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Abstract

A concept of multistep cascading is applied to the problem of fourth-harmonic generation (FHG) in a single quadratic crystal,
and a new model of parametric wave mixing is analyzed in detail. Important applications to the optical frequency division
and efficient FHG as well as the realization of the double-phase-matching multistep cascading processes in engineered QPM
structures with phase-reversal sequences are also suggested. 2001 Elsevier Science B.V. All rights reserved.
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Cascading effects in optical materials with quadratic
(second-order orχ(2)) nonlinear response provide an
efficient way to lower the critical power of all-optical
switching devices [1]. The concept ofmultistep cas-
cading [2] brings new ideas into this field, leading
to the possibility of an enhanced nonlinearity-induced
phase shift and generation of multicolor parametric
spatial solitons. In particular, multistep cascading can
be achieved by two nearly phase-matched second-
order nonlinear processes, second-harmonic genera-
tion (SHG) and sum-frequency mixing (SFM), involv-
ing the third-harmonic wave [3,4].

In this Letter, we extend the concept of multi-
step cascading to the processes involving the fourth-
harmonic generation (FHG) in a single noncentrosym-
metric crystal, and analyze a new model of multi-
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step cascading and its stationary solutions fornormal
modes — plane waves and spatial solitons. Our study
provides the first analysis of the problem of FHG via a
pure cascade process, observed experimentally more
than 25 years ago [5] and later studied in a special
limit only [6]. Additionally, we demonstrate that engi-
neered QPM structures with phase-reversal sequences
can provide an effective mean to verify experimentally
many of the multistep cascading effects.

We consider the FHG via two second-order para-
metric processes:ω + ω = 2ω and 2ω + 2ω = 4ω,
whereω is the frequency of the fundamental wave. In
the approximation of slowly varying envelopes with
the assumption of zero absorption of all interacting
waves, we obtain
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whereA, S, andT are the envelopes of the fundamen-
tal-frequency (FF), second- (SH) and fourth-harmon-
ic (FH) waves, respectively,γ1,2 are proportional to
the elements of the second-order susceptibility ten-
sor, and�k1 = 2k1 − k2 and�k2 = 2k2 − k4 are the
corresponding wave-vector mismatch parameters. We
introduce the normalized envelopes (u,v,w) accord-
ing to the following relations:A(x, z) = (8Lγ2)

−1 ×
u(x/a, z/L)exp(−i�k1z/2), S(x, z) = (4Lγ2)

−1 ×
v(x/a, z/L), andT (x, z) = (2Lγ2)

−1w(x/a, z/L)×
exp(i�k2z), whereL is a characteristic distance, and
a = √

L/(2k1). In order to describe a family of non-
linear modes characterized by thepropagation con-
stant λ, we look for solutions in the formu(x, z)→
λU(x

√|λ|, z|λ|)eiλz/4, v(x, z)→ λV (x
√|λ|, z|λ|)×

eiλz/2, andw(x, z)→ λW(x
√|λ|, z|λ|)eiλz, and ob-

tain the normalized equations:
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Here s = sign(λ) = ±1, χ = γ1/(4γ2) is a relative
strength of two parametric processes, and the normal-
ized mismatches are defined asα = 4+ β/λ andα1 =
1/4+ β1/λ, whereβ = 4�k2L andβ1 = −�k1L/2.

First, we analyze the plane-wave solutions of
Eqs. (1) which do not depend onx. In this case, the
total intensityI is conserved, and we present it in
terms of the unscaled variables asI = Iu + Iv + Iw ,
whereIu = |u|2/4, Iv = |v|2, andIw = 4|w|2. Solu-
tions{U0,V0,W0}, which do not depend onz, arethe
so-called normal modes. The simplest one-component
FH mode{0,0,W0} exists atα = 0. It has a fixed
phase velocityλ = −β/4 and an arbitrary amplitude,
and becomes unstable forIw > β2/4 due to apara-
metric decay instability.

Two-mode solution{0,√2α,1} describes a para-
metric coupling between SH and FH waves, and it
exists forα � 0, bifurcating atα = 0 from the FH
mode. Coupling of this two-mode plane wave to a FF
wave can lead to its decay instability, provided|α1|<
α
(cr)
1 = χ

√
2α. To understand the physical meaning

of this inequality, we note that the family of solu-
tions characterized by the propagation constantλ cor-
responds to a straight line in the(α,α1)-parameter
space, see Figs. 1(a) and (b). Moreover, all such lines
include the point of the exact phase matching(4,1/4)
as the asymptotic limit for|λ| → +∞. This point be-
longs to the instability region if the relative strength
of the FF–SH interaction exceeds acritical value,
i.e., for χ > χ(cr) = 1/(8

√
2)  0.088. However, for

χ < χ(cr) this decay instability is suppressed due to a
strong coupling with the FH field.

Finally, a three-mode solution,V0 = α1/χ , W0 =
V 2

0 /(2α), U0 = √
2V0(1−W0)/χ , exists for (i)α > 0

and 0< α1< α
(cr)
1 , (ii) α > 0 andα1<−α(cr)

1 , and
(iii) α < 0 andα1 > 0. In the limit |λ| → +∞, such
three-mode plane waves exist only forχ > χ(cr). In
region (i), stability properties of the three-wave modes
are determined by a simple criterion,∂I/∂|λ|> 0. For
the parameter regions (ii) and (iii), oscillatory instabil-
ities are possible as well. Existence and stability of all
types of stationary plane-wave solutions of model (1)
are summarized in Figs. 1(a)–(d).

In general, system (1) is nonintegrable and its
dynamics is irregular. However, we find that in some
cases a quasi-periodic energy exchange between the
harmonics is possible. Fig. 2(a) shows one such
case, when the intensities of unstable two-wave and
stable three-wave stationary modes are close to each
other, and an unstable two-wave mode periodically
generates a FF component. Less regular dynamics is
observed for other cases, such as for the generation
of both SH and FH waves from an input FF wave
(Fig. 2(b)). This example also illustrates the possibility
of effective energy transfer to higher harmonics close
to the double-phase-matching point.

Eqs. (1) may have a different physical meaning
provided the normalized amplitudev stands for the
mode of the fundamental frequencyω. Then, Eqs. (1)
describe the optical frequency division by two (the
field u) via parametric amplification and down-con-
version (see, e.g., [7]), provided both FF (v) and
SH (w) fields are launched simultaneously at the input.
Such a frequency division parametric process is in fact
shown in Fig. 2(a), where this time the generatedu
wave corresponds to the frequencyω/2, and is shown
as dotted.

We now look for spatially localized solutions of
Eqs. (1),quadratic solitons. First, we note that two-
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Fig. 1. (a), (b) Existence and stability of three-mode plane waves for (a)χ = χ(cr)/4 and (b)χ = 4χ(cr) . Light shading — stable, black —
unstable, dark shading — oscillatory unstable, and blank — no solutions. Open circles mark exact phase matching, dash-dotted lines correspond
to the lower plots. (c), (d) Intensity versusλ for (c) β = β1 = −0.5 and (d)β = −1, β1 = 0.04. Thick dashed/solid vertical line — one-wave
(FH) modes, thick curves — two-wave (SH+ FH) modes, thin curves — three-wave modes. Solid — stable, dashed — unstable, and dotted —
oscillatory unstable modes. Open circles mark the bifurcation points. The legend beneath shows the stability of three-wave modes by using the
same shadings as in the upper plots.

Fig. 2. Dynamics of plane waves: (a) Instability of a two-wave mode (corresponding toλ= 2.1 in Fig. 1(c)). (b) Generation of higher harmonics
from a FF input (parameters areχ = 0.625 7χ(cr), β = −1, andβ1 = 0.04). FF, SH, and FH components are shown by dotted, solid, and
dashed curves, respectively.

wave solitons consisting of the SH and FH compo-
nents can be approximated as [2,8]

V0(x)= Vm sechp(x/p),

W0(x)=Wm sech2(x/p),

V 2
m = αW2

m

(Wm − 1)
, α = 4(Wm − 1)3

(2−Wm ,

(2)p = 1

(Wm − 1)
,

where all parameters are functions ofα only. Bright
solitons either do not exist or are unstable being in

resonance with linear waves [4] outside the parame-
ter regionα > 0 andα1> 0 ats = +1. We find that in
this region, similar to plane-wave modes, three-wave
solitons exist for 0< α1 < α

(cr)
1 , where the critical

(cut-off) valueα(cr)
1 corresponds to a bifurcation from

the two-wave solution (2). In order to findα(cr)
1 , we

should solve the first equation of system (1) with the
SH profile from Eqs. (2) (see also [2]). However, such
a linear eigenvalue problem has no exact analytical so-
lution for arbitraryp, and thus we introduce an ap-
proximationV0(x) Ṽ0(x)= Vm sech2(x/q), requir-
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Fig. 3. (a) Regions of existence and stability of three-mode parametric solitons (shading is the same as in Fig. 1(a)). Open diamonds — an
analytical approximation, dark circle — exact phase-matching point. The dash-dotted line corresponds to the solutions atβ = 2 andβ1 = −0.15,
for which the power versusλ dependences are shown in (b): thick — two-wave(SH+ FH), and thin — three-wave solitons; solid and dashed
lines mark stable and unstable solutions, respectively. Open circle is the bifurcation point. (c), (d) Development of a decay instability of a
two-wave soliton corresponding toλ = 1 in (b), and generation of a three-component soliton: (c) FF, SH, and FH peak intensities versus
distance shown by dotted, solid, and dashed curves, respectively; (d) evolution of the FF component. For all the plotsχ = χ(cr)/2.

ing that the functions coincide at the amplitude level
Vm/2, and then define the scaling parameter asq =
p cosh−1(21/p)/cosh−1(21/2). Such an approxima-
tion adequately describes an effective soliton-induced
waveguide, and thus should provide overall good ac-
curacy (except for some limiting cases). After solving
the eigenvalue problem with the potentialχṼ0(x), we
obtain an approximate expression for thebifurcation
points:

α
(cr)
1  (

√
1+ 4Vmχq2 − 1− 2n)2

4q2 ,

where n is the order of the mode guided by the
two-component parametric soliton waveguide [2]. For
a single-hump mode (n = 0) the behavior of this
cut-off is very similar to that of the plane waves.
Indeed, in the cascading limit (α � 1), we have
Vm  2

√
α andα(cr)

1  2χ
√
α, which differs by

√
2

from the corresponding result for plane waves. The
critical value ofχ for one-hump solitons can also be
found from the approximate solution,χ(cr)  0.132.

We performed numerical simulations and found that
the accuracy of our approximation is of the order
of (and usually better than) 1% in a wide range of
parameters (χ > 10−2 andα > 10−2), see Fig. 3(a),
open diamonds. Additionally, similar to other models
of multistep cascading [2,4], Eqs. (1) possess various
types of exact analytical solutions, which will be
presented elsewhere.

Quite remarkably, for both positiveα andα1 the sta-
bility properties of solitons (see Figs. 3(a) and (b))
and plane waves (see Figs. 1(a) and (c)) look simi-
lar. Specifically, stability of two- and three-component
solitons is defined by the Vakhitov–Kolokolov crite-
rion ∂P/∂λ > 0, whereP = ∫ +∞

−∞ I dx is the soliton

power, except for the regionα1 < α
(cr)
1 where two-

component solutions exhibit parametric decay insta-
bility. An example of such an instability is presented in
Figs. 3(c) and (d), where an unstable two-wave soliton
generates a stable three-wave state. Such instability-
induced dynamics is very different from that of plane
waves where, instead, quasi-periodic energy exchange
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is observed (see Fig. 2(a)). In the case of localized
beams, diffraction leads to an effective power loss and
convergence to a new (stable) state.

In order to observe experimentally the multistep
cascading and multi-frequency parametric effects de-
scribed above, we should satisfy the double-phase-
matching conditions. Using the conventional quasi-
phase-matching (QPM) technique [9] for FHG via a
pure cascade process in LiTaO3, we find that there ex-
ists only one wavelength (2.45µm), for which two
parametric processes can be phase-matched simulta-
neously by the different ordersm of the QPM struc-
ture with the periodΛQ = 34 µm. However, for the
so-called phase-reversal QPM structures [10] charac-
terized by two periods, the QPM periodΛQ and the
modulation periodΛph (Λph > ΛQ), double-phase
matching is possible in a broad spectral range, pro-
vided the periods are selected to satisfy the conditions
ΛQ = 2π(n1m2 + n2m1)/(�k1m1 −�k2m2), Λph =
2π(n1m2 +n2m1)/(�k1n1 −�k2n2), where(m1, n1)

and (m2, n2) are the grating orders chosen to phase-
match the SHG and FHG processes, respectively. If
we take(m1, n1) = (−1,−1), (m2, n2) = (1,5), and
the fundamental wavelength 1.57µm, then the periods
areΛQ = 5.027µm andΛph = 20ΛQ. With these pa-
rameters we found that 92% conversion efficiency into
the FH can be achieved in aL= 1 cm long crystal at
the FF input power of 932 MW/cm2, as demonstrated
in Fig. 2(b) (in dimensionless units). This example il-
lustrates that engineered QPM structures can be very
efficient for performing different types of multistep
cascading experiments under double-phase-matching
conditions. Another possibility recently suggested in
Ref. [11] is based on the use of 2D nonlinearχ(2) pho-
tonic crystals.

In conclusion, we have introduced and studied
a new model of multistep cascading that describes
the fourth-harmonic generation via purely parametric
wave mixing. We have analyzed the existence and
stability of the stationary solutions of this model for
normal modes — plane waves and spatial solitons.
We have also discussed the possibility of double-phase
matching in engineered QPM structures with phase-
reversal sequences.
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