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ABSTRACT

Various types of dark optical beams with respect to their phase dislocation are discussed and their propagation dynamics
is analyzed. On the basis of numerical results 1D and 2D optical couplers are proposed. The respective energy efficiencies
for each of the output channels are estimated. Multiple charged optical vortices and their topological instability are
presented. Through a proper type of perturbation applied to these vortices they could be split into several sub-beams, thus
giving the opportunity of proposing all-optical branching schemes. Two output channel distribution schemes for such an
optical brancher are discussed.
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1. INTRODUCTION

The phenomenon of optical beam redirection to a certain output position is referred to as directional coupling. On the other
hand single beam splitting into several sub-beams is called branching in space.

The propagation of a dark beam in a self-defocusing nonlinear medium leads to refractive index change in a way to
induce an effective optical waveguide. This property could be successfully used for guiding weak (not deslroying the
nonlinear waveguide) signal beams and pulses. The ability to manipulate the propagation dynaniics of dark beams gives an
opportunity to control the output position of the guided signals or to split them in space. Due to this reason dark beams
could be used in all-optical directional coupling and branching schemes.

Two possible approaches for realizing these schemes are investigated. In the first one changes of the type of the phase
dislocation (screw, mixed edge-screw (ES), or step-screw (55)) are implemented. The second one is based on the
topological instability of multiple-charged optical vortices (OVs) under the action of perturbation.

2. DARK BEAMS AND OPTICAL SOLITONS

Solitons can be understood as a balance between the effect of dispersion and that of nonlincari& .The evolution of
electric field amplitude in a cubic non-linear medium is described by the generalized iion-linear Schrodinger equation
(GNLSE). It has the following form:

+(jEt2)E=o, U)

where the variables x, y and t stand for the transverse spatial and the temporal coordinates, respectively, z is the propagation
coordinate, and E designates the electric field amplitude. The non-linearity of the Kerr and Ken-like medium is manifested
through the intensity dependent refractive index change. Generally, the non-linear refractive index can be presented by the
relation

y, El2) = n(x, y)+fl(E2), (2)

where the non-linear refractive index correctionf ((E() could depend on the intensity in various ways:

a1( iJ2 (Kerr medium)

2 J non2 El2= - 2 2 (two-level saturable medium).
1+y El n2 In0

L a11 III 2_ a2l jJ 2 (competitive cubic medium)
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The exact one-dimensional and the only known dark two-dimensional solutions of the GNLSE comprise a specific class
of self-supported waves called solitons. Solitons could be bright and dark. The shape of the bright ones is described by the

formula U(z, t) = asech(at)e"2
Z the phase distribution is constait (Fig. 1). The envelope of dark solitons2 is described

mathematically by the distribution Uz, t) = Li tanh (U t)e12UO z According to their phase profile dark solitons are
subdivided into two types: black (Fig. 2) and gray (Fig. 3) ones. In the case of black solitons ic-phase jump is present, phase
is not defmed and, hence, at this point intensity is zero. In the case of gray solitons phase changes gradually, no phase jump
is present, and that's why the intensity dip does not reach the zero level.

In the present work dark beams will be investigated. These beams are not solitons since dark beams with SS or ES mixed
phase dislocation have non-zero transverse velocity. Further they will be referred to as odd dark beams (0DB). The
multiple-charged optical vortices are not stable under perturbations and decay into single-charged ones.

3. MIXED PHASE DISLOCATIONS

Depending on the phase dislocation nested in the background beam, the dark beam could be redirected to a certain
output position, thus giving the opportunity of producing an optical coupler. Two possible types of mixed phase
dislocations3'4 are exploited: step-screw (SS) type and edge-screw (ES) type. The SS type of phase dislocation has
transverse profile described by

0 for

a= landfl=—l for x>b . (4)
land fl=l for x�-b

The edge-screw (ES) type is described by the expression, giving the dependency of phase on the transverse coordinates

ES A11 (v (y\ll (x,v) =—s arctanj I — aretanj I (5)2,r x+b) x-b)J
In Eqs. 4 and 5 b stands for the length of the dislocation.

Fig. 4. Step-screw(SS) type of phase dislocation Fig. 5. Edge-screw (ES) type of phase dislocation.

4.NUMERICAL MODEL AND RESULTS

In the present work a simulation of dark beam propagation in Kerr-like non-linear medium is carried out. As a basis
for the computer simulation a system of GNLSEs for the dark (D) and bright signal (B) beams is exploited:

i+AIED- !ED2ED (6)

NL (1+sEDI )

Fig. 1 Bright soliton Fig. 2 "Black" soliton Fig. 3 "Gray" soliton
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In the model it is assumed that the intensity-dependent refractive index correction is expressed by

(8)

The results obtained by the numerical simulation show that the transverse velocity of the dark beam with ES phase
dislocation is greater than the velocity of the beam with SS phase profile. The quantity IrnDSS designates the reference
intensity corresponding to that required to support 1D DSS.

Because of the different propagation dynamics (at the same initial conditions) the ES and SS phase dislocations could be
successfully used for addressing different output channels and thus for producing an all-optical coupler. On the basis of the
properties discussed two schemes for 1D and 2D couplers are proposed.

5.1. One dimensional (1D) coupler

5. COUPLING SCHEMES

The scheme proposed consists of five output channels, each one aligned to a photodetector. The data show that each of
the dark beams can be forced to address only a certain channel. The coupling energy efficiency to each of the channels is
different, being the greatest for the zero-tIm channel. The disposition of the output channels in the 1D coupler is presented in
Fig. 6. All obtained results are summarized in Table 1.

Guiding
beam

Efficiency_in coupling to channel —
-2 -1 0 1 2

OVS 0.3% 9.5% 74.7% 9.5% 0.3%
SS 0DB 0.5% 0.2% 9.6% 70.7% 5.6%
ES 0DB 56% 14.1% 1.4% 1.6% 0.8%

Fig. 6 Positions and shapes of the signal beams at 1O. Channel
o is assumed to be supported by an OVS, channels I and -1 by
ODBs with SS phase dislocations (b/a1.5; both at I=l.5I1%).
Channels 2 and -2 are addressed by ODBs with ES phase
dislocations (b/a=2.5 and 1=1 .25I1%).

5.2. Two-dimensional (2D) coupler

Table I Energy efficiencies for each of the output channels.

The 2D coupler exploits the same principle as the one-dimensional one. TIme output channels are arranged in the fonn of a
3x3 matrix. Table 2 contains information about the type of the 0DB addressing the respective channel and about the energy
efficiencies in coupling the signal to some of time channels. As seen, the highest efficiencies are achieved for channels ,
C22 and C23, addressed by ES 0DB, OVS, and SS 0DB, respectively. Time simulations show that the energy losses are
different for the different types of dark beams, being the least for OVSs. The cross-section of time output energy distribution
is depicted in Fig. 7.

1 2B

2 D
LD, EDI2EB 0.L ( 2V'NL 1+sED )

(7)
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Fig. 7 The data refer to '1O, I,l.5IlDDss, and channel
width/height 1.5 times the input signal FWHM. The ratio
b/a1.5 in the SS case and 3.4 in the ES case, and M=ic.

Guiding
beam

Efficiency in counling to channel
C11 C12 C13 C21 C22 C

OVS 1.3% 7.3% 1.3% 7.3% 61.6% 7.3%
SS 0DB 0.2% 2.4% 12.6% 0.1% 6.1% 49.6%
ES 0DB 47.1% 5.5% 0.7% 5.5% 0.3% 0.5%

Table 2. Energy efficiencies per each ofthe output channels

6. BRANCHING BY DECAYING OF OPTICAL VORTiCES

The process of branching5'6 could be realized by using the topological instability of multiple charged optical vortices7'8
(OVs). When applying a small perturbation to an OV the latter could be split. So using tius property of OVs by inducing a
proper kind ofperturbation to the guiding OV the splitting process could be conirolled. In this way the number of the output
channels and their relative energy can be varied by changing the type of the perturbation. The present investigation deals
primarily with triple charged OVs. The corresponding perturbations yield the most expedient results with respect to the
channel separation and energy efficiency presently available by the authors.

Optical vortices are a special type of dark beams. They are characterized by their specific helical phase distribution in the
transverse plane. At the phase singularity point in the screw-type phase disiribution both the real and the iinagiiary parts of
the field amplitude are zero and the intensity is zero too. Analytically the screw-type phase distribution is described by the
function exp(inço), where stands for the azimuthal coordinate and in is an integer number called topological charge. In Fig.
8 the phase profile of an OVS is presented.

q, 97 ::r 'Q;

Theperturbation applied to the guiding OVS determines its splitting. In this work spiral type of perturbation is discussed:
the field amplitude is given by a(z0)=aoexp(imco)exp{i(Kr-Nco)} and the one concerning field phase distribution is
described by the expression (z=O) = oexp{i(Kr- Nço)}. Here K and the integer N stand for the radial and the azimuthal
wave numbers of the perturbation. The profiles of both the amplitude and phase parts are presented in Fig. 9 in the case of
K=l and N3. The probe beam is assumed to be Gaussian-shaped. The results of the numerical simulation are illustrated in
Figs. lOandli.

Fig. 8 beam: L1?tical vortex (OV)
with topological charge m 3 (phase
profile). White and black denote phases of
0 and 2n, respectively.

Fig. 9 Spiral-type amplitude a and phase of the perturbation of
the guiding Iriple-charged OV beam:

a(z=0)=a0exp(imp)exp{i(Kr-Np)} (z0) =4oexp{i(Kr- Nq)}

Proc. SPIE Vol. 4397 189



As it could be seen by the figures the initial single beam is split into three sub-bearns,thus producing an effective optical
brancher. Two types of output channel distribution schemes are analyzed (Fig. 12). For both of the schemes the respective
energy efficiencies for each of the channels are estimated. In scheme a) the initial energy is evenly redirected (17.6 % per
channel). In scheme b) 13 .7 % of the initial energy is coupled to the central channel (4), and 20.0 % -per each of the other
three ones (1, 2 and 3).

b)
Fig. 12 Output channel distribution schemes for branching by decaying of optical vortices

At this point it is difficult to say which of the schemes proposed is more efficient and advantageous. Further investigations
on similar branching schemes based on decaying of multiple-charged OV beams are under way.

CONCLUSION

The analysis and the numerical simulation of dark beam propagation in non-linear medium show that the transverse
deflection is significantly affected by the type of phase dislocation nested in. On the other hand because of the topological
instability, through applying a proper kind of perturbation. a multiple-charged OV can be controllably split. These
properties of the dark beams evoke the idea of producing an all-optical coupling and branching schemes which are
promising for future practical applications. Possible coupling and branching schemes are proposed in the present work.
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Fig. 10 Control beam input ( 0) and output (c 12) Fig. 11 Signal beam input ( = 0)and output(ç =12)
cross-section. (Scale factor x2) cross-section.
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