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ABSTRACT

In this work we present extended numerical simulation on the evolution and interaction of one-dimensional dark beams
of finite length carrying mixed phase dislocations. In the linear regime of propagation two possible ways to control their
transverse velocities are investigated and compared.
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1. INTRODUCTION

Phase singularity generated in an optical field forces both the real and the imaginary part of the field amplitude (i.e. also
the field intensity) to be zero at the point(s) of singularity. In the early work of Nye and Berry' it is conjectured that
mixed edge-screw dislocations cannot exist. An indication for their existence was found2 however for two interacting
optical vortices of opposite topological charges. Odd Dark Beams (ODBs) with mixed phase dislocation are meanwhile
identified3 and generated under controllable initial conditions4.

In this work we consider two possible types of mixed phase dislocations of finite length —edge-screw (ES) and step-
screw (55). The 55 dislocation consists of an one-dimensional phase step of a limited length, which ends, by necessity,
with pairs of phase semi-spirals with opposite helicities. The ES dislocation consists of a pair of opposite spirals, which
step is equal to it, located at the ends of the phase jump of finite length. The respective phase distributions are shown in
Fig. 1.

The transverse steering dynamics of mixed SS and ES phase dislocations under comparable conditions show spectacular
difference in favor of the edge-screw (ES) dislocation5. Since the background-beam intensity is found to have a weak
influence on the 0DB steering3'4, the linear optics of such dark beams is of undoubted interest. Nevertheless, reasonable
high intensity is important for keeping the optically-induced gradient waveguides steep, which is crucial for short-range
all-optical guiding, deflection and switching of signal beams or pulses. To our best knowledge the only way to produce
odd dark beams of finite length is to use computer-generated hologram (CGH).
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Fig. 1. Phase distribution of ES and SS mixed dislocation.
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Fig. 2. CGHs generating ES and SS dislocations, respectively.
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2. THEORETICAL ANALYSIS

CGHs producing mixed phase dislocations are shown in Fig. 2. Characteristic for such holograms are interference lines
shifted along an imaginary line of finite length and curved lines limiting the dislocations.

The transmission function ofthe both types of CGHs can be written in the form

T(x, y) =

where d is the period of the grating and q(x,y) depends on the type of the dislocation (ES or SS). For binary holograms

sinn(ir/2) .
the coefficients C = . The phase distributions for ES and SS aren

ES(x y) =—-[arg(x + a + iy) + arg(x — a — iy)] (2)

and

-Açil2, y�O
Aqil2, y�O

p55(x, Y) --arg(-x - a - iy), x � -a' (3)

arg(x - a - iy), x � a

respectively. The transmission in first-order diffraction is described by

2t
T(x, y) =__ee1 (4)

We presume that the transverse profile of the illuminating wave in front of the CGH is Gaussian

2it

E(x0,y0) = e —ix0
(5)
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where the phase multiplier is added to reflect that the first-order diffracted beam propagates perpendicular to the
hologram. The field just behind the CGH is

22
xo+yo

E(x0, Yø) = e G iq(xy) • (6)

In the last equation p(x,y) is the phase profile ofthe mixed dislocations.

We investigate the evolution ofthe field using the Fresnel diffractions integral

. 2it
1_-;i:_s +(y—y0)2]

E(x, y, s) =
e

$JE(xo y0,O)e dx0dy0. (7)

For ES and SS type dislocations we become

oo • 2 2
ES 2 2i—(u+v) fl iE (x5,y5) = JJe' —v cos(2(1+— x5u)x

00 (8)

cos{21 + + Ysv + [arg(u + a —iv)+ arg(u — a
+ iv)]}dudv

and

aoo .1 2 2
55 22i—(u+v) 1 1 ___E (x5, y5) = JJe

u v e S cos(2/1 + —— xsu)cos(2J1
+ y5V + f)dudv +

00 , (9)
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+

S
y5v + arg(u —a

+ iv)]dudv

where u=x/o0 and v= Yc/ao are dimensionless transverse coordinates, x and Ys are measured in units of

Ts o1++ and the propagation length s is normalized to the Rayleigh diffraction lengths rj02/As.

3. NUMERICAL SIMULATIONS

It is shown4 that one can effectively control the inherent steering dynamics of odd dark beams of fmite length by varying
both the magnitude and the relative length ofthe mixed phase dislocations. In Fig. 3 we show grayscale images of ODBs
with ES and 55 mixed dislocations after propagation path-lengths s=O.1, 0.2, and 0.3 for different values of the
dislocation length 2a. As seen in the comparative 2D plot, after the initial evolution stage the 0DB deflection appears to
be of a well-expressed linearity vs. s. The transverse dynamics of the ES dark beams was found to be much faster as
compared to the dynamics of the ODBs with SS dislocations.

In Fig. 4 we present results on the phase control of the steering of ODBs. The evolution of both types of mixed phase
dislocations is modeled under comparable initial conditions. In qualitative agreement with the experimental observation
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in nonlinear regime4, the 0DB steering increases with decreasing the magnitude of the phase jump and the dependence is
linear. The difference in the steering dynamics of ODBs with different phase profiles it is due to the presence (in the ES
case) or absence (in the SS case) of phase gradients across the one-dimensional portion of the dislocation.
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Fig. 3. Grayscale frames presenting the evolution of ES (upper
two rows) and SS dislocations (lower rows) for different values
of the dislocation length 2a. The dependencies of the beam
steering on the length and the type of dislocations are shown in
a 2D plot

Fig. 4. Grayscale frames showing the dependence of the
dislocation position on the magnitude of the phase jump for
different distances S behind the CGH. The dislocation length 2a
= 0.8. 2D plot - comparisonbetween the dependencies

The presence of phase gradients is even stronger pronounced when two dislocations of finite length are simultaneously
nested on the background beam. In Fig. 5 we show results obtained for counterpropagating pairs of ES and SS dark
beams after comparable propagation path lengths. It is interesting to note, that instead of annihilation of semi-vortices the
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dislocations decay into ordered structure of vortices with integer topological charge (at s=O.4 and 0.8 for ES and SS
beams, respectively). In the far field, however, the mixed phase dislocations recover, but rotated at 900. It is natural to
expect that the rotation is due to the influence of the Guoy phase but this point will be further clarified.

s=O.1 s=O.2 s0.4 s=1 s=inf.

CONCLUSION

The results of extended numerical simulations in purely linear regime can be summarized as follows: The transverse
velocities of odd dark beams with mixed phase dislocations depend on both the dislocation type and length and are

constant after certain initial evolution stage. Under comparable initial conditions VJES > VJ and in both cases V1
decreases with increasing the dislocation length 2a. The transverse velocities V1 are linear and decreasing functions of
the magnitude of the phase jump In the interaction of counterpropagating ODBs with mixed phased dislocations we
observed decay into four optical vortices with alternatig topological charges and recovering and rotation (at 90°) of the
structure in the far field.
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Fig. 5. Evolution scenario of two ES (uper row) and two SS dislocations (lower row). The
initial distances between the dislocations are equal to their length 2a = 0.8.
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