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Abstract: It is well-known that the wave of a freely propagating Gaussian beam experiences
an additional π phase shift compared to a plane wave. This phase shift, known as the Gouy
phase, has significant consequences in, e.g., nonlinear optics, since the nonlinear processes
require high peak intensity and phase matching of the focused beams. Hence, determining and
controlling the Gouy phase is crucial in many fields of modern optics and photonics. Here, we
develop an analytical model for the Gouy phase of long-range Bessel-Gaussian beams obtained by
annihilating highly charged optical vortices. The model accounts for the influence of the relevant
experimental parameters (topological charge, radius-to-width ratio of the initial ring-shaped
beam, and focal length of the Fourier-transforming lens). We find an evolution of the Gouy phase
varying nearly linearly with propagation distance and confirm this result experimentally.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

One of the phenomena that is assumed to be well understood, but still provokes serious scientific
interest, is that any focused light beam experiences an axial phase shift with respect to a reference
plane wave when passing through its focus. This phase anomaly was first studied by Gouy and is
named after him. The chronology of early studies can be read in the work of Linfoot and Wolf
[1]. Later, most of the studies were related to the development of microwave optics (see e.g.
[2,3]), lasers (see e.g. [4]), nonlinear optics [5], terahertz radiation [6,7], and singular optics
of phase [8,9] and polarization vortices [10,11], including hybrid singularities [12]. The Gouy
phase has important consequences in, e.g., nonlinear optics. In general, the n-th order nonlinear
polarization will experience a phase shift that is n times larger than that experienced by the
incident pump wave [13,14]. As a consequence, the efficiency of third-harmonic generation in
the tight-focusing limit, for example, vanishes for the case of perfect phase matching. It can be
optimized by introducing a linear wave vector mismatch for compensating the Gouy phase shift
[13]. Conversion between Laguerre-Gaussian modes via four-wave mixing in the thick-medium
regime (in essence the transfer between azimuthal and radial mode indices) is also observed and
explained by the influence of the Gouy phase [15]. It is natural to expect that the Gouy phase
also has profound consequences in highly nonlinear processes like above-threshold ionization
[16] and high-harmonic generation [17].

Let us denote by LD and z the Rayleigh diffraction length and the longitudinal coordinate,
respectively. Then, the Gouy phase for a fundamental Gaussian beam is given by ΦG=atan(z/LD).
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For a higher-order Hermite-Gaussian mode with mode indices (n, m) this phase is multiplied
by a factor of (1+m+n) [18]. For a higher-order Laguerre-Gaussian modes with mode indices
(ℓ, p) the factor is (1+|ℓ |+2p) [19,20]. Here, the modulus accounts for the fact that the azimuthal
mode index ℓ (i.e. the on-axis topological charge (TC) of the point-phase dislocation known as
optical vortex (OV)) can either be positive or negative. The factor 2 is related to the fact that p
is the radial mode index of the LG beam. Generally speaking, passing through the focal plane,
higher-order Hermite-Gaussian and Laguerre-Gaussian modes accumulate a higher Gouy phase
with respect to a reference Gaussian beam. This has been proven experimentally for truncated
Gaussian beams as well [21].

The question we would like to address in this communication is how the Gouy phase behaves
in Bessel-Gaussian beams. Bessel beams are one of the four types of exact solutions of the
Helmholtz equation [22]. For instance, in the pure mathematical sense, the zeroth order Bessel
beam has a sharp central non-diffracting peak surrounded by an infinite number of satellite rings
that are offset by π in phase with respect to their neighbor. An infinite number of surrounding
rings implies infinite energy, which obviously is not possible for (Gaussian) laser beams with finite
transverse dimensions. Viable approximations to Bessel beams have a Gaussian envelope and are
usually denoted as Bessel-Gaussian beams (BGBs). Their central peaks (for higher order BGBs:
rings) are remarkably resistant against diffraction. Therefore, BGBs are sometimes denoted as
"non-diffracting", "quasi-non-diffracting" or "diffraction-free" in the literature [23–25].

Well-known methods for generating BGBs are annular slits in the back focal plane of a
lens [23,24,26] or even a cylindrical lens morphed to a closed ring [27]. Other methods use
axicons [26], or deformable mirrors [28], or spatial light modulators reproducing the phase
structures of reflective axicons [29], or computer-generated holograms of axicons [30]. In
previous studies, we have demonstrated the possibility to generate long-range BGBs by creating
and annihilating highly charged optical vortices [31,32]. The method was demonstrated to work
even for sub-7-femtosecond pulses [33].

Due to the extended interaction length of the Bessel-Gaussian beams, they find application in
many fields of physics, e.g. in plasma physics [34,35] and in strong-field physics [17,36]. An
interesting application of BGBs benefiting from their extended range of strong focusing might be
high-harmonic generation (HHG) [37,38]. Then, immediate question concerns the Gouy phase
in long-range BGBs because of its impact on phase matching of high harmonics.

The Gouy phase is quantified on the axis of a real beam relative to a reference infinite plane
wave, which, since not spatially confined, does not diffract. The central peaks of Bessel-Gaussian
beams (BGBs) have remarkably low divergences on the order of microradians [27,31]. Therefore,
one might guess that BGBs have negligible Gouy phase. However, the two experimental works
we are aware of [8,39] found that for strong focusing the Gouy phase of BGBs changes linearly
for propagation distances of fractions of millimeters (up to 5π within 1 mm [8] and up to 6π
within 6 µm [39]).

In this work we develop an analytical model for the Gouy phase of long-range BGBs that
accounts for the relevant experimental parameters. The analytical results are found to be in good
quantitative agreement with the experimental data. In particular, under relatively weak focusing
of the initial hollow ring-shaped beam (lens’ focal lengths 40-75 cm), the Gouy phase of the
BGB is found to change nearly linearly at a rate of some 0.15 π/cm over a distance of 45 cm.
Under moderate focusing (with a lens focal length ∼15 cm), the linear vs. propagation distance
Gouy phase reaches a slope of 1.0 π/mm over distances exceeding 4 mm. The reported data could
appear important for the phase matching in the process of high-harmonics generation [40] when
using BGBs as opposed to conventional Gaussian beams (see e.g. [37,38]).
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2. Theoretical model

2.1. Elementary theory

We start with the insight that the wave vectors k⃗ of confined beams necessarily have a transverse
component kt. Since k2 = k2

t + k2
z , where kz is the longitudinal component of the wavenumber k,

this means that a finite transversal wave number kt goes at the expense of kz: The narrower the
BGB, the larger kt and the smaller kz. This results in an effectively increasing wavelength (or a
phase advancing faster than the speed of light), which can be seen as the physical origin of the
Gouy phase.

The accumulated phase difference ∆ϕ between a Bessel beam and a plane wave is

∆ϕ = ∆kz = (k − kz)z, (1)

where z is distance along the optical axis. Then the distance D for a phase difference of 2π is

D =
2π

k − kz
. (2)

In order to estimate transversal wave number kt, we note that the first zero of J0(x) is at
x = 2.4048 · · · . Therefore, when ρ is the radius of the central peak of the Bessel beam, kt can be
estimated as

ktρ = 2.4048 or kt = 2π
0.38274

ρ
. (3)

Using the approximation kz =
√︂

k2 − k2
t ≈ k − k2

t
2 k , i.e. limiting the Taylor expansion at k = 0

to second order (kt ≪ k), we get

kz ≈ k −
(2π × 0.38274/ρ)2

2k
(4)

which, along with Eq. (2) and the fact that k = 2π
λ implies that

D = 13.65
ρ2

λ
. (5)

2.2. Derivation of the Fourier transform leading to Bessel-Gaussian beams

Let F {U} denote the Fourier transform of a function U(x, y) and Hℓ{U(r)} stand for the
Hankel transform of order ℓ of a radially symmetric function. The Fourier conjugate variables
corresponding to Cartesian coordinates (x, y) and polar coordinates (r, θ) will be denoted by (u, v)
and (ρ, φ), respectively. We will also denote the Fourier transform of U(r, θ) as U(ρ, φ) where
convenient and where the context is unambiguous.

Let us consider U(r, θ) as a function separable in polar coordinates, i.e. U(r, θ) = R(r)F(θ).
Then one can do the following expansion [41]

F {U(r, θ)} =
∞∑︂

n=−∞
cn(−i)n exp(inφ)Hℓ{R(r)} (6)

with coefficients cn given by

cn =
1

2π

∫ 2π

0
F(θ) exp(−inθ)dθ. (7)
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When F(θ) = exp(iℓθ) we get cn = δnℓ , where δnℓ is the Kronecker delta. For the Fourier
transform this results in

F {U(r, θ)} = (−i)ℓ exp(iℓφ)Hℓ{R(r)}. (8)

Applying the Fourier transform twice we get

F 2{U(r, θ)} = (−i)2ℓ exp(iℓθ)H2
ℓ {R(r)} = (−1)ℓU(r, θ), (9)

since the Hankel transform is its own inverse.
Another important identity that we need is [42]

exp

(︄
−

r2 + r2
0

ω2
0

)︄
Iℓ

(︄
2rr0

ω2
0

)︄
=
ω2

0
2

∫ ∞

0
exp

(︄
−
ω2

0ρ
2

4

)︄
Jℓ(r0ρ)Jℓ(rρ)ρdρ

=
ω2

0
2
Hℓ

{︄
exp

(︄
−
ω2

0ρ
2

4

)︄
Jℓ(r0ρ)

}︄
.

(10)

Here Iℓ is the modified Bessel function of the first kind and Jℓ denotes the Bessel function, both
of order ℓ.

Let

E(r, θ) = exp(iℓθ) exp

(︄
−
(r − r0)

2

ω2
0

)︄
, (11)

where ω0 and r0 are positive real parameters. The physical meaning of Eq. (11) is the description
of the electric field amplitude E of a bright ring-shaped beam with radius r0 and ring width ω0
(panel (a) of Fig. 1). It is a very good approximation for an optical vortex with a topological
charge ℓ (ℓ is an integer number). The phase distribution for ℓ = +1 and ℓ = −9 is displayed in
Fig. 1, panels (b) and (c).

Fig. 1. (a) Illustration of an optical field amplitude as defined by Eq. (11) with r0 = 0.5 and
w0 = 0.075 in arbitrary units. (b) and (c) spiral phase distributions of optical vortices with
topological charges (TCs) ℓ = 1 and ℓ = −9, respectively. The opposite signs of the TCs
can easily be recognized by the opposite phase gradients, while their magnitudes can be
determining by counting the azimuthal 2π-periods presented in grayscale.

By expanding the square we get

E(r, θ) = exp(iℓθ) exp

(︄
−

r2 + r2
0

ω2
0

)︄
exp

(︄
2rr0

ω2
0

)︄
. (12)

Then, for large r0, the last exponent can be viewed as an approximation of the modified Bessel
function of the first kind

exp

(︄
2rr0

ω2
0

)︄
≈ Iℓ

(︄
2rr0

ω2
0

)︄
, (13)
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which means that the electric field amplitude can be written as

E(r, θ) = exp(iℓθ) exp

(︄
−

r2 + r2
0

ω2
0

)︄
Iℓ

(︄
2rr0

ω2
0

)︄
. (14)

From the above and considering Eqs. (8) and (10) we get

E(r, θ) = exp(iℓθ)
ω2

0
2
Hℓ

{︄
exp

(︄
−
ω2

0ρ
2

4

)︄
Jℓ(r0ρ)

}︄
=

ω2
0

2(−i)ℓ
F

{︄
exp(iℓφ) exp

(︄
−
ω2

0ρ
2

4

)︄
Jℓ(r0ρ)

}︄
.

(15)

By taking the Fourier transform again and using Eq. (9), we get

F {E(r, θ)} =
ω2

0(−i)ℓ

2
exp(iℓφ) exp

(︄
−
ω2

0ρ
2

4

)︄
Jℓ(r0ρ),

E(ρ, φ) =
ω2

0
2

exp
(︃
iℓφ −

iℓπ
2

)︃
exp

(︄
−
ω2

0ρ
2

4

)︄
Jℓ(r0ρ).

(16)

This, in essence, is the final result derived in [31], meaning that the Fourier transform of a thin
bright ring is, to a good approximation, a Bessel-Gaussian beam (BGB). For ℓ = 0, i.e. a flat
phase front of the bright ring-shaped beam in front of the focusing (i.e. Fourier-transforming)
lens, the result is a zeroth-order BGB (panels (a1) and (a2) of Fig. 2) and for |ℓ |>0 an ℓ-th order
BGB (see panels (b1) and (b2) for |ℓ | = 1).

2.3. Gouy phase of a BGB obtained by direct comparison with a plane wave

Let us consider the general Bessel-Gaussian solution of the scalar Helmholtz equation, given by
Gori et al. [43]

V(ρ, z) = A
ω0
ω(z)

ei(k− β2
2k )z−iΦ(z)J0

(︃
βρ

(1 + i z
L )

)︃
exp

[︃(︃
−

1
ω2(z)

+
ik

2R(z)

)︃ (︃
ρ2 +

β2z2

k2

)︃]︃
. (17)

Here, V is the electric field amplitude, ρ is the radial coordinate and z stands for the longitudinal
coordinate along which the beam (ring width ω0, radius of curvature of the phase front R(z), and
phase term Φ(z)) evolves. k is the wavenumber, β is related to the width of the central peak of
the BGB, L = kω2

0/2, and

ω(z) = ω0

√︃
1 +

z
L

2
, Φ(z) = arctan

(︂ z
L

)︂
, R(z) = z +

L2

z
=

z2 + L2

z
. (18)

The Gouy phase can be found by direct comparison with the phase of a plane wave at the beam
axis (ρ = 0), (for example see the article by Martelli et al. [25])

ΦG = −i Log
(︃
e−izk lim

ρ→0

V(ρ, z)
|V(ρ, z)|

)︃
= −i Log(e−izkF(z)), (19)

where
F(z) = lim

ρ→0

V(ρ, z)
|V(ρ, z)|

. (20)

By Log we denote the principal value of the complex logarithm. The above equation uses the
fact that dividing any complex number by its absolute value leaves only the phase factor. Then
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Fig. 2. Intensity distributions of pure zeroth- (a1) and first-order Bessel beams (b1) for
r0 = 0.5 arb. units. Corresponding Bessel-Gaussian beams (a2) and (b2) obtained by
multiplying the Bessel beams by Gaussian envelopes with w0 = 0.075 arb. units (see
Eq. (16)). Note that the relatively flat central part of the Gaussian envelope only weakly
reduces the peak intensities of the BGBs while its rapidly decreasing wings causes the BGBs
to carry finite number of surrounding rings.

taking the complex logarithm yields the phase. Now, since V(ρ, z) is continuous at ρ = 0 and
V(0, z) ≠ 0, we can write for the limit

lim
ρ→0

V(ρ, z)
|V(ρ, z)|

=
V(0, z)
|V(0, z)|

=
A ω0

ω(z)e
i(k−β2/2k)z−iΦ(z)J0(0)e

(︂
− 1

ω2(z)
+ ik

2R(z)

)︂ (︃
β2z2

k2

)︃

A ω0
ω(z) |J0(0)| e

(︂
− 1

ω2(z)

)︂ (︂
β2z2

k2

)︂ . (21)

Taking into account that J0(0) = 1 and simplifying the above we get

F(z) = eikze−iβ2/2kze−iΦ(z)ei β2z2
2kR(z) , (22)

which means that
ΦG = −

β2

2k
z +

β2z3

2k(z2 + L2)
− arctan

(︂ z
L

)︂
. (23)

We will represent the above as a sum of two terms

ΦG = ψ1(β, k, z) + ψ2(β, k, z, L), (24)

where
ψ1(β, k, z) = −

β2

2k
z,

ψ2(β, k, z, L) =
β2z3

2k(z2 + L2)
− arctan

(︂ z
L

)︂
.

(25)
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We interpret the above expression for the Gouy phase ΦG of a BGB as a sum of the Gouy phase
of a pure Bessel beam, ψ1, and an additional term, ψ2, resulting from the Gaussian envelope
background.

2.4. Effect of the focal length of the lens

A thin lens acts as a Fourier-transforming element (see Section 5.2.2 in [41]). Let f be the focal
length of the lens and k the wave number. For an initial electric field amplitude U(x, y), after the
lens we have

U(u, v) =
exp

(︂
i k
2f

(︂
1 − d

f

)︂ (︁
u2 + v2)︁ )︂

iλf
F {U}

(︃
uk
f

,
vk
f

)︃
=

exp
(︂
i k
2f

(︂
1 − d

f

)︂
ρ2

)︂
iλf

∞∑︂
n=−∞

cn(−i)nHℓ {R(r)}
(︃
ρk
f

)︃
,

(26)

where d is the distance from the input plane to the focusing lens. Now, let us include the lens
parameters in the Fourier transform of Eq. (15). To that end, let us concentrate on the Hankel
transform. We have

Hℓ

{︃
exp

(︃
−
ω2ρ2

4

)︃
Jℓ(r0ρ)

}︃
(r) =

∫ ∞

0
exp

(︃
−
ω0ρ

2

4

)︃
Jℓ(r0ρ)Jℓ(rρ)ρdρ. (27)

Let us make the substitution ρ→
kρ′
f in the above equation (note that the limits of the integral

remain the same). Then∫ ∞

0
exp

(︃
−
ω0ρ

2

4

)︃
Jℓ(r0ρ)Jℓ(rρ)ρdρ =

k2

f 2

∫ ∞

0
exp

(︃
−
ω0k2ρ′2

4f 2

)︃
Jℓ

(︃
r0

k
f
ρ′

)︃
Jℓ

(︃
rk
f
ρ′

)︃
ρ′dρ′

which we can use to represent the Hankel transform as

Hℓ

{︃
exp

(︃
−
ω2ρ2

4

)︃
Jℓ(r0ρ)

}︃
(r) =

k2

f 2 Hℓ

{︃
exp

(︃
−
ω2k2ρ′2

4f 2

)︃
Jℓ

(︃
r0

k
f
ρ′

)︃}︃ (︃
rk
f

)︃
. (28)

Applying the above to our case (i.e. Eq. (16) with lens parameters included) and omitting the
primes, we have

E(ρ, φ) =
ω2

0k2

f 4 exp
(︂
iℓ

(︂
φ −

π

2

)︂)︂
exp

(︄
−
ω2

0k2ρ2

4f 2

)︄
Jℓ

(︃
r0

k
f
ρ

)︃
. (29)

Eq. (29) describes the field amplitude of a BGB resulting from a thin (r0/ω0 ≫ 1) bright
ring-shaped beam focused by a thin lens. Note that we have ignored the phase factor multiplying
the sum in Eq. (26), since it does not affect the Gouy phase. Now, let us consider the BGB given
by Eq. (17) at z = 0 and the resulting Gouy phase ΦG:

V(ρ) = Ae−
ρ2

ω2 J0(βρ),

ΦG = −
β2

2k
z +

β2z2

2kR(z)
− Φ(z).

(30)

Comparing Eq. (29) with Eq. (30) we see that

ω =
2f
ω0k

, β =
r0k
f

, L =
kω2

2
=

2f 2

ω2
0k

, (31)
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which leaves the Gouy phase to be

ΦG(z) = −
r2
0k

2f 2 z +
r2
0k

2f 2
z3

(z2 + L2)
− arctan

(︂ z
L

)︂
. (32)

The second equation in Eq. (31) clearly indicates that the width of the central peak of the BGB is
narrower (β is larger) when the initial radius r0 of the ring-shaped beam is larger and/or the focal
length f of the lens is shorter. With respect to the experiments presented in this work it is worth
mentioning that when using OVs for the creation of ring-shaped beams, the higher the TC of the
OV, the higher the ratio r0/ω0 (Fig. 2(b) in [31]). The above result is in full agreement with what
can be derived based on physical intuition and first principles.

Equation (5) clearly shows that the distance to be passed for a 2π phase shift is shorter for
BGBs with narrower central peaks, i.e. for BGBs created with lenses of shorter focal lengths and
with ring-shaped beams of larger radii. From Eq. (3) we can see that kt is the coefficient β in
Eqs. (17) and (30). Now, let us consider ψ1 from Eq. (25). (We took the sign to be positive, since
it makes no difference.) The distance, needed for a 2π phase shift is

β2

2k
D = 2π or D =

4πk
β2 . (33)

Taking into account that

k =
2π
λ

, β =
2.4048
ρ
= 2π

0.38274
ρ

, (34)

we get

D =
8π2

4π20.382
ρ2

λ
=

2ρ2

0.382λ
= 13.65

ρ2

λ
. (35)

So, this result is identical to the result obtained using simple arguments (Eq. (5)) and may appear
valuable for preliminary estimations of experimental conditions.

3. Experimental comparison with the theoretical results

3.1. Experimental schemes

For the experiments we used two different arrangements. The setup shown in Fig. 3(a) is used to
study the Gouy phase of BGBs under relatively weak focusing (lens’ focal lengths 40-75 cm). A
continuous-wave beam from a frequency-doubled Neodymium-doped Yttrium Orthovanadate
(Nd:YVO4) laser (wavelength of 532 nm) was expanded and split to form an object and a reference
arm. Passing through the object arm, it is reflected twice from the liquid-crystal spatial light
modulators SLM1 and SLM2 (1920 pix × 1080 pix with a pixel pitch of 8 µm and SLM1-to-SLM2
distance of 49 cm). On SLM1 the phase of the desired highly-charged OV is encoded. During
propagation towards SLM2, this OV decays into singly-charged OVs which repel each other and
reorder in a ring thus generating a ring-shaped beam (see e.g. panel (a) in Fig. 1). This beam
still carries point phase singularities, which need to be removed. Since the SLMs are reflective
and reflection inverts the sign of TCs, we encode the phase of the same highly-charged OV on
SLM2 for subsequent zeroth-order BGB generation. After all TCs of the OVs are erased, the
required hollow ring-shaped beam is Fourier transformed in space. This is done by using thin
plano-convex lenses with focal lengths f = 75 cm, 50 cm, and 40 cm and diameters of 2.5 cm.
Recorded frames of the ring-shaped beam in front of the Fourier-transforming lens and of the
generated BGB at a propagation distance of 40 cm behind the focus are shown in Fig. 3, frames
(a2) and (a3) respectively. The object and the reference beams are recombined by a second beam
splitter to interfere on a CCD camera’s chip. The CCD camera is mounted on a rail to allow
recording of interference patterns at varying propagation distances.
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Fig. 3. (a) Setup based on a Mach-Zehnder interferometer. Nd:YVO4: laser emitting at
a wavelength 532 nm, BE: beam expander, BS: beam splitters, M: flat mirrors, SLM: two
identical spatial light modulators, L: lens with a focal length of 75 cm, 50 cm, or 40 cm, CCD:
charge-coupled device camera placed on a rail to follow the beam behind the focal plane of
the lens. Recorded frames of the ring-shaped beam (a2) in front of the Fourier-transforming
lens and of the generated BGB (a3) at a propagation distance of 40 cm behind the focus. (b)
Single-lens interferometer setup: RB: ring-shaped beam with already erased topological
charges of the OVs, L1: focusing lens with f = 75 cm forming a Bessel-Gaussian beam in
and after its focal plane, L2: focusing lens with f = 100 cm forming the “ghost” BGB which
is interfering with the central peak of the main BGB. The distance between L1 and L2 is
85 cm.

The setup shown in Fig. 3(b), enabling interferometry for moderate and tight focusing, is a
modification to the one shown in Fig. 3(a) in the sense that lens L2 is located approximately at
the position of the dashed rectangle in Fig. 3(a). The reference beam is blocked and the second
BS removed, while the focusing lens L1 is left unchanged and the CCD camera is relocated close
to lens L2. After this modification, lens L1 is still playing the role of the Fourier-transforming
element for the ring-shaped beam, thus generating the BGB. The long dash-dotted vertical line
(at position 1) is intended to mark the distance at which the main BGB is already well developed.
Lens L2 is placed in such a way that it focuses this BGB. It is important to note that in and after
the focus of L2 (leftmost dashed vertical line, position 3) the converging BGB is inversely Fourier
transformed into a ring-shaped beam. Until then it is propagating as a Bessel-Gaussian beam.

Lens L1 has a focal length of 75 cm, while L2 has 100 cm. In addition, lens L2 has no
antireflection coating. Due to this fact, after two weak Fresnel reflections from its surfaces, a
“ghost” BGB is formed at a much shorter distance (14.6 cm) than the focal length of L2. This
“ghost” BGB is co-axial with respect to the main “background” BGB (see the tiny dark green
lines inside lens L2 in Fig. 3(b)). The central peak of the host BGB effectively serves as a
reference beam in the very short single-lens interferometer. Within this distance the weakly
focused host BGB is only slightly reshaped. A clear interference pattern between the central
peak of main BGB and the “ghost” can be observed in a short range of distances near L2. A
detailed description of single-lens interferometers can be found in [44,45].

Since the single-lens interferometer is a frugal but not very popular device [45], we demonstrate
its use with a Gaussian laser beam in Fig. 4. According to [44] the effective focal length of the
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lens forming the single-lens interferometer is

feff =
n − 1
3n − 1

f , (36)

where n is the refractive index of the material and f is the focal length of the lens. For the used
N-BK7 lens with f = 100 cm the focal plane is estimated to be located 14.6 cm behind the lens.
The left two frames in Fig. 4 show interferograms recorded at distances of ±7.5 mm from the focus
of the "ghost" beam. Their symmetrical displacement relative to the focus can be recognized
by the change in the angle of the moderately pronounced ellipticity of the interference rings.
The ellipticity of the Gaussian beam (the ratio of the major to the minor axis of the ellipse) was
estimated to be 1.15. Elliptic beam profiles result in different Rayleigh diffraction lengths along
the major and the minor axis of the elliptical beam, thus affecting the Gouy phase measurement.
The mentioned estimated ellipticity results in a 15 % difference between the Rayleigh diffraction
lengths along the two axes (see dashed curves in Fig. 4(c)).

Fig. 4. Test measurements with a Gaussian beam and a single-lens interferometer. Left
panels: Interference patterns recorded at ±7.5 mm with respect to the lens’ focus. These
positions are labelled with colored circles in graph (a) showing the on-axis interference signal
vs. distance and on graph (b) presenting the retrieved Gouy phase of the Gaussian beam.
Graph (c) – the processed experimental points for the Gouy phase shown already in graph
(b), along with two additional dashed curves indicating the uncertainty of the processed data
when the ±7.5 % uncertainty of the Rayleigh lengths due to the beam ellipticity is considered.
Solid magenta curve – theoretical plot based on the used laser and focusing parameters. See
the text for details.

An important fact is the significant change in the interference pattern along the beam axis –
from a relatively low on-axis intensity level (due to a destructive interference) before the focus
(e.g. at −7.5 mm) towards a global interference maximum at the focus, followed by a decrease
of the on-axis interference signal (e.g. at +7.5 mm; although there is an on-axis constructive
interference). This is also in agreement with the data in Figs. 4 and 5 in [44]. The graph in
Fig. 4(a) shows the essential part of the experimentally recorded on-axis interference signal vs.
distance (solid squares; within an interval of 8 cm). Figure 4(b) presents the Gouy phase of the
Gaussian beam retrieved from the data in Fig. 4(a), plotted in units of π/2. The data points
denoted with colored circles correspond to the interferograms shown in the left two panels of this
figure. The graph in Fig. 4(b) is in a good quantitative agreement with the fact that, along the
optical axis around the focus, a freely propagating Gaussian "ghost" beam accumulates a π phase
shift – the Gouy phase shift. The red solid curves in both graphs in Fig. 4 are fits calculated
according to the procedure for processing the experimental data presented below. Fig. 4(c) once
again displays the processed experimental points for the Gouy phase shown already in graph (b),
now along with two additional dashed curves. They indicate the uncertainty of the processed data
when the ±7.5 % uncertainty of the Rayleigh lengths due to the beam ellipticity is considered.
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The solid magenta curve is a plot of the analytical formula for the Gouy phase shift for a Gaussian
beam with a beam radius of 35 µm at the beam waist and for λ = 532 nm.

3.2. Data recording and processing

In the experimental setups shown in Fig. 3, the CCD camera is placed on a rail such that it
can be translated along the beam axis (the z-axis in Figs. 4–8) in a well-defined way. In this
manner, we are able to record interference patterns containing information on the Gouy phase
vs. propagation distance. At each position, the CCD camera captures an interferogram. From
each interferogram we evaluate the intensity in the center of the ring interference pattern, in the
following referred to as axial interference signal. One such signal, is presented in Fig. 5(a). The
sequence of operations for processing the experimental data is:

/a/ Subtraction of a reference line from the recorded axial interference signal in order to take
into account the change of the beams’ intensities;

/b/ Shift and normalization of the experimental data to fit them into the interval [−1,1];

/c/ Approximation of the normalized interference signal with a function of the type

A + B exp[−(z − C)2/D]sin{2π[(z − E)/F + (z − G)2/H + I]},

where z is the longitudinal coordinate. The second term involving parameters B, C and
D accounts for the longitudinal intensity variation of the interfering beams and A is a
adjustable shift. Parameters E, F, G and H are related to the Gouy phase, while I is constant
phase shift;

/d/ Apply arcsin{sin[· · · ]} in order to transfer the obtained approximation of the experimental
data to the range [-π, π];

/e/ Unfold the obtained approximation phase to a multiple of π.

/f/ Apply arcsin-function to the experimental data and repeat the procedure in the preceding
point;

/g/ If desired for better visualization, shift the experimental data and the fit curve by the same
phase. Present the propagation distance in physical units (e.g. in centimeters).

The sequence of graphs in Fig. 5 is visualizing the results of these operations applied to
experimental data (Fig. 5(a)) obtained by imprinting and subsequently annihilating OVs with TCs
39 and −39. The resulting ring-shaped beam is focused with a lens of a focal length f = 75 cm.
In this particular case the Mach-Zehnder interferometer is used. In the upper parts of Graphs
(b) and (c) in Fig. 5, the sequences of the performed operations are indicated according to the
explanations above. The data for the retrieved Gouy phase shift are denoted in Fig. 5(c) with
open circles.

3.3. Results

Following the described procedure, we present a comparison between the experimental data and
the theoretical results for different values of experimental parameters. One such parameter is
the radius-to-width ratio r0/ω0 of the ring-shaped beam prior to its final focusing (here, a lens
with f = 75 cm is used). In order to vary r0/ω0, we intentionally changed the TCs of the initially
imprinted and subsequently annihilated OVs. The proportionality of r0/ω0 to the TC ℓ is in
agreement with the data in Fig. 2(b) in [31]. (See also Table 1 below.) The data are obtained by
using the Mach-Zehnder interferometer and refer to a relatively weak beam focusing. In Fig. 6(a)
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Fig. 5. Visualization of the sequence of operations that we followed in processing the
experimental data in the case of initially imprinted and subsequently annihilated OVs with
TCs 39 and −39, thereafter focusing the ring-shaped beam with a lens of a focal length
f = 75 cm. Graph (a) – raw experimental data; Graph (b) – shift and normalized experimental
data (open circles) and their analytical approximation (solid blue curve); Graph (c) – Gouy
phase resulting from the unfolding procedure (presented in details in text) applied to the
experimental points in graph (b), and fit curve.

Fig. 6. (a): Longitudinal evolution of the Gouy phase of Bessel-Gaussian beams created by
initially encoding and subsequently annihilating optical vortices with different topological
charges. Their absolute values |TC| are indicated to the right of the curves. Experimental
realization – Mach-Zehnder interferometer. Focal length of the lens f = 75 cm. (b):
Longitudinal change of the Gouy phase calculated according Eq. (32) with parameters
corresponding to the topological charges indicated to the right. Solid lines refer to nominal
f = 75 cm, solid squares – to effective f = 80 cm. (See text for details.)
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Table 1. Measured ring-shaped beam radius-to-width ratio r0/ω0, divergence
half-angle and retrieved slope of the nearly linearly increasing Gouy phase vs.

propagation length for Bessel-Gaussian beams generated by creating and
annihilating OVs with different topological charges |TC |. Last row – retrieved
slope of the Gouy phase of a Gaussian beam within the Rayleigh range. The

retrieved data are accurate to the second decimal place.

|TC | r0/ω0
Divergence half-angle Slope

(µrad) (f = 75 cm)

9 8.7 85 0.01(4)π/cm

19 13.5 67 0.06(1)π/cm

29 19.3 65 0.09(1)π/cm

39 26.5 49 0.13(8)π/cm

49 31.7 43 0.15(4)π/cm

Gaussian
— —

0.38(4)π/cm

beam (within the Rayleigh range)

Fig. 7. Graph (a) – Longitudinal evolution of the Gouy phase of BGBs for |TC| = 29
and with lenses with nominal focal lengths f = 75 cm, 50 cm, and 40 cm. Open symbols
– experimental points, solid lines – linear fits. Experimental realization – Mach-Zehnder
interferometer. Graph (b) – Longitudinal evolution of the Gouy phase, calculated according
Eq. (32) with parameters corresponding to |TC| = 29. Solid curves – results for the mentioned
nominal focal lengths. Dashed curves – results for the experimentally measured effective
focal lengths f = 80 cm, 52 cm, and 41.5 cm. See the text for details.

Fig. 8. Graph (a) – Shift and normalized experimental data (solid circles) and their
approximation (solid red curve) with a function described in details in Section 3.2. Graph (b)
– Processed experimental data (open circles) and their linear fit (red solid line). Experimental
realization – single lens interferometer (see Fig. 3(b)).
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we show processed experimental data (open circles) for the longitudinal evolution of the Gouy
phase of Bessel-Gaussian beams created with TCs = 9, 19, 29, 39, and 49. The absolute values
|TC| are indicated to the right of the curves. The solid lines are fits obtained as described above.

Two important tendencies are evident: (i) For all TCs, i.e. for every particular value of r0/ω0,
the nearly linear dependence of ΦG vs. z is well expressed. (ii) At a constant distance, the
increase of the Gouy phase with increasing |TC| (i.e. the radius-to-width ratio r0/ω0) is in a
qualitative agreement with the analytical result Eq. (32). This implies that the Gouy phase of the
BGBs can be controlled without any realignment of the setup. However, for experiments where
constant intensity is desired, one would need to adjust the pulse energy.

The theoretical results given by Eq. (32) are plotted in Fig. 6(b) with solid curves for the
nominal focal length f = 75 cm of the used focusing lens. A Gaussian beam, however, does not
focus exactly in the focal plane of a lens [46]. Because of this, it is important to know the z = 0
position of the focal plane of the lens. That is why we performed a calibration experiment. We
concluded that the effective focal length of the used lens with nominal f = 75 cm is 80 cm. The
evolution of the Gouy phase for the nominal and experimentally determined (effective) focal
lengths, computed using Eq. (32), are compared in Fig. 6(b). As seen, the longer effective focal
length results in a decrease in the Gouy phase at a fixed distance.

The comparison between the experimental (Fig. 6(a)) and theoretical data (Fig. 6(b)) for the
nominal f = 75 cm at e.g. 40 cm for |TC| = 49 shows that the calculated Gouy phase is nearly
20% higher than the experimentally measured. However, this 20% higher theoretical value
decreases nearly three times to approximately 7% when taking into the account the effective focal
length of the used lens (f = 80 cm). In our view, this difference is due to the sensitivity of the
Gouy phase to the accuracy in determining the ring width ω0 of the ring-shaped beam prior to
Fourier transformation. Additional comments regarding the origin of this error can be found in
Supplement 1.

In Table 1, we summarize the experimental results for the retrieved slopes of the respective
Gouy phases of the BGBs for different radius-to-width ratios. In addition, the divergence
half-angles of the central peaks of the BGBs are presented. As expected (see e.g. [31]), the
increase of the radius-to-width ratio r0/ω0 of the ring-shaped beam in front of the lens leads to a
decrease of the beam’s divergence. For the slope of the Gouy phase vs. |TC| the tendency is the
opposite. It increases from 0.01π/cm at |TC| = 9 to 0.15π/cm at |TC| = 49. These slopes for the
Gouy phase of BGBs referring to a relatively weak focusing are still lower than the 0.38π/cm
for a Gaussian beam, however the last value is estimated within its Rayleigh range (within few
centimeters), while the Gouy phase of BGBs increases nearly linearly over tens of centimeters.

Another accessible experimental control parameter is the focal length of the Fourier-
transforming lens L1. The data presented in Fig. 7 clearly show that the stronger the focusing
of the ring-shaped beam, the higher the slope of the Gouy phase vs. propagation distance. In
Fig. 7(a) we show experimental results for this dependence for BGBs generated by imprinting
and annihilating TCs = 29 and −29. Three lenses with nominal focal lengths f = 75 cm, 50 cm,
and 40 cm are used. The Gouy phases calculated using Eq. (32) are shown in Fig. 7(b). The solid
curves refer to the denoted and already mentioned nominal focal lengths, the dashed curves to the
somewhat longer experimentally determined effective focal lengths of 80 cm, 52 cm, and 41.5 cm.
For one and the same propagation distance, stronger focusing causes a larger Gouy phase shift
of the BGB. The calculated phase shift surpass the measured, however the differences decrease
when the effective focal lengths are accounted in the calculations instead of the nominal ones.
For shorter focal lengths, the calculated Gouy phase deviates more strongly (almost by a factor of
2) from the experimental results. We attribute this discrepancy to the sensitivity of the Gouy
phase to the accuracy in determining the ring width ω0 of the ring-shaped beam prior to Fourier
transformation. More details can be found in Supplement 1.

https://doi.org/10.6084/m9.figshare.22224058
https://doi.org/10.6084/m9.figshare.22224058


Research Article Vol. 31, No. 9 / 24 Apr 2023 / Optics Express 13697

Additionally, analogous to the classical f -number, we can define an effective f -number as a
ratio of the lens’ focal length f to the ring radius r0. As seen from Eq. (32), the Gouy phase
depends inversely proportional to the second power of this effective f -number.

We would like to show experimental data for stronger focusing (but still moderate, as compared
to focusing with e.g. high numerical aperture objective [39]). This is realized by using the
single-lens interferometer technique described in details in [44] and shown in Fig. 3(b). Obviously,
the propagation length for the "ghost" BGB is limited, since after its focus it converts into a
diverging ring-shaped beam. The host BGB (more precisely – its central peak) effectively serves
as a reference beam. Within the distance of interest, the weakly focused host BGB is only slightly
reshaped. Ascribing the longitudinal phase changes solely to the more strongly focused "ghost"
BGB, the normalized axial signal and the data retrieved from this measurement are shown in
Fig. 8(a) and (b), respectively. They clearly express the fact that a slope of the Gouy phase vs.
distance of 1.0π/mm is achievable under moderate focusing (estimated focal length 14.6 cm).
The reconstructed change of the Gouy phase here is almost 4π (see Fig. 8(b)), while the Gouy
phase of the Gaussian beam should saturate at larger offsets from its beam waist and should
remain limited to ±π/2.

4. Conclusion

The problem of the Gouy phase of Bessel-Gaussian beams (BGBs) still raises many questions.
Its correct determination is of a great importance for many fields of modern optics. Here, we
elaborated an analytical model for the Gouy phase of long-range BGBs obtained by creating and
annihilating optical vortices (OVs). The model is accounting for the influence of the relevant
experimental parameters: the OV’s topological charge, the ring-shaped beam’s radius-to-width
ratio, and the focal length of the Fourier-transforming lens. These parameters are relevant because
their combination determines the transverse component of the wave-vector. The experimental
data support the model and prove the nearly linear evolution of the Gouy phase of BGBs both
for long and short focal lengths. In particular, for the same ring-shaped beam and propagation
distance, stronger focusing causes a larger Gouy phase shift of the BGB. Under relatively weak
focusing of the initial hollow ring-shaped beam, the Gouy phase of the BGB is found to change
linearly at a rate of some 0.2 π/cm over a distance of 45 cm. Under moderate focusing, the linear
Gouy phase vs. propagation distance reaches a slope of 1.0 π/mm over distances exceeding 4 mm.
The presented results are important in e.g., nonlinear optics in optically thick nonlinear media,
where the observation of nonlinear processes requires high peak intensities and phase matching
of focused beams. They may appear applicable also to filaments formation and high-harmonics
generation.
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