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Abstract. Quasi phase matching structures are used widely in nonlinear optics. Due to different
reasons the domain widths have certain distribution. We present here an 1D analytical model
that predicts the statistical properties of second harmonic generation (SHG) process in such
structures. The strong variance of the efficiency of the SHG process for different samples is
described in terms of the distribution of the domain widths. Correlation between the shape and
width of the tuning curves and the statistical variance of the domain widths is also found.

1 Introduction

Quasi phase matching (QPM) devices (also called nonlin-
ear photonic crystals) are widely used in the contempo-
rary optical systems. Either induced or caused by techni-
cal tolerances, deviations from the ideal periodicity occur
in the domain boundaries ñ the domain widths appear to
have certain statistical distribution. Such problems were
analytically studied in term of general decrease of the
overall second harmonic generation (SHG) efficiency and
slight broadening of the tuning curve [1]. Given solutions
are acceptable for the near ideal structures. However, ex-
perimental results that leave certain unanswered ques-
tions, have been reported. In [2] were reported tuning
curves for periodically poled Lithium niobate (PPLN)
that significantly deviate from these predicted in [1] ñ
multipeak structures have been observed. Recently, it
was also reported [3,4] SHG in crystals like multidomain
Strontium Barium Niobate (SBN) where the variance of
the domain width is much larger. Need of new analyti-
cal studies occurs. This paper presents a new computer
simulation model for the study of the SHG process in
such crystals. The obtained results give clearer view that
allows the development of an analytical reasoning for the
processes.

2 Analytical model and computer simulation

The development of computer simulated model for SHG
in nonideal 1D nonlinear photonic crystals starts from the
plane wave equations for SHG based on slowly varying
amplitudes approximation in which nondepleted pump
and negligible losses for the interacting waves are as-
sumed :
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Like in ideal QPM structures, in natural ones χ̂(2)

changes its sign at the boundary of each domain. How-
ever, in the natural structures the domain width is a sta-
tistical variable and has its statistical properties: mean,
variance and distribution. We consider normal (Gaus-
sian) distribution N(Λµ,σ) for QPM structures that devi-
ate from ideal periodicity but do not exclude any other
possible distributions for the natural nonlinear photonic
crystals like SBN. In order to introduce the domain width
and its statistics, the equation (1) is written separately
for each domain. Then the SHG for the entire sample is
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given.
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. Λξ (the domain width) is the statisti-

cal parameter that describes the stochastic modulation of
χ̂(2) and has a normal distribution N(Λµ,σ). Equation (2)
was numerically simulated using a random numbers gen-
erator with Gaussian profile as a model for the statistical
behavior of the domain width.

3 Results and discussion

We studied the overall SHG efficiency and the tuning
curve for the process of SHG as statistical variables in
dependence of the variance of the domain width. The
results of the calculations show that the statistical vari-
ance of the domain width leads to three phenomena: (i)
variance of the overall efficiency, (ii) broadening of the
tuning curve and (iii) noise structure of the tuning curve.
Below we present and discuss these results.

3.1 Variance of the overall SHG efficiency

The histograms from Figure 1 represent the distribution
of the overall efficiency for different samples of a crystal
with same general parameters L = 5000 µm, lc = 8 µm,
Λµ = 8 µm and different values of the domain width
variance. Being a function of an statistical variable the
overall efficiency is converged to its mean and, as ex-
pected, has its own statistical properties ñ distribution,
variance.

As reported in [1] the dependence of the averaged
SHG efficiency on the variance of the domain width is
characterized by three zones of decrease. These three
zones correspond to the three ones shown in Figure 1.
This behavior could be well explained by the central limit

Figure 1. Histograms of the overall efficiencies for domain
width variances: σ1 = 1.02 µm, σ2 = 0.62 µm, σ3 =
0.22 µm, σ4 = 0.12 µm, and σ5 = 0.07 µm from bottom
to top respectively.

theorem of the statistics (CLT) ñ generally, the variance
of the function is proportional to absolute value of the
derivate. As expected, the two confinements to the value
for ideal QPM (histograms are normalized to it) and the
zero efficiency correspond to the two zones of soft de-
crease of the averaged SHG efficiency when increasing
of domain width variance [1]. The dispersed values in
the middle zone correspond to the strong decrease of the
mean of the overall SHG efficiency [1]. Although these
results are important for the production of commercial
QPM structures, it is clear that the variance of the overall
SHG efficiency with respect to the value that correspond
to the ideal structures does not cause many problems.
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Figure 2. Shape of the tuning curve for domain width variance
σ1 = 0 µm.

Figure 3. Shape of the tuning curve for domain width variance
σ2 = 0.1 µm.

3.2 Broadening of the tuning curve

Considering the nonideal QPM structures as possible
structures for broadband SHG for short pulses it is impor-
tant to know the exact behavior of the broadening of the
tuning curve with the augmentation of the domain width
variance.

In Figures 2, 3, 4 the evaluation of the averaged (over
1000 samples) tuning curve for different values of the
domain variance is shown. Together with the augmenta-
tion of the width (FWHM) it is observed a suppression
and disappearing of the small peaks and lowering the
maximal efficiency. Similar figures of evaluated tuning
curves for PPLN were experimentally observed and re-
ported [2]. We report here that the broadening of the

Figure 4. Shape of the tuning curve for domain width variance
σ3 = 0.35 µm.

Figure 5. Dependence of the width of the tuning curve on the
domain width variance.

tuning curve with the increase of the variance follows ex-
ponential law. This is illustrated in 5. The starting value
(for σ = 0 µm.) is the width that corresponds to the
ideal QPM structure. The broadening is caused by the
enhanced set of reverse lattice vectors in the QPM lat-
tice with induced randomness. The broadening could be
explained with the correlation function for the stochastic
modulation of χ̂(2). Although the use of such crystals for
broadband SHG is limited because of noise, the depen-
dence of the shape of the tuning curve on the shape and
parameters of the domain width distribution is important
as method for noninvasive diagnostics of the crystalsí
properties.
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Figure 6. Noise structure of the tuning curve for value of the
domain width variance: σ = 0.35 µm.

Figure 7. FFT of the noise structure of the tuning curve for
value of the domain width variance: σ = 0.35 µm.

3.3 Noise in the tuning curve

Together with the broadening of the tuning curve with
increase of the domain width variance a noisy structure
is observed. In Figure 6 is presented the noise in the tun-
ing curve and its spectrum obtained through fast fourier
transformation (FFT) is shown on Figure 7. The tuning
curve shown in Figure 6 corresponds to these obtained
in [2] proving their statical origin. The noise is explained
with the random occurrence of the deviations from ideal
periodicity in the nonlinear photonic crystal. Generated
second harmonic from these deviations interferes with
the main SHG process and cause decreases or increases
with generally random behavior.

The amount of the noise augment with the increase
of the variance of the domain width. However, the noise

structure rests generally the same and FFT spectra of
the tuning curve could be used as exact and noninvasive
diagnostic for the quality of the crystal samples. The
converged spectra (the intensity of the noise drops with
the increase of its frequency) is also a sufficient reason
that allows use of averaged curves for general description
and a joker for creation of broadband devices in spite of
the noise in the tuning curve.

4 Conclusion

Powerful method is suggested for investigation of non-
ideal periodical structures. The results obtained for SHG
in 1D nonlinear photonic crystals give answers for the sta-
tistical behavior of their overall SHG efficiency and tun-
ing curve in case of normally distributed domain widths.
Overall efficiency variance together with noisy tuning
curve imposes need of special solutions when such struc-
tures are going to be used as broadband SHG devices. It
has also been revealed the dependence of the tuning curve
on the domain width variance. The strong correlations be-
tween the parameters allow us to propose the presented
in this paper method to be used as a non-invasive method
to study the domain distribution in natural nonlinear pho-
tonic crystals.
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