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Abstract

The Gouy phase is related to the axial phase shift experienced by any fo-
cused light beam with respect to a reference plane wave when passing through
its focus. Generally, the Gouy phase ΦG for a higher-order Hermite–Gaussian
(HG) beam is this for the fundamental Gaussian beam multiplied by a factor,
which is the sum of the mode indices of the HG beam plus unity. Although this
result is a paradigm in optics, we are not aware of its experimental verification.
In this paper, we present experimental results obtained with a single-lens inter-
ferometer for higher-order HG modes generated using spatial light modulator.
The retrieved Gouy phase ΦG is found in a very good quantitative agreement
with the mentioned theoretical result.
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1. Introduction. It is known that any focused light beam experiences an
axial phase shift with respect to a reference plane wave when passing through its
focus. This phase anomaly was first studied by Gouy and is named after him.
The chronology of early studies can be found in [1]. Later, most of the research
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was related to the development of microwave optics, lasers, nonlinear optics, ter-
ahertz radiation, and singular optics, just to mention a few. Let us denote by
LD and z the Rayleigh diffraction length of a Gaussian beam and the longitudi-
nal coordinate, respectively. Then, the Gouy phase for a Gaussian beam is given
by ΦG = arctan(z/LD). For a higher-order Hermite–Gaussian (HG) mode with
mode indices (l,m) this phase is multiplied by a factor of (1+ l+m) [2]. In other
words, passing through the focal plane, higher-order Hermite–Gaussian modes ac-
cumulate a higher Gouy phase ΦG = (1 + l + m) arctan(z/LD) with respect to
a reference fundamental Gaussian beam. The Gouy phase has important conse-
quences in, e.g., nonlinear optics. In general, the n-th order nonlinear polarization
will experience a phase shift that is n times larger than that experienced by the
pump wave [3, 4]. It is natural to expect that the Gouy phase also has profound
consequences in highly nonlinear processes like above-threshold ionization [5] and
high-harmonic generation [6].

One relatively intuitive example for the Gouy phase is based on the confocal
laser cavity emitting a fundamental Gaussian beam. It is known (see, e.g., [7,
Chap. 4.7.2]) that in such a cavity, at the waist of the beam, the wavefront is flat.
However, at the planes of the mirrors, it is spherical (concave to the left/right
mirror, respectively), exactly matching the curvatures of the corresponding mir-
rors. Hence, at its axis the Gaussian beam is accumulating additional phase (the
Gouy phase) in comparison to a (infinite) plane wave.

Equally intuitive is the single-lens interferometer, a device remarkably frugal
and insensitive to laser beam fluctuations, suitable for measuring phase changes.
We successfully exploited it to measure the Gouy phase of higher-order Hermite–
Gaussian beams. However, since it is not a commonly used instrument, we will
briefly describe its action in the experimental section of this paper.

Even though the cases of a fundamental Gaussian beam are relatively well-
studied, we are not aware of any experimental data published in the literature
confirming the dependence ΦG = (1 + l + m) arctan(z/LD) for the higher-order
HGlm modes. One very distant exception is the use of the Hermite–Gaussian
mode HG01 and a pair of cylindrical lenses for mode conversion outside the laser
cavity [8]. In this paper, we present analytical model and experimental results
obtained with a single-lens interferometer. Information on the Gouy phase ΦG

for higher-order Hermite–Gaussian modes is retrieved. The data are in very good
quantitative agreement with the mentioned theoretical result.

2. Derivation of the Gouy phase for Hermite–Gaussian beams. Let
us briefly derive the analytical result for the Gouy phase ΦG(z) of higher-order
Hermite–Gaussian beam (HGB). We follow the approach described in [2]. The
longitudinal evolution of the Gouy phase ΦG(z) can be calculated from the trans-
verse components kx and ky of the wavenumber k using the relation

(1) ΦG = −1

k

∫ (
⟨k2x⟩+ ⟨k2y⟩

)
dz.
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Let us define the field amplitude of HGB as

(2) fl,m(x, y) =

√
2C(l,m)

πω2(z)
Hl

(√
2x

ω(z)

)
Hm

(√
2y

ω(z)

)
exp

[
−x2 + y2

ω2(z)

]
,

where the (Gaussian) beam width ω(z) at a particular distance z is related to its
width ω0(z = 0) at the beam waist (at z = 0) by ω2(z) = ω2

0[1 + (z/zR)
2]. Here

zR = πω2
0/λ is the Rayleigh diffraction range and λ is the wavelength. C(l,m) is a

normalization factor ensuring that the beam intensity is equal to unity for all mode
indices (l,m) of the Hermite polynomials Hl and Hm. Using the orthogonality
between Hermite polynomials, it can be shown that C(l,m) = 1/(2ll!2mm!).

According to [2, Eq. 7], the angular spectrum F̃ (kx, ky) of the HGB is given
by

(3) F̃ (kx, ky) =
1

2π

∫∫ +∞

−∞
fl,m(x, y) exp(−ikxx− ikyy) dx dy.

In order to calculate the Fourier transformation, we use the following result

(4) F̃
[
exp(−x2/2)Hn(x)

]
= (−i)n exp(−k2/2)Hn(k),

which can be found in [9]. Its physical meaning is that Gaussian functions (for
l = m = 0) have Gaussian spectra, and HGBs have Hermite–Gaussian spectra.
In this way we obtain

(5) F̃ (kx, ky) =

√
C(l,m)ω2(z)

2π
(−i)l+m exp

[
−(k2x + k2y)ω

2

4

]

×Hl

(
kxω(z)√

2

)
Hm

(
kyω(z)√

2

)
.

As a next step we have to calculate

(6) ⟨k2x⟩ =
∫∫ +∞

−∞
k2x|F̃ (kx, ky)|2 dkx dky.

Simplifying Eq. 6 as a product of two integrals and using again the orthogonality
relation between the Hermite polynomials

(7) ⟨k2x⟩ =
2mm!√

2π
C(l,m)ω(z)

∫ +∞

−∞
k2x exp

[
−k2xω

2(z)

2

]
H2

l

(
kxω(z)√

2

)
dkx.

A useful relation is that
∫ +∞
−∞ exp(−ξ2)H2

l (ξ)ξ
2 dξ =

√
π2ll!(l + 1

2). In our case
ξ ≡ kxω(z)/

√
2. In this way we get

(8) ⟨k2x⟩ =
2l + 1

ω2(z)
C(l,m)2mm!2ll! =

2l + 1

ω2(z)
.
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Because of the symmetry, ⟨k2y⟩ = (2m+ 1)/ω2(z). Finally, let us calculate the
Gouy phase ΦG (see Eq. 1) by splitting it into two parts (ΦG = ΦG1 +ΦG2). For
ΦG1 we obtain

(9) ΦG1 = −2l + 1

k

∫
dz

ω2
0

[
1 + (z/zR)2

] = −(l +
1

2
) arctan(z/zR).

Because of the symmetry of the mode indices l and m, we get directly ΦG2 =
−(m + 1

2) arctan(z/zR). In this way, the total Gouy phase of a HGB with mode
indices l and m is

(10) ΦG = −(1 + l +m) arctan(z/zR),

where the Rayleigh diffraction range zR = πω2
0/λ is related to the beam width

ω0 = ω(z = 0) at its waist and to the wavelength λ.
3. Experimental results and discussion. Let us first describe the single-

lens interferometer, which is probably the simplest interferometer [10]. The only
required optical element is a focusing lens with no antireflection coatings. If so,
after two Fresnel reflections from its surfaces (see points marked with 1 and 2 in
Fig. 1(a)), a strongly converging “ghost” beam is formed. This “ghost” beam is co-
axial with respect to the main “background” beam and its secondary focal plane is
much closer to the lens than its usual focal plane. The paraxial model presented
in [11] (see Eq. (9)) shows that the distance feff from the lens to the “ghost” beam
waist is related to the focal length f of the lens by feff = f(n−1)/(3n−1), where
n is the refractive index of the used glass. As expected, the secondarily reflected
beam has much lower intensity than the background beam. However, in the
“ghost” beam focal region its intensity is high, ensuring an excellent modulation

Fig. 1. Principle of operation of the single-lens interferometer (a) and used experimental setup
(b). In panel (a), the reflection of the background Gaussian beam is depicted inside the lens by
dots and numbers, showing the formation of the “ghost” beam. The arrows mark the propagation
direction of the “ghost” beam. In panel (b) the vertical dashed lines mark the usual focal plane
of the lens (right) and the secondary focal plane of the “ghost” beam (left). Panel (b): cw
laser emitting at 532 nm SLM – liquid crystal spatial light modulator. BS – beam splitter.
L – uncoated focusing lens (f = 100 cm). CCD – charge-coupled device camera mounted on a

translation stage
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depth of the interference pattern with the slightly converging background beam.
The range of existence of this pattern is, however, short (of the order of units of
centimetres, depending on the focal length of the lens L).

In the experiment, the charge-coupled device camera (CCD) is mounted on
a translation rail. In this manner, we are able to record Gouy-phase-dependent
interference patterns at different propagation distances. At each position, the
CCD camera captures an interferogram. From each interferogram we evaluate
the intensity in the centre of the interference pattern. The sequence of data we
will further denote as axial interference signal. One such signal for the Hermite–
Gaussian mode HG42 (normalized to unity) is presented in the left graph of Fig. 2
with hollow circles. In the three frames between the graphs in Fig. 2, we show the
essential parts of the interferograms recorded in the secondary focal plane (A),
at the first on-axis minimum (B) and at the first side-lying maximum (C) of the
interference signal. The arrows indicate the approximate axial region from which,
frame by frame, the experimental points are extracted (see the left plot of Fig. 2;
hollow circles). We intentionally show the data for this HG42 mode, since, in this
case the deviations of the experimental data from the theoretical prediction are
the largest.

The applied operations for processing the experimental data are as follows:

i) Subtraction of a reference line from the recorded axial interference signal to
take into account the change of the beams’ intensities. Normalization of the
experimental data;

ii) Approximation of the normalized interference signal with a function of the
type g(z) = E + F cos[(1 + l + m) arctan(z/zR) + G]/H, where z is the
longitudinal coordinate and E, F , G, H are fit parameters;

iii) Apply arccos{cos[. . . ]} in order to transfer the obtained approximation of
the experimental data to the range [−π, π]. If necessary (for higher-order
HG-modes), unfold the obtained approximation for the phase to a multiple
of π.

iv) Apply arccos-function to the experimental data and repeat the procedure in
the preceding point.

The result obtained by following the described procedure for mode HG42, is
shown in the right graph of Fig. 2. Hollow circles denote the processed experimen-
tal data, while the solid curve presents the processed fit curve. The asymptotic
theoretical value of the Gouy phase for this HG42 mode is (1+4+2)π/2 = 7π/2.
It can be seen that the curve approximating the data tends towards this value but
does not reach it at the maximal accessible distance of 5 cm from the focus. The
experimental data, although showing the same trend, saturate at shorter prop-
agation distance and differ from the asymptotic value by 12%. This is the case
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Fig. 2. Left: Normalized interference signal (hollow circles) obtained with a HG42 mode and the
central part of the background beam and interpolation curve (solid curve) of the type g(z) =
E + F cos[(1 + l + m) arctan(z/zR) + G]/H with E=0.344, F=0.34, G=-1.4 rad, H=0.9, and
zR=0.43 cm for l=4 and m=2. Middle: Experimentally recorded interference patterns in the
secondary focal plane (A), at the first on-axis minimum (B) and at the first side-lying maximum
(C) of the interference signal. Right: Gouy phase reconstructed from the experimental data

(open circles) and theoretical result (solid curve), both presented in π/2 units

with the largest deviation between the asymptotic experimental and theoretical
values we report here.

Figure 3 summarizes the results obtained for the Gouy phase for five different
modes (the fundamental Gaussian mode HG00 and even higher-order HG modes

Fig. 3. Gouy phases (in π/2 units) for five symmetrical HG modes vs. propagation distance from
the secondary focal plane. Hollow circles – data retrieved from the experiment. Solid curves –
theoretical approximations. Horizontal bars on the right, outside the graph – theoretical asymp-
totic value for the respective HGlm mode. Greyscale frames – calculated intensity distributions

of the HG modes
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HGlm, l,m = 0, 2, 4). It is worth underlining that only symmetric HG modes,
e.g., with a bright central sub-peak along the beam axis, are studied. Thus,
the interference signals with the “ghost” beams are obtained exactly along the
propagation axis of the modes and, in this sense, the experiments correspond
exactly to the definition of the Gouy phase. (This would not be the case, for
example, with the HG01 mode in which there are two bright sub-beams separated
by a one-dimensional phase dislocation along the propagation axis of the mode
where the intensity drops down to zero. In this case, there will be no interference
signal, thus the “ghost” beam must be shifted to overlap with one of the sub-peaks
to obtain signal. This leads in turn to an additional phase in the measurement.)

In Fig. 3, the processed experimental data for the Gouy phase are represented
by coloured hollow circles. The corresponding theoretical curves (ΦG = (1 + l +
m) arctan(z/LD)) are represented by solid curves. The asymptotic values of the
Gouy phase in the respective case are denoted with horizontal bars outside the
plot area (on the left side of the mode labels). For modes HG00,02,22 the data
reach these asymptotic values within the exploited 5-cm range. For mode HG42,
as discussed above, the data reaches lower asymptotic value. For the highest
mode HG44 investigated here, the asymptotic value is reached as well, however,
the data are relatively noisier as compared to the other cases. In view of this, we
can state that the presented results are in very good quantitative agreement with
the theoretical dependence of the Gouy phase on the transverse mode indices of
zeroth- and higher-order Hermite–Gaussian beams.

4. Conclusion. In this work, using a single-lens interferometer and a reflec-
tive spatial light modulator, we measured the Gouy phase shifts around the beam
foci of higher-order Hermite–Gaussian modes HGlm with transverse mode indices
l,m = 0, 2, 4. To the best of our knowledge, these results constitute the first
experimental verification of the analytical expression for the Gouy phase of these
higher-order modes. The reported results are in very good quantitative agreement
with the theory.
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