
Variational analysis of SPM- and IPM-based interactions in cubic non-
local nonlinear media

G. Maleshkov, K. Bezuhanov, A. Dreischuh*
Department ofQuantum Electronics, Sofia University, 5 J. Bourchier Blvd.,

BG-1 164 Sofia, Bulgaria

ABSTRACT

We analytically show that the non-locality of cubic nonlinear media causes an increase of the critical power for self- and
induced focusing and influences the condition for signal beam attraction/repulsion in an off-axis geometry.
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1. INTRODUCTION

Non-locality is a generic feature arising in physical systems. It appears in optical media with thermal or/and diffusive'
type of nonlinearity, influences the propagation of electromagnetic waves in plasmas2 and plays an important role in the
Bose-Einstein condensates. In nonlinear optics the non-locality can be described by a spatial dependence ofthe nonlinear
susceptibility tensor. The effect of non-locality is in some sense equivalent to that of saturation, to smooth out the
refractive indexes profiles and thereby increase the bright soliton width and decrease the width of dark solitons. Although
the non-locality tends to suppress modulation instability in focusing Kerr media, it can not remove it completely1'3. Non-
local nonlinearity leads to a long-range attraction and formation of stable bound states of otherwise repelling one-
dimensional dark solitons4.

2. THEORETICAL ANALYSES

The non-local, nonlinear term in the generalized nonlinear Schrodinger equation (NLSE) is a convolution of the modulus
squared of the electric field amplitude with a non-local response function prescribed by the physical process (interaction
kernel). Bright and dark soliton solutions ofthe NLSE are derived5.

2.1. Self-phase modulation
Let us consider a single cw or quasi-cw beam propagating through a non-local nonlinear Kerr-type medium. Its evolution
is described by the nonlinear Schrodinger equation (NLSE)

2 ,2 2
i+a+kS)MkvI2v+y5PMU ' =0, (1)

where i,v is the slowly-varying amplitude, a 1/2k, k is the wave-number, kSPM (sign(kSPM )=sign(z1M)) is the

nonlinear coefficient for self-phase modulation and 7SPM describes the non-locality (7SPM =0 for a local nonlinear
medium). In this work we use the variational method for analyzing the NLSE6.

Using the Ritz's optimization for the trial function is chosen to be Gaussian

i,(x,r)=-()exp1 22 _jk,o(x21, (2)x) awx) 2 )
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da—= -a)p
dx

where A(x) is the complex slowly-varying amplitude of the beam, w(x) and a are normalized and physical beam radii,
respectively, at the entrance of the non-local medium, and p(x) is the inverse radius of curvature of the beam wavefront.
As a result we obtained the following system of ordinary differential equations for variational parameters:

(3a)

flSPM 2 ,flSPM 2
dp 2 4 k it "vy A—=p — 24 4+ 2 4 4 6 (3b)dx kaw kilo) ka

As seen, in the last equation there are two nonlinear terms with opposite signs. After substitution of the initial condition

o(x =o)= i , the critical value of coefficient of non-locality r' which causes change of the sign of the effective
nonlinearity, is

SPM 2SPM k a
Tent 6

Utilizing the condition p(x)= 0 we obtained the expression for the critical power for self-focusing in the non-local
nonlinear Kerr-type medium

/ fl ,2
SF1 SPM v2c2 1

r 7NORM > UJ= 2 SPM ( SPM° 2 \'YNoRMJ
SPM SPM / SPMwere YNORM =I I Icrit

Figure 1 shows the critical power for self-focusing in a local medium pSF(4I1RM > o) normalized to =o) One
can clearly see the increase of pSF (JI > o) and the existence of a critical value of the parameter of non-

locality (see Eq. (4)). Due to the sign change of effective nonlinearity at higher values of y there is no
possibility to reach the solitary regime (see the shaded region of the Fig. 1).
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Fig. 1 . Relative increase ofthe critical power for self-focusing in a non-local medium.

2.2. Induced phase modulation
The picture becomes more complicated when two beams (pump and signal) co-propagate in a non-local Kerr-type
medium. The NLSE describing the evolution of the signal beam has the form

i +a 2
+[kM

(o +1IPM( )ôP =0. (6)

Here and are the complex slowly-varying amplitudes of signal and pump beam, respectively, and 7IPMaccounts for

the non-locality. The nonlinear coefficient for induced phase modulation is related to the nonlinear susceptibility Z)M at
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a signal frequency I� (sign( kwM( ))=sign(4(c ))). The lack ofthe second evolutionary equation in the model is

motivated by the supposition that the pump beam propagates as an one-dimensional soliton (op(x)= i). Following the

variational approach, chosing trial functions of Gaussian-type

s(x, As(x)exp_ (i;—)2 kp(xk2 (7a);:c;: L asw(x) 2

A(x) I r ')p(x,r) = \exp1
—

2 2 (7b)
copx) aw(x))

we kept the freedom to analyze off-axis signal beam propagation by introducing an axis displacement ro(x =0). As a
result, we obtained the following system of ordinary differential equations for the variational parameters:

1PM 2
2

dp(x) 2( )
4

4 k A a 4r0
dx kaa kswp(a(O + aw/2 aw +

(8a)
1PM 2

2 4 1 24y A a 24r0 16r0 J 2r0

kswp(a(O + aw /2 ao + aw (a22 + ao ) exi— aW + aa

0sPs (8b)dx

dr2=2rops. (8c)dx
Substituting the initial conditions co(x =o)= 1; v(x)= 1 ps(x = o)= 0and introducing normalization of the
form v = ro(x = 0)/ap, u = a(x = 0)/ap, we found a general expression for the critical value of the coefficient of non-

locality
( 2'\

(u2 + 1)1 1—
4v

kIPMa
1PM t U+1)

Tent = (9)
24v2 16v4

3_u2+1+(u2+11
Assuming that the curvature of the beam wavefront does not change it's sign, we derived from Eq. (8a) a generalized
function G(v,u) describing the initial condition for off-axis signal beam nonlinear attraction/repulsion in non-local
medium

G(v,u)= (1_r Ju2+i)3/2[i_ ?]ex[_ u-i]'
(10)
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Fig.2. Plot of the function G(v,u) for 7pj =0(a) and Tui =1,5 (b).
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In Fig.2 we show the function G(v, u) with v r0 (x =O)/a and u =a(x=O)/a . Two characteristic regions in the local

case can be distinguished. The first, at r0 =0, corresponds to induced focusing or defocusing in an on-axis geometry,

depending on the sign of XM• The second region is located at ro/a 0.8 and corresponds to induced

attraction/deflection of the signal beam. Increasing the normalized coefficient of non-locality = 0.5) the

maximum of G(v,u) decreases. At strong non-locality >1 the processes changes from induced
focusing/defocusing in on-axis geometry to defocusing/focusing. In an off-axis geometry transformation from induced

attraction/repulsion to repulsion/attraction takes place, depending on the sign of The conditions for induced

2
d2w —

4 4r ')_ l6yMA ao
2 2'12

— ____________ _____________________
2 2'2kaa [kscop(as(os +aw) aw +aw) ksop(aw+aw)

[ 3

24r 16r04 2r
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From this result, in on-axis geometry (r0 =o), under plane-wave steady-state condition we obtain an expression for the
critical power for induced focusing

— I

where p=a/a,.

In Fig. 3 we present the ratio between the critical powers for induced focusing in non-local and local media for different
pump-to-signal beam ratio p:
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Fig.3. Relative increase of the critical power for induced focusing in a non-local medium for different values p.

The shaded region in Fig.3 corresponds to impossibility of reaching the soliton-like regime. Introducing the
normalization x' =x/L, (L =ka /2 - diffraction length) and p =a / a, in on-axis case (r0 =o) Eq. (11) reduces to

2/Ppw (yr2+1) (13)dx'2 Pt(P=1;r +p2)

attraction/deflection are sjgn(Gign(kM)= respectively.

Eq. (lOa,b) lead to the second-order ordinary differential equation

[ 4kMAp2apcos

(11)
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Fig.4. Numerical results by solving Eq. (13) for P/Pt =1,6.

As seen, at P/P = 1,6 and p > 1 (radius of the pump beam greater than that of the signal) widening of the radius of
signal beam is observed as result of the reduced spatial overlapping between two beams. In a non-local medium the non-
locality contributes to the beam divergence which leads to an additional increase of the critical power for induced
focusing.
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