings of the individual OVLs and the sequence of the projection of the 
lattices on the spatial light modulators (SLMs), when hexagonal OV lattice is involved. In 
the Supplementary material to this work, we also demonstrate the possibility to addition-
ally nest a phase singularity of desired type in each peak of the generated focal arrays. We 
believe that the reader will be convinced that the presented approach is flexible, easily real-
izable by using just a single SLM, and thus accessible in many laboratories.

2 � Experimental setup and numerical model

In Fig. 1 we schematically show the used experimental setup. Briefly, the continuous-wave 
Gaussian beam from a frequency-doubled Neodymium-doped Yttrium Orthovanadate 
(Nd:YVO4 ) laser (wavelength � = 532 nm) is expanded by a beam expander (BE). In order 
to apply the four-frame technique for interferogram analysis (Groves and Osten 2006; Dre-
ischuh et al. 1996), a reference beam is split off by a beam splitter (BS) before the first spa-
tial light modulator (SLM1). The object beam illuminates the first reflective SLM1. This 
SLM modulates the flat phase distribution of the input Gaussian beam. As a consequence, 
it also modulates the amplitude/intensity of the beam and redirects it to a second spatial 
light modulator (SLM2) of the same type. The singular beam reflected from SLM2 is then 
focused by a lens L ( f = 75  cm) onto a CCD camera chip. The CCD camera is placed 
at fixed position in the focal plane of the lens L. The object and the reference beams are 
recombined by a second beam splitter to interfere at the CCD chip. The respective inten-
sity/interference patterns are recorded by blocking/unblocking the reference laser beam. 
The distance between SLM2 and the lens L is 30 cm, while the SLM1-to-SLM2 distance is 
49 cm. The two SLMs are aligned in parallel and the angle of incidence of the laser beam 

Fig. 1   Experimental setup. Nd:YVO4-continuous-wave frequency-doubled laser ( � = 532  nm); BE-beam 
expander; M-flat silver-coated mirrors; BS-beamsplitters; SLM-reflective spatial light modulator (Pluto, 
Holoeye Photonics); L-focusing lens ( f = 75  cm); CCD-charge-coupled device camera; SLM1-to-SLM2 
distance z1 = 49 cm. SLM2-to-lens distance z2 = 30 cm
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with respect to the normal incidence is 4 ◦ . The efficiency of the OVL generation from 
one of the SLMs is 71% resulting in an overall efficiency of nearly 45% in the focus of the 
lens L. The used experimental setup can easily be modified such that only one spatial light 
modulator is needed. In this case the two desired phase distributions have to be encoded on 
the respective half of the active pixels of the modulator.

Another possibility is to perform imaging of SLM1 onto SLM2 and thereafter Fourier-
transforming the plane of SLM2 by a thin lens. The reason not to use such imaging is 
to include in the experiment and in the numerical simulations the amplitude modulation 
resulting from the free-space propagation between the modulators and from SLM2 to the 
lens and, thus, to prove the stability of the demonstrated method. According to the choice 
to use two SLMs here, our numerical simulations considered the evolution of the manipu-
lated light field by following the beam path SLM1-SLM2-lens until the artificial far field 
is reached. Since the propagation of the laser beam is linear, its evolution was numerically 
calculated by using the linear paraxial model equation for the slowly-varying optical beam 
envelope amplitude E

Here LD = ka2 is the diffraction length of an individual OV (the distance along the propa-
gation direction of an unfocused beam, at which its intensity cross-section is doubled), k is 
the wavenumber in air, a is the half width at (1/e)-level of the amplitude of the individual 
optical vortex, x and y are the transverse Cartesian coordinates, and z the longitudinal coor-
dinate. The used computational window spans 1024 × 1024 grid points. The half width at 
the 1∕e2 intensity level of the incoming background Gaussian beam was 205 pix. By suit-
able programming of SLM1, we generated a single OV and recorded its profile right after 
SLM1 and at the position of SLM2. From the data we conclude that the distance between 
the modulators corresponds to 1.5LD and the SLM2-to-lens distance to 3.0LD . The lens 
(focal length f) is accounted for by the transmission phase function T(x, y) at the appropri-
ate step of the calculation,

The beam evolution was numerically simulated by using the beam propagation method 
(known also as split-step Fourier method), which is proven to be fast and adequate for sim-
ulating nonlinear beam evolution. In the present case, we set the nonlinearity to zero.

3 � Results and discussion

Throughout this paper we will use the terms node spacing and lattice constant as equiva-
lent, denoting the distance between two neighboring vortices in any vortex lattice. With 
Δ , followed by a subscript we denote the phase distributions sent to SLM1, with �-phase 
distributions sent to SLM2. The subscript will provide information regarding the specific 
type of the used OVL-sq for square-shaped, hex for hexagonal OVL. The OV lattice node 
spacing related to this OVL will be denoted afterwards. This style of notation will be kept 
also for the cases when the numerical sum of two phase distributions is programmed on 
one SLM.

In this prefatory section, we use one of the SLMs only. The second one was switched 
off, thus acting as a flat mirror. In Fig. 2 we show numerical results for the basic phase and 
intensity distributions of a square-shaped ((a), left panels) and a hexagonal optical vortex 

(1)i�E∕�(z∕LD) + (1∕2)(�2∕�x2 + �
2
∕�y2)E = 0.

(2)T(x, y) = exp[−ik(x2 + y2)∕(2f )].
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lattice ((b), left panels), resulting in the respective bright focal arrays. The white rhombi 
and the white triangles indicate one elementary cell of the respective lattices. OVs of unit 
topological charges with the same signs are placed in the apices of the square (triangular) 
elementary cell. In order to stabilize the elementary cell and thus the entire OVL, an OV 
with unit TC but with opposite sign is placed in the middle of each cell. In the right panel 
of Fig. 2a, we show the focal array resulting from the square-shaped OVL consisting of 
four peaks situated in the apices of a rhombus. The hexagonal OVL produces a triangular 
structure of bright peaks in the focal plane of the lens (Fig.  2b, right panels) (Stoyanov 
et al. 2018a, b). The bright peaks result from the Fourier-transformation of the bright por-
tions of the background beam reaching the plane of the focusing lens. The bright portions 
of the background beams, however, crucially depend on the ordering of the nested optical 
vortices. Additional insight for this beam structuring is shown as pictorial representation 
in Fig. S1 in the Supplementary material. The white triangles in Fig. 2b denote the typi-
cal stabilized elementary cell of the hexagonal OV lattice – three equally charged OVs in 
the apices of a triangle and one oppositely charged OV in its center. It is worth mention-
ing that by inverting the signs of all TCs of the OVs of the hexagonal lattice the triangular 
focal structure can be rotated at 180◦ (compare Fig. 2b1, b2). The same can be achieved by 
changing the order of programming the OVLs on the two SLMs. In all described cases, all 
peaks in the focal plane of the lens have flat phases (Stoyanov et al. 2018a, b). By increas-
ing/decreasing the OV lattices node spacing one can control the size of the focal arrays. 
The larger the OV node spacing, the smaller the bright focal arrays are. This is a nice 
manifestation of the similarity theorem of Fourier transformation. (“Wide” functions in the 
space domain correspond to “narrow” functions in the spatial frequency domain.)

In (Zhekova et al. 2019; Stoyanov et al. 2019b, c) is shown that square-shaped and/or 
hexagonal OV lattices of different node spacings can be mixed to form various multi-spot 
focal arrays. In Fig.  3a–d, we show some examples for double mixing of OVLs, which 
could serve the reader as a guide to easily follow the triple mixing discussed later in this 
paper. Both SLMs are used in this and all subsequent cases. Let us remember the notations: 
Δ denotes the node spacing for the phase distribution sent on SLM1, � the same for SLM2.

In Fig. 3a we show experimental multi-spot focal array obtained by mixing square-
shaped OV lattices with different node spacings, in this case Δsq = 21 pix. and �sq = 121 
pix. Generally, when two OV lattices of any type and with different node spacings are 
mixed, the OV lattice with the smaller node spacing determines the large-scale structure 
of the focal array of bright beams. Respectively, the larger node spacing determines 

Fig. 2   Numerical results. a Phase distribution of a square-shaped OV lattice (left), beam intensity distribu-
tion in front of the focusing lens L (down), and the obtained bright structure in the focal plane of a lens 
(right). b The same as in (a), but for a hexagonal OV lattice. b1, b2 Possibility to rotate the triangular struc-
ture coming from the hexagonal OVL. White rhombi and white triangles denote one elementary cell of the 
respective lattice
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the small-scale focal structure. The multi-spot focal array in Fig.  3a is composed of 
16 bright peaks resembling the basic form of the array coming from a single focused 
square-shaped OV lattice-square-shaped large-scale structure of square-shaped small-
scale structures, each one consisting of 4 bright peaks. The same holds also for mixing 
OV lattices of a hexagonal type. The respective results are shown in Fig. 3b1, b2. Here 
the triangular large-scale structure consists of three triangular small-scale structures, 
each one composed of three bright peaks. In Fig. 3b1 we show results for Δhex = 41 pix. 
and �hex = 151 pix. By changing the ordering of the places of the phase distributions 
sent to the SLMs (equivalently - by inverting the signs of all OVs in both phase distri-
butions) one can rotate the entire focal array by 180◦ (Fig. 3b2, see also Fig. S2 in the 
Supplementary material).

It is natural to expect that mixing of OVLs of different type is possible as well. The 
mathematical background of this operation is the convolution theorem of Fourier trans-
formation (The Fourier transformation of a product of two functions is equal to the con-
volution of the Fourier transformations of the individual functions). This type of OVL 
mixing is demonstrated in Fig. 3c for Δsq = 41 pix. and �hex = 101 pix., and in Fig. 3d for 
Δsq = 151 pix. and �hex = 61 pix. On the basis of the similarity theorem, one can easily 
understand that the denser OVL will determine the large-scale structure, whereas the 
small-scale structure of the observed focal pattern results from the OVL with the larger 
array node spacing. The change in the symmetry between these two focal arrays (in 
simple words denoted as a square of triangles and a triangle of squares, respectively) is 
clearly seen in panels (c) and (d) of Fig. 3. Similar to the pattern rotation described for 

Fig. 3   Experimental beam reshaping by double mixing of OVLs. a Multi-spot focal array obtained by mix-
ing square-shaped OV lattices with Δsq = 21 pix. and �sq = 121 pix. b1 The same for two hexagonal OVLs 
with Δhex = 41 pix. and �hex = 151 pix. b2 Rotation of the focal array at 180◦ by changing the ordering of 
the phase distributions sent to the two SLMs. c Mixing of square and hexagonal OV lattices with Δsq = 41 
pix. and �hex = 101 pix. d The same but for different node spacings Δsq = 151 pix. and �hex = 61 pix
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panels (b1) and (b2) of Fig. 3, the mixed focal patterns in panels (c) and (d) of this fig-
ure can also be rotated by 180◦ by changing the ordering of the phases programmed for 
the SLMs or by inverting all signs of the TCs. It is important to point out that the rota-
tion of a focal structure is possible only for hexagonal OVLs and for OVLs mixed with 
at least one hexagonal lattice, since the square-shaped lattices are symmetric.

After this rather long but necessary introductory part, we start presenting the new 
results in this work. In Fig. 4 we demonstrate, both numerically and experimentally, the 
reliability of the method for triple mixing of square-shaped OV lattices with different node 
spacings. The input Gaussian beam, Fig. 4a, is reflected at SLM1, which is programmed 
with the phase of a square OVL with node spacing Δsq = 21 pix (Fig. 4b). The distance 
z1 = 49 cm between the two SLMs is sketched in the figure. After passing this free-space 
propagation distance, the singular beam is phase modulated once more by the second SLM 
programmed with the phase distribution of a different OVL (Fig. 4c). The phase of this 
second lattice is the numerical sum (modulo 2 � ) of the phases of two square-shaped lat-
tices with node spacings �sq1 = 41 pix and �sq2 = 121 pix. In panel (d) we present the inten-
sity distribution of the structured beam right after SLM2. Because of the additional dif-
fraction between the SLMs, it can clearly be seen that OVs created by SLM1 affect the 
intensity distribution stronger than the OVs created by SLM2, which form the denser grid. 
This is also due to the fact that no imaging system is used between the two SLMs. The 
respective distribution just in front of the focusing lens L at a distance z2 = 30 cm is shown 
in panel (e) of Fig. 4. For a better visibility, the marked portions of (d) and (e), are shown 
zoomed in frames (d2) and (e2), respectively. Notations for the position of the elementary 
cells formed by the OVL with different node-spacings are shown as well. The focusing of 

Fig. 4   Triple mixing of square-shaped OV lattices. Input Gaussian beam (a) is reflected from SLM1 pro-
grammed with the phase of an OVL (b) with node spacing Δsq = 121 pix. c SLM2 is encoded with the 
numerical sum of the phases of OVLs with node spacings �sq1 = 41 pix. and �sq2 = 21 pix. d Intensity dis-
tribution of the structured beam just after SLM2. e Respective intensity distribution in front of the focusing 
lens L at a distance z2 = 30 cm behind SLM2. f Phase distribution of a thin lens for modeling the focusing 
of the structured beam. Lower row-theoretically calculated and experimentally recorded focal intensity dis-
tributions of the triple mixed square-shaped lattices. Solid white rhombi-intermediate-scale structures dis-
cussed in the text. d2, e2 Zoomed marked portions of (d, e) with notations for the position of the elemen-
tary cells formed by the OVL with different node-spacings
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the structured beam by the lens is modeled by adding the phase distribution of a thin lens 
(panel (f); see Eq. 2).

In the left part of the second row of frames in Fig. 4 we show theoretically calculated 
(left) and experimentally recorded intensity distributions (right) of the triple mixed square-
shaped OV lattices. As expected, the small-scale structure is in the form of a rhombus with 
four peaks situated in its apices. On both frames white solid rhombi mark the intermedi-
ate-scale structure typical for the double mixing of square-shaped OV lattices as shown in 
Fig. 3a. The large-scale structure is once again in the same form but it is consisting of four 
such intermediate-scale structures. The particular ordering of the phases on the SLMs was 
found to have negligible effect on the relative intensities of the peaks within the multi-spot 
focal array. As in the case of a double mixing, the small-scale structure of the observed pat-
terns results from the OVL with the largest node spacing, whereas the large-scale structure 
is a result from the OVL with the smallest array node spacing. The intermediate-scaled 
structure comes from the OV lattice with medial node-spacing. This is, once again, a nice 
manifestation of the similarity theorem of the Fourier transformation. It will appear even 
more spectacular in the cases in which OVLs with different symmetries are mixed.

In our numerical data we observe that the phase profiles of all 64 bright focal peaks are 
flat. The detailed analysis of one quarter of the experimental large-scale structure (i.e. one 
intermediate-scale structure) confirms this statement. In the left frames in Fig. 5 we show 
experimental interference patterns of one of the (in total four) intermediate-scale struc-
tures. Each one was obtained with a slightly inclined reference beam, at a controlled phase 
delay, and corresponds to the marked experimental intermediate-scale structure presented 
in Fig. 4 (bottom, left). The close inspection of the patterns reveals parallel interference 
lines across the bright beams, which indicate that their phases are flat. Nonetheless, in 
order to obtain quantitative information for the (horizontal) phase profiles of the beams 
in the sub-arrays in the left part in Fig. 5, we applied the four-frame technique for inter-
ferogram analysis (Groves and Osten 2006; Dreischuh et  al. 1996). The graph in Fig.  5 
represents the horizontal phase profiles of the sixteen bright peaks retrieved from the four 

Fig. 5   Quantitative reconstruction of the phase profiles of one intermediate-scale structure created in the 
focal plane by the triple mixing of the square-shaped OVLs (see also Fig. 4, bottom left panel). Left four 
panels-interferograms recorded at the indicated four relative phase offsets by overlapping the structured 
beam in the focus with an inclined plane wave. Graph-reconstructed horizontal phase profiles of the peaks 
located in the array
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frames to the left. One can clearly see that phase dislocations are absent. We attribute the 
small and similar curvature of the phase profiles in the graph in Fig. 5 to a possible slight 
offset of the CCD-camera chip from the focal plane.

In Fig. 6, following the style of presentation used in Fig. 4, we show triple mixing of 
hexagonal OVLs with different node spacings. The phase (as well as the amplitude/inten-
sity) of the unperturbed Gaussian beam (panel (a)) is modulated by SLM1. This modulator 
is programmed with a phase distribution, which is a sum of two hexagonal OVLs with node 
spacing Δhex1 = 41 pix. and Δhex2 = 81 pix. (panel (b)). After free-space propagation ( z1 ) to 
SLM2, this singular beam is additionally modulated by the phase of a third hexagonal OV 
lattice with node spacing �hex = 21 pix. (panel (c)). The computed intensity distribution of 
the obtained structured beam just after SLM2 is shown in panel (d), while the respective 
distribution in front of the focusing lens L at a distance z2 is shown in panel (e) (magnified-
in panels (d2) and (e2), respectively). The Fourier transform of this triple mixed hexagonal 
OV lattice is modeled by adding the respective phase of a thin spherical lens (panel (f)).

In the left part of the lower row of panels of Fig. 6 we compare the theoretically calcu-
lated and experimentally recorded intensity distributions of the triple mixed hexagonal lat-
tices in the artificial far field. As seen, the large-scale bright beam focal structure exhibits 
the shape of an equilateral triangle composed of three smaller equilateral triangles (inter-
mediate-scaled structure, marked by a ring). The basic small-scale structure is also in the 
typical form of a Fourier-transformed hexagonal OV lattice-three bright peaks situated in 
the apices of a triangle.

Fig. 6   Triple mixing of hexagonal OV lattices. Input Gaussian beam (a) reflected from SLM1, programmed 
with the phase of an OVL (b) with numerically added phases of OVLs with node spacings Δhex1 = 41 pix. 
and Δhex2 = 81 pix. Subsequently, it is phase modulated by a third hexagonal OV lattice with node spacing 
�hex = 21 pix. sent to SLM2 (c). The intensity distribution of the structured beam just after SLM2 is shown 
in (d) and the respective distribution in front of the focusing lens L at a distance z2-in (e). The focusing of 
the structured beam is modeled by adding the respective phase of a thin spherical lens (f). Lower row of 
panels-theoretically calculated and experimentally recorded focal intensity distributions of the triple mixed 
hexagonal lattices. White rings-intermediate-scale structures discussed in the text. d2, e2 Zoomed marked 
portions of (d, e) with notations for the position of the elementary cells formed by the OVL with different 
node-spacings
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Unlike the case for triple mixing of a square-shaped OV lattice, here the particular 
ordering of the programmed phase on the two SLMs is important in view of controlling the 
direction of orientation of the obtained focal structures. All 9 small-scale structures form-
ing the 3 intermediate-scale structures and the large-scale structure can be rotated by 180◦ 
by simply transposing the phase distributions encoded on the two SLMs. In addition to the 
OV lattices node spacing, this could also be used as a control parameter for generating the 
desired focal array of bright beams.

Next, in Fig. 7, we report results regarding the triple mixing of square-shaped and hex-
agonal OVLs. For consistency, we continue using the style of presentation in the sequence 
of steps familiar from Figs. 4 and 6. The differences are: (i) SLM1 is programmed with the 
phase of a hexagonal OVL with Δhex = 41 pix. (Fig. 7b). (ii) SLM2 is programmed with 
the numerically added phase distributions (modulo 2 � ) of square-shaped OVLs with node 
spacings �sq1 = 21 pix. and �sq2 = 121 pix. (Fig. 7c).

In the lower left panels of Fig. 7 we show the obtained multi-spot focal pattern result-
ing from triple mixing of the described hexagonal and square-shaped OVLs. The obtained 
numerical data agree fairly well with the experimental result. The small-scale structure (in 
this case four bright peaks forming a diamond) is again resulting from the OVL with the 
largest node spacing �sq2 = 121 pix. The intermediate-scale structure (triangle-like; Fig. 7, 
lower row, white rings) is ruled by the OV lattice with the medial node spacing, in this case 
Δhex = 41 pix. The rhomboidal large-scale structure consists of four intermediate-scale tri-
angular structures, each one composed by four bright peaks resulting from the OV lattice 
with the smallest vortex-to-vortex node spacing. The classification small-, intermediate- 
and large-scale structure is independent on the type of the used OVLs (square or hexago-
nal) and on the particular ordering of the phase distributions on the two SLMs. The only 

Fig. 7   Triple mixing of one hexagonal and two square-shaped OV lattices. Input Gaussian beam (a) is 
reflected from SLM1, programmed with the phase (b) of a hexagonal OVL with Δhex = 41 pix. In the plane 
of SLM2 it is subsequently phase modulated with numerically added phases (c) of square-shaped OVLs 
�sq1 = 21 pix. and �sq2 = 121 pix. (d) Intensity distribution of the structured beam just after SLM2. The 
respective distribution in front of the focusing lens L is shown in (e). f Phase distribution of a thin lens. 
Lower row of frames-theoretically calculated and experimentally recorded focal intensity distributions of 
the triple mixed OVLs. Solid white rings-intermediate-scale structures discussed in the text. d2, e2 Zoomed 
marked portions of (d, e) with notations for the position of the elementary cells formed by the OVL with 
different node-spacings
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important parameter is the OVL node spacing. As in the preceding case, by changing the 
order of the creation of the individual lattices on the SLMs one can rotate the direction of 
the intermediate-scale structure (and thus the entire focal array) by 180◦ . In the Supple-
mentary Material to this manuscript (Fig. S3) we also demonstrate the possibility to mix 
two hexagonal OVLs with a square-shaped one. Moreover, the numerical sum sent to either 
of the two SLMs can be the sum of two OVLs of different type (square or hexagonal).

Using the four-frame technique for interferogram analysis (Groves and Osten 2006; 
Dreischuh et al. 1996) in graphs (c) and (d) of Fig. 8 once again, we show the quantita-
tive reconstruction of the phase profiles of the beam ensembles in the focal plane. The 
results refer to two different intermediate-scale structures marked with white rings in pan-
els (a) and (b). The particular types of the used OVLs and the respective node spacings 
are denoted in the graphs. As seen from the data, one can conclude with reasonable accu-
racy that the reconstructed phases of the sub-beams are flat. In our view, the results in the 
graphs of Figs. 5 and 8 are remarkable in the sense that the flat phase profiles of the bright 
focal peaks are surrounded by hundreds of OVs with their dark cores and 2-D phase dis-
locations sitting in the dark neighboring area. The OVs are between and around the well-
formed bright peaks in the focal plane of the lens. This can be also clearly seen in Figs. 3c, 
d and 5c, d in Stoyanov et al. (2019b). Additional data confirming these observation are 
presented also in (Stoyanov et al. 2018a, b).

As already stated the ratio between the lattice node spacings of the OVLs is an impor-
tant control parameter. In Fig.  9, some more details confirming this are provided. In 

Fig. 8   a Structured beam in the focus created using three hexagonal OV lattices of different periods (same 
as in Fig. 6, lower row). b Intensity of a structured beam in the focus created by mixing a hexagonal and 
two square-shaped OVLs. White rings in (a, b) denote the intermediate-scale structures used for the quan-
titative reconstruction of the phase profiles shown in graphs (c, d). The particular types of the used OVLs 
and the respective node spacings are also denoted in the graphs
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Fig. 9a–d we show four cases of triple square-shaped OV lattice mixing. OVL with a node 
spacing Δsq = 21 pix. is sent to SLM1. On the second SLM we encoded the numerical sum 
(modulo 2 � ) of OVLs with: 

(a)	 �sq1 = 41 pix. and �sq2 = 61 pix.;
(b)	 �sq1 = 41 pix. and �sq2 = 81 pix.;
(c)	 �sq1 = 41 pix. and �sq2 = 101 pix.;
(d)	 �sq1 = 41 pix. and �sq2 = 121 pix.

In the graph to the right in Fig. 9, red open circles and red lines denote the vertical posi-
tions of the peaks from the top small-scale structures in panels (a-d). (For simplicity, 
only the top four peaks in panel (d) are marked.) As seen, the“center of the mass”of the 
small-scale structure remains unchanged (black hollow circles and black line), while the 
upper and the lower peaks tend to move towards its center with increasing the largest node 
spacing �sq2 . In other words, by increasing the node spacing of the least dense OV lattice 
in this triple combination, one can control the size of small-scale structure and, thus, the 
size of the whole focal array, without changing the position of the“center of mass”of the 
multi-peak structure. Because of the symmetry in the used square-shaped OVLs, in this 
case only, the summed phase distribution could be sent to either of the two SLMs with-
out changing the symmetry of the obtained focal structures. The tendencies presented in 
Fig. 9a–d are clear manifestation of the already mentioned Similarity theorem.

Independently of the type (square and/or hexagonal) of the used OVLs for triple mix-
ing, the increase of the node spacing of the least dense OV lattice (i.e. the one with the 
largest OVL constant) leads to the shrinking of the small-scale structures. In Fig. 10 this is 
demonstrated for the case of triple mixing of hexagonal OVLs. The focal intensity distribu-
tions of bright beams is created using three hexagonal OV arrays with Δhex = 21 pix. (on 
SLM1) and with sums of phase distributions (panels (a)–(c)) corresponding to �hex1 = 41 
pix. + �hex2 = 61 pix. (a), �hex1 = 41 pix. + �hex2 = 81 pix. (b), �hex1 = 41 pix. + �hex2 = 101 
pix. (c), encoded on SLM2. The decreasing length of the effective cathetus of the encircled 
small-scale structures in panels (a–c) vs. increasing lattice period �hex2 = 61, 81, 101 pix. is 
shown in the graph in Fig. 10 with blue open circles. The length of the catheta of the inter-
mediate- and of the large-scale structures also decreases, however, at a slower rate. This 
tendency for the intermediate-scale triangular structure vs. �hex2 is denoted on the graph 
with black hollow triangles, for the large-scale structure-with red solid triangles. The com-
parison between the data shows that the increase of the largest constant of the hexagonal 

Fig. 9   a–d Focal intensity distributions of structured beams created using square-shaped OV lattices with 
lattice constants Δsq = 21 pix. and the numerical sum of OVLs with �sq1 = 41 pix. + �sq2 = 61 pix. (a), 
�sq1 = 41 pix. + �sq2 = 81 pix. (b), �sq1 = 41 pix. + �sq2 = 101 pix. (c), and �sq1 = 41 pix. + �sq2 = 121 pix. 
(d), respectively. Graph: Vertical positions of the peaks from the top small-scale structure in (a–d) versus 
the largest node spacing �sq2 ranging from 61 pix. to 121 pix
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OV lattice leads to shrinking of the whole multi-spot array. Obviously, the far-field scaling 
of the triple-mixed hexagonal OVLs is more complicated as compared to the one of the 
triple-mixed square-shaped OVLs.

In panels (a–c) in Fig. 11 and in the corresponding graph we illustrate another possible 
approach for controlling the positions of the individual peaks within a focal array structure. 
Panels (a)–(c) present experimental data obtained using OVLs with period Δsq = 21 pix. 
(programmed on SLM1) and the numerical sum of the phase distributions sent to SLM2, 
�sq = 41 pix. + �hex = 101 pix. (a), �sq = 61 pix. + �hex = 101 pix. (b), and �sq = 81 pix. + 
�hex = 101 pix. (c). In other words, in this case the node spacing �sq of the intermediate-
scale structure is changed. This structure is rhomboidal, with peaks forming triangles in 
its apices, as shown in the encircled area of Fig. 11a. The triangular small-scale structure 
is a result from the hexagonal OV lattice with the largest node spacing �hex = 101 pix. The 
intermediate-scale and the large-scale structures are in the form of rhombi determined by 
the corresponding node spacings of the square-shaped OVLs with smaller node spacings. 
The graph in Fig. 11 shows the decreasing horizontal size (peak-to-peak, red open circles 
and red curve) of the encircled intermediate-scale structure in panel (a) vs. the increasing 

Fig. 10   a–c Focal intensity distributions of structured beams created using three hexagonal OV arrays with 
lattice constants Δhex = 21 pix. and the numerical sum of �hex1 = 41 pix. + �hex2 = 61 pix. (a), �hex1 = 41 pix. 
+ �hex2 = 81 pix. (b), �hex1 = 41 pix. + �hex2 = 101 pix. (c). Graph: Decreasing length of the cathetus of 
the small-scale (see white ring in (c); blue open circles in the graph), intermediate-scale (dashed triangles 
in (a–c); hollow black triangle in the graph), and large-scale structures in (a–c) (solid red triangles in the 
graph) versus increasing lattice period �hex2

Fig. 11   a–c Focal intensity distributions of structured beams created using square-shaped OV array with 
lattice constants Δsq = 21 pix. and with the numerical sum of a square-shaped and hexagonal OVL with 
�sq = 41 pix. + �hex = 101 pix. (a), �sq = 61 pix. + �hex = 101 pix. (b), and �sq = 81 pix. + �hex = 101 pix. 
(c). Graph: Decreasing horizontal size (peak-to-peak) of the encircled intermediate-scale structures in (a–c) 
versus increasing intermediate lattice period �sq (red open circles and red curve). Black open circles and 
black line-constant height of the small-scale triangular structure
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intermediate lattice period �sq . Black open circles and black line present the constant height 
of the small-scale triangular structure with �hex = 101 pix. Hence, in this way, by changing 
the medial node spacing of one the OV lattice, one can control the size of intermediate-
scale structure without changing the size of the small-scale structures of the array but influ-
encing the size of the large-scale structure of focal peaks.

4 � Conclusion

The results presented in this paper for triple mixing of square-shaped and hexagonal OV 
lattices substantially expand previous published works and are clear manifestations for the 
possibility to create a rich variety of focal arrays composed of bright beams. The OV lat-
tice node spacing, independently of the type of the used OV lattices and independently of 
its orientation (rotation), can serve as a control parameter. In agreement with the Similar-
ity theorem of Fourier transformation, the largest node spacing determines the size of the 
small-scale structure, while the smallest node spacing controls the large-scale structure. 
As expected, by changing the OV lattice with the intermediate-scale node spacing, one 
can control the size and the position of the medial bright focal structure. When hexagonal 
OV lattices are involved in the triple mixing, an additional control parameter can be used. 
By reversing the phase distributions sent to the SLMs (or when all TCs are inverted), the 
orientation of the bright array structures coming from one or more hexagonal lattices are 
rotated at 180◦ . This results in the rotation of the entire multi-spot bright array. The phases 
of the bright beams are flat. This is remarkable, since the bright focal peaks are surrounded 
by hundreds of OVs with their dark cores and 2-D phase dislocations sitting in the dark 
neighboring area. Additional structuring of the far-field intensity profiles of the discussed 
triple mixed OVLs by adding 1-D dark beam, a quasi-2-D dark beam, or by hosting an OV 
in each bright focal beam of the structure is shown in Figs. S4 and S5 in the Supplemen-
tary Material. Some of the potential applications of the presented method are controllable 
writing of optically-induced parallel waveguide structures (in e.g. photorefractive nonlinear 
media; see e.g. Stoyanov et  al. 2017), multiplexing data transfer using complex singular 
beams (Li and Wang 2017; Wang et al. 2019), and creation of singular higher-order vector 
fields (Otte et al. 2017). For stimulated emission depletion (STED) microscopy, a potential 
modification (Xue and So 2018) could be based on the arrays of bright beams discussed in 
this work (with or without OVs nested in), in order to parallelize the scanning of adjacent 
sectors of one sample.
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