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Abstract

In this work, we report numerical simulations and experimental results
indicating the possibility of determining and controlling the rate of change of
the Gouy phase of structured Gaussian-like beams. This is achieved by nesting
singly-charged optical vortices with the same signs of their topological charges
in necklace-like structures.
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1. Introduction. Any focused Gaussian laser beam experiences an axial
phase shift with respect to a reference plane wave when passing through its focus.
This phase shift & = arctan(z/Lp) is named after Gouy — the first scientist
who investigated it. Here Lp and z are the Rayleigh diffraction length and the
longitudinal coordinate, respectively. First studied in the microwave and laser
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beam optics (see e.g. [1-3]), the Gouy phase appears to be important in many
other fields as well, e.g. in nonlinear optics [4]. The reason is that the n-th order
nonlinear polarization is experiencing a phase shift that is n times larger than
that experienced by the fundamental pump wave [2,3|. Hence, the Gouy phase is
expected to have profound consequences in highly nonlinear processes like above-
threshold ionization [3] and high-harmonic generation [5].

For higher-order Laguerre-Gaussian (LG) modes with mode indices (m, p) the
Gouy phase of the Gaussian beam ®¢ = arctan(z/Lp) is multiplied by a factor
of (1+ |m|+ 2p) |6,7]. Here, |m| accounts for the fact that the azimuthal mode
index m (positive or negative integer number) represents the on-axis topological
charge (TC) of the point-phase dislocation carried by optical vortices (OVs). The
factor 2p is related to the radial mode index p of the LG beam. Very similar is the
situation with the Hermite-Gaussian (HG) beams, where their Gouy phases are
also multiplied by a factor related to the mode indices, in this case (1+1+m) [8].
Of particular interest (especially in nonlinear optics) is the possibility to control
the Gouy phase while preserving the clearly pronounced and dominant central
peak of the laser beam. Obviously, this could not be achieved with HG modes.
In principle, one could rely on the formation of radial rings of the LG modes
at radial mode number p > 0, provided that the on-axis vortices are excluded,
because at their cores the intensity drops down to zero. In this paper, however,
we use another approach.

In essence, the proposed idea is based on singular optics achieved through
proper laser beam structuring. It is known that a pair of vortices with identical
topological charges, which are formed to be symmetrically offset from the axis
of the background laser beam, interact by repelling each other (if they are close
enough) and rotating around the axis of the background beam when propagating
[9,10]. This rotation should affect the Gouy phase, which is defined along the
beams’ axis. The number of optical vortices with identical TCs and the radius
of the necklace-like ring within which they are arranged are two possible control
parameters for the Gouy phase. However, many OVs arranged within a ring of
small radius would strongly repel each other and probably will have less influence
on the Gouy phase.

In this work, we report numerical simulations and experimental data indicat-
ing the possibility to control the Gouy phase, and particularly its rate of change,
by necklace-like structures of singly-charged OVs with the same signs of the TCs.
The presented interferometric measurements with OV rings of up to 6 OVs are in
good qualitative agreement with the numerical data.

2. Numerical procedure and initial conditions. To numerically simulate
the two-dimensional diffraction of the beams of interest, we numerically solved the
linear paraxial equation for the slowly-varying optical beam envelope amplitude F

(1) iK(OE/9z2) + (1/2)(8 /92 + 82/y*)E = 0,
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where k is the wave number, (x,y) are the transverse Cartesian coordinates, and
z is the longitudinal coordinate. In this analysis, the computational windows are
spanned over 1024 x 1024 grid points. As input unperturbed background beams,
we used Gaussian beams with a form-factor exp(—r?/w?). In this manuscript,
the width of the Gaussian beam in the beam waist, assumed at z = 0, is kept
wp = 0.28 arb. units and (z,y) € [-5.11,5.12]. The test numerical data obtained
using Eq. (1) are in excellent agreement with the known theoretical result for
a pure Gaussian beam (®g = arctan(z/Lp) with Lp = 6.6 arb. units; [11]).
With this scaling of the Gaussian beam size at its waist, the intensity and phase
distributions of the beam were followed with good accuracy up to the reasonably
large distances z > 9Lp. As a second step in the tests, we calculated the Gouy
phase for Laguerre-Gaussian beams with zero radial mode index (p = 0) for
azimuthal mode indices m = 1,3,6, and 9 (i.e. for OVs with different TCs). The
resulting numerical data for the different TCs m perfectly followed the theoretical
relationship ®¢ = (1 + |m| + 2p) arctan(z/Lp) up to z = 9Lp for m = 1, up to
z="TLp for m =3, up to z = 3.5Lp for m = 6, and up to z = 2Lp for m = 9.
The above is valid for generating these LG beams from both initial amplitude and
phase modulation as well as for generating them from initial phase modulation
only. At the maximum propagation lengths for each of the mentioned cases, the
difference between the computed Gouy phases was always smaller or of the order
of 10 8 rad.

The first attempt to find a way to control the Gouy phase was focused on the
coaxial superposition of a Laguerre-Gaussian vortex beam and a Gaussian beam
(see Eq. (19) in [12]). Assuming that the waist of each of the analyzed beams is
located at z = 0, the coaxial superpositions [12] can be rewritten in the form

(2a) Re[E(r, ¢,z = 0)] = exp(—r?/wd)[r™ cos(mep) — 7],

(2b) Im[E(r, ¢,z = 0)] = exp(—r?/wd)r™ sin(mp),
_ 0) — arctan r™ sin(mep)

3) (r, 0,2 = 0) = arct {rm cos(myp) — 7“6”}

in which the relationship between the Cartesian and cylindrical coordinates (x,y)
and (r, ) is the usual one. Here, m is the number of optical vortices with unit
topological charges located like a necklace along an imaginary circle of radius
ro in the wings of the Gaussian beam. The extensive numerical simulations of
the evolution of coherent superpositions of a Laguerre-Gaussian vortex beam and
a Gaussian beam at r9/wp = 0.8,0.9,1.0,1.1,...,1.9,2.0 and m = 1,2,...,12
showed the same result: Regardless of ro/wy and m, the Gouy phase always
remains that of the fundamental Gaussian beam ®; = arctan(z/Lp). (This is
proved analytically, based on Egs. (2) and (3), but we will refrain from presenting
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this proof here.) The reason is that the above formulas describe the so-called r-
vortices, the radii of the cores of which are related to the width of the background
beam carrying them. In order to decouple this dependence, we decided to further
generate the desired necklace-like structures composed of OVs using only an initial
phase modulation described by the compact expression for their phases given by
Eq. (3).

3. Results. As an example, grayscale panels (a) and (b) in Fig. 1 visualize
the phase distributions used to generate structured beams with 3 and 6 OVs ar-
ranged in a ring (see panels (¢) and (d) in the same figure). The graph in Fig. 1
indicates the possibility of controlling the rate of change of the Gouy phase of
laser beams with dominant central peaks by controlling the number m of opti-
cal vortices arranged in a necklace-like structure. The reference curve is that of
the pure Gaussian beam (with no OVs embedded in it), represented by a dashed
curve and denoted by the symbol ‘G’. For better visibility of the data, the prop-
agation length of each of the beams is shown up to 2Lp. Transient oscillations
are seen in the Gouy phase at the beginning of the propagation of the beams, up
to about 0.1Lp, after which the curves stabilize and become monotonically in-
creasing. These oscillations are due to the use of an initial phase modulation only,
causing later the corresponding amplitude/intensity modulation of the beam (see
Fig. 3 in [13]). For all curves the asymptotic value of the Gouy phase is 7/2 (not
shown on the graph). The important key result is the different rates of change
(increase) of the Gouy phase. This is observed in the fan-like spread of curves cor-
responding to different numbers of optical vortices m carried by the background
Gaussian beam. The specific numerical data correspond to a relatively narrow
vortex ring as compared to the size of the Gaussian beam (rg/wy = 0.8).

The 3-D plot in the right part of Fig. 1 is an attempt to summarize the
numerical results. It shows that at the same fixed propagation length (z = 1Lp in
this case) and for the same background Gaussian beam, the Gouy phase increases
with increasing both the number m of OVs in the necklace-like structure and with
decreasing the radius of the vortex ring rg. As in the graph in the middle, the
Gouy phase is presented in units of /2.

To experimentally measure the Gouy phase of laser beams carrying necklace-
like structures of optical vortices, we used a setup based on a single-lens in-
terferometer [14, 15| and a phase-only spatial light modulator. Briefly, a lens
without antireflection coating (here, with a focal length f = 1.5 m), after two
weak Fresnel reflections from its surfaces, forms a secondary beam. It is fo-
cused at a much shorter distance feg than the focal length f of the lens itself
(feg = f(n—1)/(3n — 1) = 21.4 cm; n — refractive index of the glass). This
secondary beam is co-axial with respect to the “primary” beam, thus serving as
a reference beam in the single-lens interferometer. A clear interference pattern
between these two beams can be observed in a short range of distances (=~ 7 cm
in this experiment). Within the range of the visibility of the interference pattern,
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Fig. 1. Numerical results. Panels (a) and (b): Greyscale images of the phase distributions used
to generate beams with 3 and 6 OVs arranged in a ring. Panels (¢) and (d): Corresponding
intensity distributions, magnified by a factor of 2 for better visibility. Graph: Calculated Gouy
phase ®¢ (in 7/2 units) vs. beam propagation length z (in units of Rayleigh diffraction length
Lp of the Gaussian background beam) for different numbers of OVs (see the notations above the
graph) ordered in a necklace-like structure with 7o/wo = 0.8. The initial Gaussian beam width
is kept wp = 0.28 arb. units. The data for the pure Gaussian beam are presented with dashed
curve and are labelled with ‘G’. 3-D plot: Compact representation of the numerical results:
Calculated Gouy phase ®¢ (in units of 7/2) at propagation length z/Lp = 1, as a function of
the normalized radius of the OV ring ro/wo and the number m of these vortices

the weakly converging “primary” beam is only slightly reshaped. Charge-coupled
device (CCD) camera placed on a rail was translated along the beam propagation
axis within this region of visibility. At each position, the CCD camera captured
an interferogram. In panels (a) and (b) in Fig. 2 we show two interference patterns
recorded symmetrically on the two sides of the focus of the secondary beam. The
positions of each of the 6 OVs composing the necklace-like beam can be identified
by the splittings of one interference ring into two. The opposite directions of the
spirals (and the splittings) on the two frames are due to the inversion of the TCs
of the OVs around the secondary beam waist. The accumulation of a Gouy phase
can be clearly recognized by the dark beam centre in Fig. 1(a) and the brighter
beam centre in Fig. 1(b). From each interferogram recorded at different position
we extracted the intensity in the beam centre. We will denote this signal as an
axial interference signal. One such measurement obtained with 6 OVs surround-
ing the beam is presented in Fig. 2(c) with hollow circles. The red solid curve
approximates this axial interference signal with a function of the type:

(4) f(z) = A+ B(z—C)+D/{1+[(z — E)/F)?}"/? cos{arctan[(z — G)/H] + I},

where z is the longitudinal coordinate. The second term involving parameters B
and C' accounts for the weak longitudinal intensity variation of the background
beam around the beam waist of the secondary beam. D, E and F' account for
the intensity variation of the secondary beam itself. Parameters G and H are
related to the Gouy phase, while I is an adjustable phase shift. The open circles
in Fig. 2(d) show the Gouy phase deduced from the experimental data, whereas
the phase calculated from the fit function is shown with a red solid curve.
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Fig. 2. Six OVs arranged in a necklace-like structure. (a) and (b) — interference

patterns recorded symmetrically on the two sides of the focus of the secondary beam

(at 2 cm and at 6 cm); (¢) — Axial interference signal (hollow circles) between the

primary and the secondary beam for ro/wo = 1.2. Solid curve — approximation of

the normalized interference signal (see Eq. 4 and the text for details). (d) — Gouy

phase retrieved from the experimental data (open circles) and calculated from the fit
function (red solid curve)

Figure 3 shows a comparison between the Gouy phase for an unperturbed
Gaussian beam (solid curve) and beams carrying necklace-like ring structures with
3 and 6 optical vortices. The hollow circles represent the experimental data, the
solid curves — the respective approximations based on Eq. (4). The beam waists
are always located at z = 0, where the Gouy phase is crossing the zeroth level.
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Fig. 3. Longitudinal change of the Gouy phase around the secondary beam

focus (z = 0) for a non-perturbed Gaussian beam and for those carrying

necklace-like structures with 3 and 6 OVs. Hollow circles — experimental data.

Solid curves — data extracted from the corresponding interpolation curves.

For better visualization, the experimental data for the Gaussian beam is not

shown here. Inset: Magnified upper right quarter of the main graph for better
visualization
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Under this assumption, it is clearly seen that for negative offsets from the beam
waist:

— the Gouy phase ®¢ of the Gaussian beam is the least deviated from the zero
value,

— for a necklace-like structure with 3 OVs @« is more deviated, and

— for 6 OVs the Gouy phase has the largest (negative) deviation.

Conversely, for positive offsets from the secondary beam focus, the Gouy phase
increases the slowest for the Gaussian beam and more strongly for the beams
carrying rings with more optical vortices. For clarity, the inserted graph in Fig. 3
is enlarged and shows one quarter of the main graph. It further illustrates the
ability to control the Gouy phase growth rate in beams featuring a distinct central
peak and vortex necklace-like structures.

4. Conclusion. In view of the numerical and experimental results discussed
above, we conclude that the longitudinal rate of change of the Gouy phase &g
of beams with well pronounced and dominating axial peaks can be controllably
increased at least by a factor of 2. This can be easily achieved by intentionally
creating ring-like structures of optical vortices with unit topological charges in
the wings of the background (Gaussian) beams. In our view, the presented results
form a reasonable basis for the optimization of the controllability of ®4 either by
the radius of the vortex necklace structure or by the number of the optical vortices
created by phase modulation only, or even by both approaches.
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