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ABSTRACT
Multiple-charged optical vortex solitons (OVSs) are generated in a thermal nonlinear medium with saturation. The
respective soliton constants are found to be linearly proportional to the topological charges. The linear stability analysis
and the numerical simulations indicate a rich variety of instability scenaria depending on the type of perturbation. The
saturation of the nonlinearity is shown to be able to slow down the decay of multiple charged dark beams at an
intermediate evolution stage and to prevent their ultimate decay into charge-one OVSs. This concept is experimentally
verified by the experimental observation of a partial decay of a triple-charged optical vortex beam.

Keywords: phase dislocation, topological charge, nonlinear medium, saturation, vortex soliton, stability

1. INTRODUCTION

The only known truly two-dimensional dark spatial solitons (DSSs) are the optical vortex solitons (OVSs)'. They are
characterized as localized self-supporting intensity dips with screw phase dislocations imposed on bright background
beams. In self-defocusing nonlinear media (NLM) such solitons are generated as a result ofthe balance between diffraction

and nonlinearity' . The characteristic helical phase profile (Fig. la) is analytically described by an exp{imço} multiplier,
where ço is the azimuthal coordinate and the integer number m is the so called topological charge (TC). As compared to

the single-charged OVSs, these with TCs Imt>1 are less investigated. A vortex of charge ImI�2 is found to be topologically
unstable against bifurcation into ml branches2. The nonlinear SchrOdinger equation (NLSE), which describes the OVS
formation, can be considered as a special kind of the Ginzburg-Landau equation, for which multiple-charged vortices may
be stable in a certain range of parameters3. The saturation of the third-order nonlinearity involved in the generalized
NLSE is proven to suppress effectively the DSS transverse instability4. The later motivated this experimental study5 of the
generation and stability ofOVSs with topological charges m=2...4 in a saturable self-defocusing nonlinear medium.

2. EXPERIMENTAL RESULTS

The first step in this experiment was to evaluate the quality of the OV beams used. These are created by illuminating

photolitographically fabricated computer-generated holograms (CGHs) with an Art-ion laser beam (=488 mu). The

binary type CGHs are produced on a common substrate at a grating period of 20 rim. Within the CGHs it is easy to
recognize the center of the rn-fold charged vortex beam by the converging of m neighboring lines in one (Fig. ib). Making
use of a Mach-Zehnder interferometer and the four-frame technique for interferogram analysis6 we reconstructed the phase
distributions of the OV beams. From the retrieved diametrical phase distribution of a single-charged OV (Fig. 2) we

estimated that the deviation of the phase jump from the required value of r is within r /20. This value is in reasonable

agreement with the unavoidable quantization inaccuracy of 7r /24 for binary CGHs. The ratio of the background beam
radius rBG to the OV beam radius roy (both measured as hall-widths at half-maxima at the entrance of the nonlinear
medium) is rBalroy= 20, 14, 12, and 11 for fmf=l, 2, 3, and 4, respectively. Although the host beam can not be considered
to be an infinite one, it is wide enough to prevent the vortex-to-background interaction.
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Fig. 1 Phase portraits ofa single-charged OV beam (a) and the Fig. 2 Diametrical phase distribution ofa single-charged OV
corresponding binary CGH (b). beam extracted from the experimental data. Dashed ime -

mean values ofthe phase outside the vortex core.

The experimental setup for investigating the OVS formation is shown in Fig. 3. The first-order background beam with the
ov nested in is transmiUed through a slit placed behind the CGH and is subsequently focused on the entrance of the NLM
(ethylene glycol dyed with DODCI to reach an absorption of 0. 1O7cm at 2=488 nm). After passing the desired nonlinear
propagation path-length the dark beam is partially reflected by a prism that is immersed in the liquid to project the beam
directly on a CCD-array. The immersed prism, one filter set and one of the cameras are mounted on a translation stage
enabling us to scan nonlinear propagation path-lengths ranging from 0.5cm to 8.5 cm. The second filter set is placed on a
rotation stage and provides the possibility to record unsaturated interference pictures after the maximal NLM length of 10
cm. The same camera is also utilized to monitor the far-field energy-density distribution and to identify the development of
a modulational instability.

Fig. 3 Experimental arrangement used to study the evolution ofmultiple-charged OVSs along the thermal nonlinear medium.
(CGH - computer-generatedhologram; S - slit;Ll, L2 -AR-coated lenses (f=80 mm); A- iris aperture; Fl,F2 - filtersets; CCD -

charge-coupled device camera of 13 p.m resolution; PC/ICC - personal computer equipped with an image capturing card).

In Fig. 4 we present experimental data for the dependence of the quantity Ia2 (the product of the background beam
intensity and the square of the dark beam radius) for an OV beams with topological charges Imt=1 (a), 2 (b), 3 (c), and 4
(d), respectively. Since multiple-charged vortex beams are expected to be unstable against decay into single-charged ones,
we tried carefully to minimize the aberrations introduced by the focusing system. Asymptotic stabilization of the quantity
Ia2with increasing background-beam power means that the respective soliton constant is reached. The pronounced
deviation of the last three points in Figs. 4b allows us to state that we are able to distinguish clearly between stable double-

(a)

Ar-1aser
beam

A NLM F2

CGH
Li L2 Fl

S Icc/Pc

Proc. SPIE Vol. 4397 197



charged OVSs and single-charged OV beams with overlapping cores (triangles). Complete separation between the vortices
in the far field is not observed.

By keeping the background beam power/intensity unchanged and translating the prism immersed in the NLM we obtained
the dependencies of the OV beam roy on the nonlinear propagation path-length z for different TCs. Our starting
hypothesis5 (well motivated by Figs. 4a-d) is that the soliton constant of a rn-fold charged OVS equals mi times the soliton
constant of a single-charged OVS.

ri

Fig. 4 Power dependence ofthe quantity Ia2 for an OVSs oftopological charges Imi=1 (a; z8 cm), 2 (b; z7 cm), 3 (c; z6 cm), and4
(d; z5.5 cm) demonstrating saturation and stabilization. (solid curves - best fits; dashed lines - the respective soliton-constant values).

Accounting for the focusing conditions (i.e. for the Rayleigh diffraction length LDff of the vortex core) and for the
absorption in the NLM we calculated reverse the topological charges in'. The data summarized in Table 1 show the
perfect agreement between the TCs encoded in the holograms and those recalculated for the respective OVSs. This
provides a strong evidence for the linear proportionality of the soliton constants to the charges.

Table 1 Encoded in the CGHs and recalculated topological charges
m and rn' of the OVSs generated. The values of L are
extracted from an independent measurement in a linear regime. 3
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3, STABILITY ANALYSIS
The propagation of (2+1)-dimensional continuouswave optical beams in a nonlinear medium is described by the NLSE7

.p1 I ,2rj',-'2 —

where k0 is the vacuum wavenumber and n is the linear refractive index of the medium. E(x,y,z) is the slowly-varying

complex electric field amplitude, and f(jE2 ) describes in a general form the nonlinear contribution to the refractive

index

n2(x,y,1E12) = ,,(x,y)+f(1EI2).
Accounting explicitly for the topological charge m of the OV beam (E(r,z) = U(r,z)em) and looking for a small-
amplitude solution of the NLSE in the form

2 2

U(r, z) = [U0(r,z) + a(r, z)]exp{i(wr — k(r,z)z + ct(r, z))} ,
.

( a << U0 and 1?(r, z) are the unknown perturbation amplitude and phase), we obtain an expression for the critical

spatial frequency ofthe perturbation

2 [1/r+2Ug1(U)j[w2+m2/r2j [1/r_(ko/no)Uf1(U)j[w2+m2/r2]
cnt

k+g(U)
-

(k0I2n0)[i-f(u)]
In a saturable NLM f1(U02 and cñt are decreasing functions of the intensity. This confirms the general conclusion

that the saturation of the third-order nonlinearity is able to suppress effectively the modulational instability. The increase
of the TC m leads to higher values of the critical transverse spatial frequency of the perturbation and, therefore, to

an enhanced modulational sensitivity of the OVSs. A perturbation with a transverse spatial frequency satisfying the

relation cfcritL > Q2 > ç2 is able to initiate a partial decay of triple and higher charged OV beams. Intentional

perturbations are caused by horizontal misalignment of the lens L2 (see Fig. 3). The reproducibility of this perturbation is
important for the comparison between the decay stages for the OV beams with different topological charges.

The pictures in Fig 5 are recorded at a nonlinear
propagation path length of 6 cm at a beam power of 72 5
mW and at the same (for the different TCs) offsets of the
focusing lens with respect to its central alignment. The : : : :.:. . . : :

coexistence of displaced phase dislocations with TCs m2
1m12 and Jnzj=l as a result of an intentionally caused .
decay of a triple-charged OV beam is clearly seen (the
frame in the dashed circle). A similar picture is recorded
at equal but opposite misalignment of the focusing lens
which indicates reproducibility. In view of the theoretical
model presented in the previous section, these pictures
can be explained by the saturation of the nonlinearity,
which suppresses effectively the DSS instability.

Separate measurement is done in order to estimate
quantitatively the saturation intensity Isat=U20,sat. The laser
beam (without an OV nested in) is cut in half by a knife-
edge and is then imaged near the entrance window of the
cell. The near-field nonlinear beam self-deflection is
measured by direct illumination of the CCD-camera
located 1.5 cm behind the NLM. The best sigmoithl fit
yields a saturation power Psat 27 mW, This value is
weakly sensitive to the particular saturation model.

i of the perturbation

Ll
Fig. 5 1 xperune1ita1Iv recorded decay stages for OV beams
v ith different TCs Dashed crcie: partial decay of triple-charged
OV beam at a perturbation causing complete deca of a charge-
lour beam.
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4. NUMERICAL SIMULATIONS
The analysis presented in the previous section is based on linearized equations for the evolution of radial perturbations to

the amplitude and phase of the soliton. The perturbations also can depend on the azimuthal angle p. Unfortunately, such
an ansatz and the subsequent linearization result in partial differential equations. The necessity to study later evolution
stages of the vortices and the fact that each initial pure phase (or amplitude) perturbation develops inevitably both
amplitude and phase modulation motivated us to cany out extended numerical simulations based on the NLSE. In the case
of a pure azimuthal perturbation we obtained the results shown in Fig. 6.

The region of azimuthal instability for OVSs with TCs m2
and 3 was found to terminate at azimuthal wavenumbers of
the perturbations N=4 and 6, respectively. No upper
instability limit vs. N was reached for the fourfold-charged
OVSs at the highest value of Nm=8 in the simulations. (This
limit is posed by the fidelity in recognizing clearly the screw
phase dislocations at remaining highly overlapped OV-beam
cores). The straight line m=N in Fig.6 is intended to
accentuate on the three most important features: At azimuthal
wavenumbers N less than or equal to the TC m the OVSs
decay topologically into m vortices with unit circulations. At
N=m+1 new pairs of phase dislocations are born. The higher
the TC, the larger the number of the vortices. This is a strong
indication for the increase of the OVS modulational
sensitivity at higher TCs. The transition from topological
decay (and creation of new dislocations) to topological

Fig. 6 Number of the screw phase dislocations observed at (meta)stability at increased N seems abrnpt thus indicating a
five nonlinear lengths for azimuthal perturbations of maximum of the instability growth-rate at N>rn+1.
wavenumbers N. (Solid line - N—m).

5. CONCLUSION
Evidences for the existence of multiple-charged OVSs modulationaly stabilized by saturation of the nonlinearity are
presented. The respective soliton constants are found to be linearly proportional to the topological charges. The saturation
of the nonlinearity is not known to be able to remove the topological instability, however it reduces the respective
instability growth rates. A general expression for the critical transverse spatial frequency for arbitrary charged OVSs
imposed to a radial perturbation in a saturable local nonlinear media is derived. The numerical simulations based on the
NLSE showed rich variety of instability-evolution scenaria depending on the type of perturbation (azimuthal, radial, or
mixed).
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