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Abstract

A concept of multistep cascading is applied to the problem of fourth-harmonic generation (FHG) in a single quadratic crystal,
and a new model of parametric wave mixing is analyzed in detail. Important applications to the optical frequency division
and efficient FHG as well as the realization of the double-phase-matching multistep cascading processes in engineered QPN
structures with phase-reversal sequences are also sugdgegedl Elsevier Science B.V. All rights reserved.

OCIS 190.4410; 190.5530; 190.2620; 190.4160

Cascading effects in optical materials with quadratic step cascading and its stationary solutionsriammal
(second-order og @) nonlinear response provide an modes — plane waves and spatial solitons. Our study
efficient way to lower the critical power of all-optical provides the first analysis of the problem of FHG via a
switching devices [1]. The concept afultistep cas- pure cascade process, observed experimentally more
cading [2] brings new ideas into this field, leading than 25 years ago [5] and later studied in a special
to the possibility of an enhanced nonlinearity-induced limit only [6]. Additionally, we demonstrate that engi-
phase shift and generation of multicolor parametric neered QPM structures with phase-reversal sequences
spatial solitons. In particular, multistep cascading can can provide an effective mean to verify experimentally
be achieved by two nearly phase-matched second-many of the multistep cascading effects.
order nonlinear processes, second-harmonic genera- We consider the FHG via two second-order para-
tion (SHG) and sum-frequency mixing (SFM), involv- metric processesy + w = 2w and 2o + 2w = 4w,
ing the third-harmonic wave [3,4]. wherew is the frequency of the fundamental wave. In

In this Letter, we extend the concept of multi- the approximation of slowly varying envelopes with
step cascading to the processes involving the fourth- the assumption of zero absorption of all interacting
harmonic generation (FHG) in a single noncentrosym- waves, we obtain
metric crystal, and analyze a new model of multi-
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aT _ LBZT of this inequality, we note that the family of solu-
9z 2k4 0x2 tions characterized by the propagation constacr-

whereA, S, andT are the envelopes of the fundamen- €SPONds to a straight line in ther, a)-parameter
tal-frequency (FF), second- (SH) and fourth-harmon- SPace, see Figs. 1(a) and (b). Moreover, all such lines
ic (FH) waves, respectively » are proportional to  include the point of the exact phase matchidgl/4)

the elements of the second-order susceptibility ten- @S the asymptotic limit fofA| — +oo. This point be-
sor, andAky = 2k1 — k» and Ak = 2ko — k4 are the longs to the |ns_tab|I|ty region if the re_l:_atlve strength
corresponding wave-vector mismatch parameters. We ©f the FF-SH interaction exceedscaitical value,
introduce the normalized envelopes ¢, w) accord-  1-€ for x > X = .l/(8\/§.) =~ 0.088. However, for
ing to the following relationsA (x, z) = (8Ly2) 1 x x<x this decay instability is suppressed due to a
u(x/a’ Z/L) eX[X—iAklz/Z), S(x,z) = (4L]/2)7l % Stro_ng Coupllng with the FH fle'd
v(x/a,z/L), and T (x, 7) = (2Ly2)*1w(x/a,z/L) % 2F|nally, a three-mode solutiorijy = al/x,_ Wo =
exp(i Akyz), whereL is a characteristic distance, and  Vo/(2%), Uo= (Vcr)ZVQfl — Wo)/Xx., exists for((g?)a >0
a = LJ(ZkD). In order to describe a family of non-  @nd O<ai <ey™, (i) @ > 0 andey < —; ™, and
linear modes characterized by tpeopagation con- (iii) @ <0 anday > 0. In the limit || — 400, such
stant A, we look for solutions in the form(x, z) — three-mode plane waves exist only fpr> X0 In
AU (/TR zIAD e/, v(x, 2) — AV (x/TAL zIA)) x region (i), s_tablhty propertles qfthe three-wave modes
¢*7/2 andw(x, z) — AW (x/JA], zIA)e'*, and ob- are determined by_asm"_n_ple cr|t_t_a_r|cml,/a|x| > 0 For _
tain the normalized equations: the parameter regions (ii) and (iii), oscillatory instabil-
ities are possible as well. Existence and stability of all

. oU 92U U+ UV =0 types of stationary plane-wave solutions of model (1)

+ iyzszeiAkZZ’

dz 9x2 are summarized in Figs. 1(a)—(d).
)% 92y . X o In general, system (1) is nonintegrable and its
2”8_2 tsgz T VHV WA SU = 0, dynamics is irregular. However, we find that in some
: 5 cases a quasi-periodic energy exchange between the
AL 1, L e : .
4”8—+SW_O[W+§V =0. (1) harmonics is possible. Fig. 2(a) shows one such
z X

case, when the intensities of unstable two-wave and
Heres = sign(A) = £1, x = y1/(4y2) is a relative  stable three-wave stationary modes are close to each
strength of two parametric processes, and the normal-other, and an unstable two-wave mode periodically
ized mismatches are definedas-4+ /1 anday = generates a FF component. Less regular dynamics is
1/4+ B1/A, wherep = 4AkoL andpy = —AkiL/2. observed for other cases, such as for the generation
First, we analyze the plane-wave solutions of of both SH and FH waves from an input FF wave
Egs. (1) which do not depend on In this case, the  (Fig. 2(b)). This example also illustrates the possibility
total intensity 7 is conserved, and we present it in  of effective energy transfer to higher harmonics close

terms of the unscaled variables Bs- I, + I, + Iy, to the double-phase-matching point.
vyherelu = u|?/4, I, = lv|?, and I,, = 4|w|?. Solu- Egs. (1) may have a different physical meaning
tions {Uop, Vo, Wo}, which do not depend on arethe provided the normalized amplitude stands for the

so-called normal modes. The simplest one-component  mode of the fundamental frequeney Then, Egs. (1)
FH mode {0, 0, Wo} exists ata = 0. It has a fixed  describe the optical frequency division by two (the
phase velocity. = —p/4 and an arbitrary amplitude,  field «) via parametric amplification and down-con-
and becomes unstable féy, > 2/4 due to apara- version (see, e.g., [7]), provided both Fk)(and
metric decay instability. SH (w) fields are launched simultaneously at the input.
Two-mode solution{0, v/2, 1} describes a para-  Such a frequency division parametric process is in fact
metric coupling between SH and FH waves, and it shown in Fig. 2(a), where this time the generaied
exists fore > 0, bifurcating ate = 0 from the FH  wave corresponds to the frequengy2, and is shown
mode. Coupling of this two-mode plane wave to a FF as dotted.
wave can lead to its decay instability, provided| < We now look for spatially localized solutions of
aicr) = x~/2x. To understand the physical meaning Egs. (1),quadratic solitons. First, we note that two-
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Fig. 1. (), (b) Existence and stability of three-mode plane waves for &)y 7 /4 and (b)x = 4x (V. Light shading — stable, black —

unstable, dark shading — oscillatory unstable, and blank — no solutions. Open circles mark exact phase matching, dash-dotted lines correspon
to the lower plots. (c), (d) Intensity versusfor (c) 8 = 81 = —0.5 and (d)8 = —1, B1 = 0.04. Thick dashed/solid vertical line — one-wave

(FH) modes, thick curves — two-wave (SHFH) modes, thin curves — three-wave modes. Solid — stable, dashed — unstable, and dotted —
oscillatory unstable modes. Open circles mark the bifurcation points. The legend beneath shows the stability of three-wave modes by using the

same shadings as in the upper plots.
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Fig. 2. Dynamics of plane waves: (a) Instability of a two-wave mode (corresponding-t1 in Fig. 1(c)). (b) Generation of higher harmonics
from a FF input (parameters aje= 0.625~ 7x(°), 8 = —1, andg; = 0.04). FF, SH, and FH components are shown by dotted, solid, and

dashed curves, respectively.

wave solitons consisting of the SH and FH compo- resonance with linear waves [4] outside the parame-
nents can be approximated as [2,8]

Vo(x) =V, secl (x/p),
Wo(x) = Wy, secl(x/p),

ter regione > 0 andwa > 0 ats = +1. We find that in
this region, similar to plane-wave modes, three-wave

solitons exist for O< a1 < i, where the critical

(cut-off) valuea* corresponds to a bifurcation from

2 _ )3
V2= _oWi AW — D7 the two-wave solution (2). In order to fine™”, we
Wi —=1) (2= W should solve the first equation of system (1) with the
_ 1 2 SH profile from Egs. (2) (see also [2]). However, such
p= ; (2) . : .
Wy —1) alinear eigenvalue problem has no exact analytical so-

where all parameters are functionsmfonly. Bright %
solitons either do not exist or are unstable being in proximationVo(x) =~ Vo(x) = Vj, secl(x/q), requir-

lution for arbitrary p, and thus we introduce an ap-
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Fig. 3. (a) Regions of existence and stability of three-mode parametric solitons (shading is the same as in Fig. 1(a)). Open diamonds — an
analytical approximation, dark circle — exact phase-matching point. The dash-dotted line corresponds to the s@duticharadf; = —0.15,
for which the power versus dependences are shown in (b): thick — two-w&8&1+ FH), and thin — three-wave solitons; solid and dashed

lines mark stable and unstable solutions, respectively. Open circle

is the bifurcation point. (c), (d) Development of a decay instability of a

two-wave soliton corresponding to= 1 in (b), and generation of a three-component soliton: (c) FF, SH, and FH peak intensities versus
distance shown by dotted, solid, and dashed curves, respectively; (d) evolution of the FF component. For allthe pi6ts/2.

ing that the functions coincide at the amplitude level
Vin/2, and then define the scaling parameteg as
pcosh 1217y /cosh1(21/2). Such an approxima-
tion adequately describes an effective soliton-induced
waveguide, and thus should provide overall good ac-
curacy (except for some limiting cases). After solving
the eigenvalue problem with the potentj@%(x), we
obtain an approximate expression for thiéurcation
points:

(V1+4V,xq2—1—2n)

4q2 ’
where n is the order of the mode guided by the
two-component parametric soliton waveguide [2]. For
a single-hump moden(= 0) the behavior of this
cut-off is very similar to that of the plane waves.
Indeed, in the cascading limite(>> 1), we have
Vi ~ 2/ and o™ ~ 2y /a, which differs byv/2
from the corresponding result for plane waves. The
critical value ofy for one-hump solitons can also be
found from the approximate solutio,“? ~ 0.132.

©n
ap

We performed numerical simulations and found that
the accuracy of our approximation is of the order
of (and usually better than) 1% in a wide range of
parameters > 102 and« > 10~2), see Fig. 3(a),
open diamonds. Additionally, similar to other models
of multistep cascading [2,4], Egs. (1) possess various
types of exact analytical solutions, which will be
presented elsewhere.

Quite remarkably, for both positiveandw; the sta-
bility properties of solitons (see Figs. 3(a) and (b))
and plane waves (see Figs. 1(a) and (c)) look simi-
lar. Specifically, stability of two- and three-component
solitons is defined by the Vakhitov—Kolokolov crite-
rion 8P /35 > 0, whereP = [*°° I dx is the soliton

power, except for the regioa; < o\’ where two-

component solutions exhibit parametric decay insta-
bility. An example of such an instability is presented in
Figs. 3(c) and (d), where an unstable two-wave soliton
generates a stable three-wave state. Such instability-
induced dynamics is very different from that of plane
waves where, instead, quasi-periodic energy exchange
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is observed (see Fig. 2(a)). In the case of localized In conclusion, we have introduced and studied

beams, diffraction leads to an effective power loss and a new model of multistep cascading that describes

convergence to a new (stable) state. the fourth-harmonic generation via purely parametric
In order to observe experimentally the multistep wave mixing. We have analyzed the existence and

cascading and multi-frequency parametric effects de- stability of the stationary solutions of this model for

scribed above, we should satisfy the double-phase-normal modes — plane waves and spatial solitons.

matching conditions. Using the conventional quasi- We have also discussed the possibility of double-phase

phase-matching (QPM) technique [9] for FHG via a matching in engineered QPM structures with phase-

pure cascade process in LiTaQve find that there ex-  reversal sequences.

ists only one wavelength (2.4pm), for which two

parametric processes can be phase-matched simulta-
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