
Stability of one-dimensional dark spatial solitons of finite second transverse extent

A. Dreischuh, T. Arabadjiev a Neshev a ci. G. Paulus", F. Zacherb, and H. Wa1ther

a Sofia University, Department of Quantum Electronics,
5, J. Bourchier Blvd., BG-1 164 Sofia, Bulgaria

bMaxPlancklnstitut für Quantenoptik
Hans-Korfermann-Str. 1, D-85748 Garching, Germany

cSeion Physik der Universität MUnchen,
Am Coulombwall 1, D-85747 Garching, Germany

ABSTRACT

In this work we analyze the nonlinear evolution of mixed edge-screw phase dislocations and provide arguments on the
existence of one-dimensional dark spatial solitary waves of fmite length in bulk Kerr nonlinear media. The characteristic
phase gradients force the dark beam to steer in space. An all-optical switching scheme is proposed and critically evaluated
with respect to stability and deflection control. Experimental results are reported on the decay of quasi-2D dark spatial
solitons into fmite-Iength 1D dark spatial solitons. The role ofthe saturation ofthe nonlinearity is discussed.
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1. INTRODUCTION

Optical waves can contain dislocations along which the phase is indeterminate and the electric field amplitude is zero.
This concept introduced in the wave-theory by Nye and Bery' has allowed for the clarification of the structure and
properties of edge, screw, and mixed edge-screw dislocations. As a result of the counteraction and cancellation of
diffraction and nonlinearity, in a self-defocusing nonlinear medium (NLM) such dark beams preserve their characteristics
and form 1D dark spatial solitons2 (ID DSSs) and optical vortex solitons3 (OVSs). Since the DSSs do induce in bulk NLM
gradient optical waveguides capable to transmit information pulses, the possibility to control the direction and magnitude of
the DSS steering appears to be of a practical interest.

The mixed edge-screw phase dislocations considered in this work consist of a pair of opposite semi-helices on it.Their
spatial offset determines the length of the edge dislocation and the dark beam. An inherent feature of the lD DSSs of finite
length is the spatial steering. It can be controlled by both the topological charges (TCs) of the semi-helices and the
dislocation length.

2. MATHEMATICAL DESCRIPTION

In a bulk homogeneous and isotropic NLM the (2+1)-dimensional evolution of the background beam with the phase
dislocation nested in is described by the nonlinear Schrodinger equation. The slowly-varying electric-field amplitude is
chosen to be of a tanh-shape

E(x, y) = JB(i0 (x,y)) tanh[rap (x, y)/ a]exp{i (x, Y)} (1)

where rap(x,y) = ,Jx2 + a(y + fib)2 is the effective cartesian/radial coordinate and a =0 for y � b and a = 1 for both

(p = —1, y> b) and (p = , <b). The phase distribution containing two offset semi-helices of TCs 1/2 separated by

a phase step on rr is modeled by a (x, y) = — /3 arctan [ax /(y + bfi)]+ (1 — a)sgn( x)(rr / 2).
In Fig. 1 we present a 2D plot of the initial phase distribution of the dark beam considered.
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Figure 1 Mixed screw-edge phase
dislocation consisting of a pair of
opposite senii-helices with TCs 1/2

separated b an I D phase jump on it.

x/a
Figure 2 Steering perpendicular to the
edge dislocation at /i/a=-2.75. The most
outer contours correspond to the l/e
intensity-level of the backgrcund beam.

Figure 3 Typical dark beam intensity
distribution (grayscale coded) during
the initial evolution stage I

(I(u2 1.4, h/a2.75).

3. NONLINEAR DYNAMICS

The asymmetry in the phase distribution (see Fig. 1) is indicative for the differences in thetransverse evolution of the
dark stripe. An infinite one-dimensional ir -phase jump implies a zero transverse velocity for truly I D DSS The mixed
phase dislocation causes dark beam steering toward the region with an initially lower phase (Fig. 2). I'hequantit\J I(a is
chosen to be equal to . which corresponds (at haand a single, on-axis 2 screw dislocation) to the OVS constant34
In our case (b/a2.75) the 'lack of energy' exceeds sJ times the soliton constant in I D and a gray dispersive wave is
emitted parallel to the edge dislocation on the higher-phase region (Fig. 3). The later results in a weak effective broadening
(see Fig. 2) of the central part of the stripe at <ILNL, where LNL stands for the nonlinear length.

3.1. Soliton tests

The soliton nature of the formation is proven by analyzing the reproducibility of the I D amplitude and phase
distributions across the background beam (Fig. 4), by the existence of a soliton constant identical to that in the pure I D
case, and by the conservation of the number of the dark beams (Fig. 5) at distances up to —6LN1. Since the ends of the
dislocation are constituted by a pair of opposite phase helices. their slight attraction along with the beam steering leads to a
monotonic increase in the stripe length at the expense of its shortening. As a consequence, the I D DSSs of finite extent
have a gray' final evolution state.
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Figure 4 One-dimensional intensity (solid curves) and
phase profiles (dashed) of the ID DSS of finite second
extent at v=0 (right pair) and c=5LNL (left pair).

Figure 5 Intensity distribution of the ID l)SS at
=SLNI (see Fig. 4) demonstrating conservation
of the total number of the dark structures.
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3.2. Stability

For an initially considerably longer than wider dark beam (b/a1 1, see Fig. 6a) we observed decay into a chain of optical
vortices with alternating TCs. This instability scenario known for the plane dark solitons5 is confirmed experimentally in
both isotropic6 and anisotropic7 nonlinear media. The ratio b/a4 is still larger as compared to the critical one and the stripe
bends and decays in a pair of OVSs of opposite TCs (Fig. 6b). Assigning formally TCs 1/2 to the semi-helices, the total
TC remains conserved. In the limiting case b=O and const under the same model conditions we observed the formation
of a ring dark solitary wave8 with its typical phase portrait, nonzero transverse velocity and reducing contrast along the
propagation axis (Fig. 6c).

Figure 6 Final stage (=5LNL) ofthe development of snake-instability (a) at 10a2=1 .4 and b/a=1 1, dark beam decay
into a pair of interacting OVSs of opposite TCs (b) at b/a=4, and generation of a ring dark solitary wave at b=O.

The characteristic initial slight beam expanding, bending and emission ofdispersive waves is still present at b/a=2.75,
but these perturbations are not critical in spatial frequency and 1D DSS of fmite length forms (Fig. 5).

3.3. Parallel guiding and switching

Due to their finite length the solitons described can be aligned on a 'dashed' line (Fig. 7a). If both edge dislocations have
the same orientation, the neighboring semi-helices appear with opposite TCs. The latter can give raise to an attraction and
the neighboring vortices can annihilate (for example at =7LNL and an initial separation L\ y=2b). By increasing the offset
(e.g. y=3b, Fig. 7a) the interaction is much weaker and non-critical with respect to annihilation. Varying the mutual
orientation of the edge dislocations only, it is possible to steer the two dark beams in the same (Fig. 7b) or in opposite
directions (Fig. 7c). When the neighboring edge dislocations carry the same 'charges', the steering angle is considerably
larger (Fig. 7c). In view of the repulsive interaction between OVSs of equal TCs leading to their rotation, this could be
intuitively understood by the enhanced bending of the phase lines in-between. At the initial stage of the nonlinear evolution
the neighboring semi-helices of equal charges of 1/2 do rotate slightly giving rise to the dark soliton steering in opposite
directions. The slightly larger steering ofthe neighboring ends ofthe solitons as compared to this ofthe outer ones supports
such an interaction scheme. If an OVS is formed instead of one of the 1 D DSSs it should preserve (at a large enough spatial
offset) its spatial position on the background. So, the switching between different initial phase profiles will enable to control
the steering of the 1D DSSs of finite length. Eventually, this allows to deflect guided streams of optical information in
space into several distinct channels (Fig. 7).

Figure 7 Controllable steering and interaction ofa pair of 1D DSSs offinite width at Lly=3b and =O (a) and 7Li.
(b,c). The steering direction is controlled by changing the edge dislocations from identical phase jumps (b) to opposite
(c) ones. Solid lines — set of four well separated information channels.

The main results from a numerical simulation on the guiding and deflection of a probe signal beam (Fig. 8) can be
summarized as follows. During the initial evolution stage (up to 1 .6LNL), in which the soliton forms and starts to steer itself
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Figure 8 Guiding and switching of a bright probe beam. Figure 9 Possible ways to manipulate the steering angle.

4. EXPERIMENTAL OBSERVATION OF ID DSSs OF FINITE LENGTH

The beam of a single-mode Ar-laser(Pmax=8W at X=488nm) is used to reconstruct Computer-Generated Holograms9
(CGHs) produced photolitographically with grating periods of2011m. The irreducible quantization noise in the reconstructed
phase distribution is evaluated to be down to Tr/24 . The Nonlinear Medium (NLM) is ethylene glycol dyed with DODCI
(Lambdachrome) to reach an absorption coefficient of a=O.107 cm" at X=488nm. The first-diffraction-order background
beam with the dark formation nested in is focused on the entrance of the NLM. After passing the desired nonlinear
propagation path-length the dark beam is partially reflected by a prism immersed in the liquid and is projected directly on a
CCD-array of a 13 im resolution.

In order to estimate the saturation intensity' we carried out a self-bending experiment2'0. Assuming that the self-
deflection Ay is proportional to l/(I+l/Isat), the saturation power is estimated tobe P=27 mW at ft—3.

and the probe wave, the signal losses are about 9%. Nearly 91% of the signal energy remains located in the all-optical
waveguide at I OLN1. The saturation of the nonlinearity is found to improve the soliton modulational stability without
affecting the transverse velocity. The steering angle can be controlled by the magnitude of the phase jump of the edge
dislocation as shown in Fig. 9. Another was' to do that is to change the ratio of the 1D DSS length to width (b/a), In this case
special attention should be paid to the modulational stability of the all-optical waveguide induced (see Fig. 6).
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Figure 10. Center - stable quasi-2D dark beam
(on-axial alignment) frames A.B — location of
the mixed edge-screw phase dislocations
arrow - increase of the local intensity.
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Figure 11. Experimental results depicting the interference
pattern resulting from the creation of pairs of mixed edge-screw
phase dislocations in sectors A and B ol'Fig. 10.



The greyscale image in the central part of Fig. I 0 refers to a quasi-2D DSS positioned on-axially with respect to the
background. The picture is recorded at z=8.5 cm at P=30 mW and is intended to serve for a better intuitive understanding of
the instability ofthe shifted quasi-2D dark beam in the different spatial regions. The snake instability ofthe 1D dark solitons
results in the creation of pairs of oppositely charged OVSs in several areas. The OVSs are easily recognized by the
converging of two neighboring equiphase lines in one. In the areas marked with A and B on Fig. 1 0 we observed an
interference pattern of a different type (see Fig. 1 1A,B). Between interference lines offset at finite distances (approximately
780 m for the image from Fig. 1 1A and 550 tm for that of Fig. I 1B) the lines become slightly curved, terminate and
appear again but shifted by a halfpattern period and slightly oppositely curved. It is known, that interference lines shifted by
a half period indicate the presence of the 1D it—phase dislocation required for the generation of an 1D DSS. The adjacent
dislocations observed are well separated (at approximately 250 tm and 130 tm for the cases presented on Figs. 1 1A and
1 1B, respectively) and the smooth interference lines in-between are slightly curved only. This is indicative for the transition
of an 1D phase dislocation in a smooth (plane) phase profile by pairs of opposite phase semi-helices on it.

In order to prove qualitatively this explanation we simulated an ID edge it-phase dislocation of a finite length and the
resulting interference pattern. We are convinced to have observed and clearly identified the creation of mixed edge-screw
phase dislocations as a consequence of a modulational instability of crossed lD dark soliton stripes under moderate
saturation. Since creation of 1D DSSs of finite length from modulational instability is not well suited for practical purposes,
our future experiments will be based on reproduction of CGHs.

5. CONCLUSION

We have shown that the modulational instability in saturated nonlinear medium can lead to the generation of one-
dimensional dark beams of finite length which contain mixed edge-screw phase dislocations. In view of the numerical
results presented these beams should be classified as steering one-dimensional spatial solitons of finite second transverse
extent. Their ability to guide and deflect/switch controllably parallel streams of optical signals is highly promising for future
practical application.
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