
Eur. Phys. J. D 15, 113–126 (2001) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. A theory of van der Waals (vdW) interaction between an atom (in ground or excited state) and
a birefringent dielectric surface with an arbitrary orientation of the principal optic axis (C-axis) is pre-
sented. Our theoretical approach is based on quantum-mechanical linear response theory, using generalized
susceptibilities for both atom and electromagnetic field. Resonant atom-surface coupling is predicted for
excited-state atoms interacting with a dispersive dielectric surface, when an atom de-excitation channel
gets into resonance with a surface polariton mode. In the non-retarded regime, this resonant coupling can
lead to enhanced attractive or repulsive vdW surface forces, as well as to a dissipative coupling increasing
the excited-state relaxation. We show that the strongly non-scalar character of the interaction with the
birefringent surface produces a C-axis-dependent symmetry-breaking of the atomic wavefunction. Changes
of the C-axis orientation may also lead to a frequency shift of the surface polariton mode, allowing for
tuning on or off the resonant coupling, resulting in a special type of engineering of surface forces. This is
analysed here in the case of cesium 6D3/2 level interacting with a sapphire interface, where it is shown
that an adequate choice of the sapphire C-axis orientation allows one to transform vdW surface attraction
into repulsion, and to interpret recent experimental observations based on selective reflection methods
[H. Failache et al., Phys. Rev. Lett. 83, 5467 (1999)].

PACS. 42.50.Ct Quantum description of interaction of light and matter; related experiments –
12.20.Ds Specific calculations – 32.70.Jz Line shapes, widths, and shifts

1 Introduction

Van der Waals forces between neutral polarisable bod-
ies [1–6] represent an ubiquitous interaction, the influence
of which is central in numerous fields of physics, chem-
istry and biology. In physical sciences, the van der Waals
(vdW) interactions are responsible for collisional shifts
and broadening of spectral lines in vapours, and their at-
tractive character is essential for the cohesion of numerous
molecular systems or clusters, among many other effects.
Recently the long-range dipole attraction between atomic
systems and metallic or dielectric bodies (Lennard-Jones
[2]) has been the subject of a renewed interest because of
its fundamental importance in the field of cavity Quan-
tum Electrodynamics (QED) [7], or in atomic-force mi-
croscopes [8]. In this case, the vdW interaction originates
in the quantum fluctuations of the atomic dipole which
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instantaneously polarises the surface, and induces a cor-
related dipole image. This near-field image is responsible
for the attractive character of the vdW interaction, which
scales in 1/d3 (d is the atom-surface distance) [2].

Many theoretical studies of vdW atom-surface inter-
actions have been performed over the years, starting with
ground-state atoms interacting with perfect metallic mir-
rors, both in the non-retarded and retarded regime (e.g.
propagation effects [4]): level shifts, distance laws for sur-
face forces... The influence of the material dispersion for
metallic or dielectric surfaces has been analysed by sev-
eral authors [9–12]. Also the effect of atomic excitation
has been considered to describe enhancement or inhibi-
tion of spontaneous emission in a confined space, along
with surface-induced level shifts, for either perfect reflec-
tors [12–14] or ideal dielectric surfaces [15]. On the other
hand, dielectric dispersion and the related surface polari-
ton resonances have been included in several theoretical
approaches to excited-state interactions [12,16–18]. Vir-
tual energy exchange between excited atom and surface
may lead to a resonant enhancement of the interaction,
along with a possibility of sign reversal, i.e. the predic-
tion of atom-surface van der Waals repulsion which has
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been recently observed in selective reflection spectroscopy
experiments [19].

In all the above works, the solid-state medium is as-
sumed to be homogeneous and isotropic. Interactions of
ground state atoms with birefringent dielectrics has been
studied by a few authors for an optic axis normal to the
surface [20]. Extension to excited-state atoms has been
performed for an optic axis normal to the surface [18]. For
ground-state atoms, it has been shown by Fichet et al. [18]
(e.g. in the case of a sapphire surface), that the birefrin-
gence of the dielectric medium does not basically modify
the properties of the atom-surface interaction because or-
dinary and extraordinary indices are not very different
in the wavelength range outside of the resonances. This
is no longer the case for excited-state atoms interacting
with birefringent dispersive dielectrics in the presence of a
resonant coupling [18]: surface polariton resonances may
strongly depend on the relative orientation of the crystal
C-axis and the surface normal, inducing a surface polari-
ton shift with the crystal orientation which may “tune”
the atom-surface coupling on- and off-resonance.

The object of this article is to present a general theo-
retical description of the non-retarded interaction between
an atom (in an arbitrary internal energy state) and a dis-
persive dielectric surface with an arbitrary orientation of
the birefringence axis.

2 Theoretical framework

As recalled above, in the simple case of uniaxial media
whose principal optic axis is perpendicular to the inter-
face, the form of the interaction has been derived in [18]. In
that case, the cylindrical symmetry of the system around
the optic axis allows us to use the well-known image dipole
model to derive an interaction scaling in d−3, like in the
isotropic case, but with an image factor:

ε̄− 1
ε̄+ 1

, where ε̄ =
√
εeε0. (1)

In equation (1), εe, ε0 are respectively the extraordinary
and ordinary dielectric constants.

For an uniaxial crystal whose optic axis makes an an-
gle θ with the normal to the surface, the problem is much
more complicated, and we can no longer use the image
model.

In the case of an atom at thermal equilibrium at 0 K,
i.e. for an atom in its ground state, there have been many
related works about the interaction between two macro-
scopic anisotropic media with flat parallel interfaces in
thermal equilibrium at 0 K (see for example [21–23]).
Then, diluting one of the media down to one atom, one
can deduce the van der Waals shift of the atomic ground-
state. This approach does not work for an arbitrary ex-
cited state, which cannot be described in a thermal equi-
librium formalism.

So, to analyse the excited-state response, we gen-
eralize the quantum-mechanical linear-response formal-
ism ([10–12]) to the case of an anisotropic dispersive

dielectric interface, in order to derive the level-shifts of
atoms in an arbitrary internal state. In Section 3, we re-
mind the expression of the interaction Hamiltonian and
the calculation of the shift for any non-degenerate state,
as done in [12]. In Section 4, we consider the particular
case of an interface with anisotropic media, whose optic
axis makes an arbitrary angle θ with the normal to the
surface. We derive also the modification of the transition
rate of any excited state of the atom near an birefringent
interface as well as the modification of all transition prob-
abilities (Sect. 5). Then, it is possible to write (Sect. 6)
the evolution equations for the atom due to the coupling
with the reservoir (vacuum+surface). We define an effec-
tive Hamiltonian in Section 7. Knowing its off-diagonal
elements, this allows us to give an example of application
of this work to sapphire and cesium (Sect. 8), in relation
with recent experiments [19,29].

The key-point of this work, after having developed the
field radiated by the dipole in a sum of plane waves, is to
derive the field reflected by the surface at the location of
the dipole, and consequently to calculate the Fresnel coef-
ficients for the reflection of a plane wave by an anisotropic
interface. Starting with Maxwell equations and boundary
conditions at the interface, it is a cumbersome work, while
one only needs the limit of these coefficients in the non-
retarded case. We can also find directly this limit using
electrostatic equations with appropriate boundary condi-
tions (Appendix A). We verify that we obtain the same
result on the simple case of the optic axis perpendicular
to the interface (Appendix B).

To conclude this introduction, we specify our basic as-
sumptions:
– d� λ where λ represents any wavelength correspond-

ing to a transition between states of the atom or of the
dielectric;

– d � a0, where a0 is the inter-atomic distance in the
solid media. That allows us to describe it with macro-
scopic dielectric constants ε0 and εe, whose values will
appear in Fresnel coefficients;

– the atom is treated as a purely quantum-mechanical
object, not necessarily isotropic.

3 Level-shift of an arbitrary atomic state

We keep only the dipolar term in the multipolar develop-
ment of the interaction between the charges and the field
(Power-Zienau-Woolley Hamiltonian: see for example [24]
p. 282). What is called “the charges” is the fluctuating
atomic dipole, located at a point r0 (see Fig. 1). What
is called “the field”, or “reservoir” is the rest of the sys-
tem, supposed first without any interaction with the atom
(radiation field in presence of the surface, but also surface
excitations, etc.). We consider only the case of low temper-
atures: kT � ~ω, where ~ω is the lowest typical energy
among atomic or surface transition energies. Then, the
coupling Hamiltonian is written:

V = −
∫

P(r) ·D(r)dr (2)
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Fig. 1. Location of the atomic dipole above the interface.

D(r) is the displacement field operator, transverse for a
neutral system. P(r) is the polarisation density operator.
Here we have: P(r) = µδ(r − r0), µ being the dipole
moment operator. This gives for the Hamiltonian:

V = −µ ·D(r0). (3)

Then, following the linear response theory, the level-shifts
can be expressed as functions of the susceptibilities of the
field and of the atom in the |a〉 state. Keeping the nota-
tions of [12], we write them respectively Gαβ(r, r0;ω) and
αaαβ(ω). The Greek subscripts denote Cartesian compo-
nents of the second order tensors

↔
G and ↔αa . They have

to be summed over when repeated.
In quantum mechanics, the susceptibilities are defined

from the correlation functions:
for the “field”:

Gαβ(r, r0; t) =
i
~
〈[Dα(r, t), Dβ(r0, 0)]〉Θ(t), (4)

for the atom in a-state:

αaαβ(t) =
i
~
〈a| [µα(t), µβ(0)] |a〉Θ(t). (5)

In those formulas, D(r, t) and µ(t) are now interaction-
picture operators, and the angular brackets indicate:
for
↔
G , an ensemble average (with Gibbs distribution) over

the field-states, and, for ↔αa , the mean value in the a-state
of the atom. Normal brackets are usual commutators.

Taking the time Fourier transforms:

Gαβ(r, r0;ω) =
∫ +∞

−∞
dtGαβ(r, r0; t)eiωt (6)

αaαβ(ω) =
∫ +∞

−∞
dt αaαβ(t)eiωt (7)

one obtains the susceptibilities we need.
In particular, the polarisability of an arbitrary a-state

can be written:

αaαβ(ω) =
1
~
∑
n

[
µanα µnaβ

ωna − (ω + iη)
+

µnaα µanβ
ωna + (ω + iη)

]
=

2
~
∑
n

ωnaµ
an
α µnaβ

ω2
na − (ω + iη)2

, (8)

where µnaα = 〈n|µα|a〉 = µanα is assumed (for the free atom,
with time-reversal invariance, wave-functions of states a
and n can be chosen real), and η → 0+.

For the field, the simplest way to have the susceptibil-
ity at frequency ω is to remember, from linear-response
theory, that

↔
G (r, r0;ω)µ is the expectation value of the

displacement field at r generated by a classical dipole os-
cillating at frequency ω: µ(t) = µ0e−iωt, located at r0 (see
[24], p. 354, ex. 6).

In the half-space above the interface, where is located
the atom, the relation between the electric field and the
displacement field is then:

D(r, t) = E(r, t) + 4πµ(t)δ(r − r0). (9)

For the component oscillating at ω, the tensorial Green
functions of the dipole are denoted:

↔
F (r, r0;ω) for the

electric field and
↔
G (r, r0;ω) for the displacement field:

E(r, ω) =
↔
F (r, r0;ω)µ,

D(r, ω) =
↔
G (r, r0;ω)µ. (10)

We have: Gαβ = GR
αβ +G0

αβ , G0
αβ being the vacuum sus-

ceptibility (that of the field radiated by an atom in free
space), and GR

αβ the susceptibility of the field reflected by
the surface. Using equations (9, 10):

G0
αβ(r, r0;ω) = F 0

αβ(r, r0;ω) + 4πδαβδ(r− r0),

GR
αβ(r, r0;ω) = FR

αβ(r, r0;ω). (11)

(It is the last function that we need to obtain the contri-
bution of the anisotropic interface.)

Using second-order perturbation, the calculation leads
to the total shift (vacuum + surface) of an arbitrary
atomic state |a〉:

δEa = P
∑
I,N,n

p(I)〈a, I|V |n,N〉〈n,N |V |a, I〉

×
[

1
EI +Ea −EN −En

]
, (12)

where P denotes the principal part. Capital letters indi-
cate eigenstates of the reservoir, small letters those of the
atom, when there is no interaction between them.

The surface contribution appears as the sum of two
terms: δEfl

a , which is the part of the shift due to quantum-
mechanical fluctuations, and δEres

a , its resonant part,
which exists only for excited states of the atom, and has
a classical analogy:

(δEa)surf = δEfl
a + δEres

a , (13a)

δEfl
a = − 1

π

∑
n

ωnaµ
an
α µnaβ

∫ ∞
0

dξ
GR
αβ(r0, r0; iξ)
ξ2 + ω2

na

= − ~
2π

∫ ∞
0

dξ GR
αβ(r0, r0; iξ)ααβ(iξ), (13b)

δEres
a = −

∑
n

µanα µnaβ ReGR
αβ(r0, r0;ωna)Θ(ωan).

(13c)

In formulas (13): Θ(ωan) is the Heaviside function, and
ωna = ωn − ωa must be negative to give a non-zero value
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Fig. 2. The x-axis is the intersection of the interface plane with
the plane perpendicular to the principal optic axis C. The angle
between this optic axis and the normal to the surface (z-axis)
is θ.
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Fig. 3. Unit vectors for propagating waves in the vacuum (in-
dex 0). ŝ and K̂ are in the interface plane, and normal to each

other. k̂−0 is the incident wave-vector, k̂+
0 is the reflected one.

to the second term. GR
αβ(r, r0;ω) and αaαβ(ω) are func-

tions of the complex variable ω, analytic in the upper
half-plane and taking purely real values for imaginary fre-
quencies (iξ).

Now, we have to find the contribution of the reflected
field to the susceptibility, in the case of an anisotropic
interface with an arbitrary oriented optic axis.

4 Level-shift of an atom near an anisotropic
surface

4.1 Introduction

We generalize the work of Sipe [25] to the case of an
anisotropic interface, writing the susceptibility of the field
reflected by the surface at the position of the atom:

↔
G

R
(r0, r0;ω) =

ik2
0

2π

∫
dK
W0

(
Rssŝŝ +Rspŝp̂−0

+Rpsp̂+
0 ŝ +Rppp̂+

0 p̂−0
)

ei(2W0d). (14)

In the isotropic case, an incident s-wave is reflected into a
s-wave, and an incident p-wave into a p-one. For reflection
of a wave coming from an isotropic media (vacuum here)
upon an anisotropic interface, we must calculate the four
Fresnel coefficients Rij to obtain the s and p components
of the reflected field in function of the s and p components
of the incident one:

ER
s = RssEI

s +RspEI
p,

ER
p = RpsEI

s +RppEI
p. (15)

Let us first explain the notations used in equation (14):
see Figures 1–3.

In Cartesian coordinates, with unit vectors denoted:
x̂, ŷ, ẑ, the dielectric surface is the (x̂, ŷ) plane, and the
location of the atom is: r0 = x0x̂ + y0ŷ + dẑ, where d is
positive. The x-axis is chosen parallel to the intersection
of any plane perpendicular to the optic axis with the plane
of the interface, and the x̂-direction can always be chosen
in such a way that the azimuthal angle ϕ between x̂ and K
satisfies (ε0 − εe) sinϕ > 0, K being the projection of the
wave-vector on the (x̂, ŷ) plane. This condition is neces-
sary for getting a physical solution to Maxwell equations
into the dielectric (see Appendix A).

Formula (14) yields the reflected field as a superpo-
sition of plane waves with real wave-vector components
(K cosϕx̂, K sinϕŷ) in the plane of the interface. In the
z-direction, the waves are propagating or evanescent de-
pending whether K < k0 or K > k0 = ω/c. Then, the
wave-vectors in the vacuum are written: k±0 = K±W0ẑ,
in which subscript 0 in W0 indicates that the propa-
gation takes place in the vacuum. The complex root
W0 =

(
k2

0 −K2
)1/2 must have either ReW0 > 0 when

ImW0 = 0, or ImW0 > 0 when ReW0 = 0.
The unit vectors ŝ and p̂±0 specify the directions of the

electric vector in s and p polarised waves (see Fig. 3):

ŝ = K̂× ẑ

p̂±0 = k−1
0 (∓W0K̂ +Kẑ), (16)

where K̂ = K/K.
In the case of p-polarisation, these vectors are different

for reflected (+) or incident (−) propagating or evanescent
waves, which makes appear the term p̂+

0 p̂−0 . The notations
like p̂+

0 p̂−0 indicates a projector; for example, (p̂+
0 p̂−0 )µ =

p̂+
0 (p̂−0 .µ). A phase-vector e2iW0d also appears because of

the reflection from the surface.
With these notations, we can specify that, in equa-

tion (15): ER
p = Ep+

0
and EI

p = Ep−0
.

Then, to obtain the ω-component of the field reflected
by the surface at the location of the atom: ER(r0, ω) =
↔
G

R
(r0, r0;ω)µ, we have to calculate the four Fresnel co-

efficients in the retarded regime. For that, one has to write
the boundary conditions at the interface: continuity of
tangential components of E and B and continuity of the
normal component of D, the fields being a sum of an inci-
dent field and a reflected one in the vacuum, and a sum of
an ordinary field and an extraordinary one in the birefrin-
gent dielectric. This leads to a linear system of six equa-
tions for each component (s and p) of the incident wave.
The solution for any value of the angle θ between the optic
axis and the normal to the interface cannot take a simple
form. In Appendix B, we calculate the values of retarded
Fresnel coefficients for the simplest case C⊥(θ = 0). For an
arbitrary angle, the calculation is much too cumbersome
and we will see below that we do not need it really.

4.2 Near-field limit

Here, we look for the near-field limit of the van der Waals
shift, when the location of the atom and all characteristic
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frequencies of the atom ωi and of the dielectric ωj are such
that ωi,j/c � 1/d. So we only need the quasi-stationary
limit of

↔
G

R
.

First, we can note that, among the sum of operators
contributing to

↔
G

R
in formula (14), only k2

0p̂0+p̂0− is
not vanishing when k0 = ω/c → 0 (see the expression of
unit vectors ŝ and p̂ in Eq. (16)).

Secondly, we see in Appendix A that only Rpp has a
non-zero static limit, and keeps the meaning of a “reflec-
tion” coefficient on a dispersive dielectric surface for static
fields1.

So we calculate the k0 = ω/c→ 0 limit of Rpp for any
angle θ (0 ≤ θ ≤ π/2) between the optic axis of the uni-
axial medium and the normal to the surface, writing the
boundary conditions directly in the electrostatic regime.
The calculation is reported in Appendix A. We find:

Rst
θ (ϕ) =

√
ε0εe

(
1 + δ sin2 θ cos2 ϕ

)
− 1√

ε0εe
(
1 + δ sin2 θ cos2 ϕ

)
+ 1
· (17)

In this formula, δ = (ε0 − εe)/εe.
Of course, in formulas (13) giving the van der Waals

shift, this zero-order limit in ω/c must remain valid when
performing the integration over frequencies. We must re-
mind that αaαβ(ω) takes significant values only in nar-
row domains around some frequencies ωi. In these do-
mains, under the condition: ωi/c � 1/d, we can take
the quasi-static limit of Rpp (we call it Rst) to calculate
GR
αβ(r0, r0;ω ≈ 0). But we have to take into account the

dependence of the Fresnel coefficient on ω, through the
dependence of the dielectric constants ε0 and εe of
the dispersive media: like αaαβ(ω), ε0 and εe are func-
tions of ω smooth everywhere except around some fre-
quencies ωj such that: ωj/c� 1/d.

Finally, to calculate the near-field limit of↔
G R(r0, r0;ω), we assume in equation (14): Rpp ≈
Rst
θ (ϕ, ω), where the ω-dependence of Rpp comes now

only from the dependency of εe and ε0 on ω. We said
above that, among the sum of operators contributing to↔
G R, only k2

0p̂+
0 p̂−0 is not vanishing when k0 = ω/c→ 0.

So, we have simply, using equation (16) and integrating
over K:

↔
G

R

st
(r0, r0;ω) =

1
8πd3

∫ 2π

0

dϕRst
θ (ϕ, ω)

↔
P (ϕ) (18)

with:

↔
P (ϕ) =

 cos2 ϕ sinϕ cosϕ −i cosϕ
sinϕ cosϕ sin2 ϕ −i sinϕ

i cosϕ i sinϕ 1

 · (19)

1 We have to make an exception for the perfect conductor.
The two Fresnel coefficients do not depend on ω. Rss = −1,
as well as: Rpp = +1, do not vanish in the static limit. In this
case, it is the first argument which explains why we keep only
the term in Rpp in the integrand of equation (14).

Then, this solution reported in equation (13) leads to
the following expression for the quantum-mechanical level-
shift:

δEfl
a (θ) = − 1

16d3

∑
n

Aθ(ωna) |µanx |
2 +Bθ(ωna)

∣∣µany ∣∣2
+ [Aθ(ωna) +Bθ(ωna)] |µanz |

2 (20)

with:

Aθ(ωna) =
2
π

∫ ∞
0

dξ
ωna

ω2
na + ξ2

∫ 2π

0

dϕ
π

[
Rst
θ (ϕ, iξ)

]
cos2 ϕ

(21a)

Bθ(ωna) =
2
π

∫ ∞
0

dξ
ωna

ω2
na + ξ2

∫ 2π

0

dϕ
π

[
Rst
θ (ϕ, iξ)

]
sin2 ϕ

(21b)

(the sum is over all atomic-state n coupled by dipolar
transition to the a-state. In general, n must include all
the quantum numbers which define the n-state), and its
resonant part, which can be written:

δEres
a (θ) = − 1

16d3

∑
n<a

A′θ(ωna) |µanx |
2 +B′θ(ωna)

∣∣µany ∣∣2
+ [A′θ(ωna) +B′θ(ωna)] |µanz |

2 (22)

with:

A′θ(ωna) =
∫ 2π

0

dϕ
π

2
[
ReRst

θ (ϕ, ωna)
]

cos2 ϕ (23a)

B′θ(ωna) =
∫ 2π

0

dϕ
π

2
[
ReRst

θ (ϕ, ωna)
]

sin2 ϕ. (23b)

For the resonant part, the notation n < a indicates that
the sum is only over all n-states such that ωn < ωa (cou-
pling in emission).

In the case of cylindrical symmetry (axis normal to
the surface, θ = 0), Rst

θ depends no longer on ϕ and we
recover the same results as in reference [18].

4.3 VdW shift operator for a non-degenerate level a

For the contribution of the anisotropic (or isotropic) sur-
face to the shift, we can write (see Eqs. (13, 20, 22)):

δEsurf
a = 〈a|W (a)|a〉, (24)

where we have defined an operator W (a) (vdW shift op-
erator for level a) by:

W (a) = − 1
π

∑
n

(µα|n〉〈n|µβ)ωna
∫ +∞

0

dξ
GR
αβ(r0, r0; iξ)
(ξ2 + ω2

na)

−
∑
n

(µα|n〉〈n|µβ)ReGR
αβ(r0, r0;ωna)Θ(ωan) (25)
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or, equivalently,

W (a) =
∑
n

[
− 1
π

∫ +∞

0

dξ
ωnaG

R
αβ(r0, r0; iξ)

(ξ2 + ω2
na)

−ReGR
αβ(r0, r0;ωna)Θ(ωan)

]
µα|n〉〈n|µβ . (26)

Let us write:[
− 1
π

∫ +∞

0

dξ
ωnaG

R
αβ(r0, r0; iξ)

(ξ2 + ω2
na)

−ReGR
αβ(r0, r0;ωna)Θ(ωan)

]
= Cαβ(a, n), (27)

(Cαβ are real numbers). Then:

W (a) =
∑
n

Cαβ(a, n)µα|n〉〈n|µβ . (28)

This is the general formula, valid for both retarded and
static cases, and for any interface (isotropic, anisotropic,
or perfect conductor). In the case of a birefringent uniaxe
media, and within the near-field limit, we have found the
simple formulas:

W (a) = W fl(a) +W res(a) (29)

W fl(a) = − 1
16d3

∑
n

Aθ(ωna)µx|n〉〈n|µx

+Bθ(ωna)µy|n〉〈n|µy
+ (Aθ(ωna) +Bθ(ωna))µz |n〉〈n|µz (30)

W res(a) = − 1
16d3

∑
n

A′θ(ωna)µx|n〉〈n|µx

+B′θ(ωna)µy|n〉〈n|µy
+ (A′θ(ωna) +B′θ(ωna))µz |n〉〈n|µz, (31)

where the A,B,A′, B′ are defined in equations (21, 23).

5 Interface contribution to the transition rate
in the case of birefringent media

In the same way, we can derive from equations (16–18) the
modification of the transition rate of any excited atomic
state induced by the reflected field. From Fermi’s Golden
rule, one finds (see [12]):

Γ surf
a = −2

~
∑
n

µanα µnaβ ImGR
αβ(r0, r0;ωna)Θ(ωan)

=
∑
n

Γ surf
a→n. (32)

Note that: Gαβ(r, r′;−ω) = G∗αβ(r, r′;ω). So, we can de-
fine a positive probability by second for the atom to do a

transition from level a to level n because of the coupling
with the reflected field, valid for any pair (a, n):

Γ surf
a→n =

2
~
µanα µnaβ ImGR

αβ(r0, r0;ωan)Θ(ωan). (33)

Introducing two functions analogue to (21a, 21b) and
(24a, 24b):

A′′θ (ωan) =
∫ 2π

0

dϕ
π

[
ImRstat

θ (ϕ, ωan)
]

cos2 ϕ (34a)

B′′θ (ωan) =
∫ 2π

0

dϕ
π

[
ImRstat

θ (ϕ, ωan)
]

sin2 ϕ (34b)

we obtain2:

Γ surf
a,θ =

2
~

1
8d3

∑
n<a

A′′θ (ωan)|µanx |2 +B′′θ (ωan)|µany |2

+ [A′′θ (ωan) +B′′θ (ωan)] |µanz |2. (35)

In (35), the sum is only over all n-state such that ωn < ωa.
We can also define an operator Γ surf(a) giving the

modification of the width of level a by the surface:

Γ surf
a =〈a|2

~
∑
n

(µα|n〉〈n|µβ)ImGR
αβ(r0, r0;ωan)Θ(ωan)|a〉

=〈a|Γ surf(a)|a〉 (36)

which gives in the anisotropic case:

Γ surf(a) =
2
~

1
8d3

∑
n<a

A′′θ (ωan)(µx|n〉〈n|µx)

+B′′θ (ωan)(µy|n〉〈n|µy)

+ [A′′θ (ωan) +B′′θ (ωan)] (µz|n〉〈n|µz). (37)

6 Interface contribution to the atom master
equation

With the help of equations (24–28) and (33–37), we can
write the equations describing the evolution of populations
and coherences under the coupling with the reservoir. We
write only the contribution of the surface to the master
equation. So, we keep only the contribution of the reflected
field GR to the linear susceptibility: G = G0 + GR, the
other part giving the contribution of vacuum fluctuations
without any surface. The vacuum contribution is given in
[26] and references therein.

2 As in Section 4, we have to treat separately the well-known
case of the perfect conductor. Fresnel coefficients have no imag-
inary parts, and formulas (34, 35) are not correct. One has to
look for the first non-zero term of ImGR

αβ when ω/c → 0 and
apply (33). We recall that, for a perfect conductor, integration
in equation (13) can be performed exactly, giving shifts, tran-
sition probabilities, and widths, even in the retarded case [12].
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6.1 Evolution of populations due to the surface

In the secular approximation [26]:

(
dσaa

dt

)surf

=
∑
n6=a

(
σnnΓ

surf
n→a − σaaΓ surf

a→n
)

= −Γ surf
a σaa +

∑
n6=a

σnnΓ
surf
n→a (38)

with Γ surf
a→n = (2/~)µanα µnaβ ImGR

αβ(r0, r0;ωan)Θ(ωan) (see
Eqs. (33–35)), and ωan = ωa − ωn.

The modification of the width of level a being (see
Eqs. (32, 36, 37)):

Γ surf
a =

∑
n6=a

Γ surf
a→n

=
∑
n

2
~
µanα µnaβ ImGR

αβ(r0, r0;ωan)Θ(ωan)

= 〈a|Γ surf(a)|a〉.

The last term of equation (38) gives, with equa-
tions (33–35) the part of population transferred from upper
levels n to level a because of the surface.

6.2 Evolution of atomic coherences due to the surface

For a non-degenerate Bohr frequency ωab, in the secular
approximation, the evolution under the total coupling is
given by [26]:

dσab
dt

= (−iωab − i∆ab − Γab)σab. (39)

The contribution of the surface appears in the last two
terms.

(i) In ∆ab = (1/~)(δEa − δEb), we keep only the con-
tribution of the reflected field to the shifts:

(δEa − δEb)surf = 〈a|W (a)|a〉 − 〈b|W (b)|b〉, (40)

where W (a) is defined in equations (24–31).
(ii) In:

Γab =
1
2

(∑
n6=a

Γa→n +
∑
n6=b

Γb→n

)
=

1
2

(Γa + Γb) (41)

we take also the contribution of the surface: Γ surf
ab =

(Γ surf
a + Γ surf

b )/2, where the Γ surf are defined in equa-
tion (32).

Finally, the contribution of the reflected field to the
evolution of coherences is:(

dσab
dt

)surf

= (−i∆ab − Γab)surf
σab (42)

= − i
~

[
〈a|W (a)|a〉 − 〈b|W (b)|b〉

− i~
2
〈a|Γ surf(a)|a〉 − i~

2
〈b|Γ surf(b)|b〉

]
σab

= − i
~

[
〈a|W (a)− i~

2
Γ surf(a)|a〉

−〈b|W (b) +
i~
2
Γ surf(b)|b〉

]
σab. (43)

If we define a non-Hermitian operator acting only on
level a: W ′(a) = W (a)− (i~/2)Γ surf(a), equation (43) be-
comes:(

dσab
dt

)surf

= − i
~

[
〈a|W ′(a)|a〉 − 〈b|W ′+(b)|b〉

]
σab.

(44)

It is possible to introduce a purely diagonal non-Hermitian
Hamiltonian:

W ′ =
∑
i

|i 〉〈i|W ′(i)|i〉〈 i|. (45)

Then, equation (44) gives:(
dσab
dt

)surf

= − i
~

[〈
a
∣∣∣W ′σ − σW ′+∣∣∣ b〉] . (46)

The diagonal elements of this Hamiltonian W ′ give us the
vdW shifts and modifications of the widths, but not the
feeding of any state a by atoms leaving upper states n, as
detailed in equation (38).

7 Effective Hamiltonian for an atom
near an interface

We have to come back at the beginning of the calculation.
Let us call H0 = Hat +HR the free Hamiltonian, without
interaction between the atom and the reservoir (reservoir
= vacuum + surface). The eigen states are: |a, I〉, their
energy being: Ea + EI = ~(ωa + ωI). Capital letters de-
note eigenstates of the reservoir, small letters, eigenstates
of the atom. The interaction potential between the atom
and the field is: V = −µ ·D(r0) (Eq. (3)). We want to find
an Hamiltonian Heff for the atom in which is taken into
account the effect of the reservoir and more precisely an ef-
fective atomic Hamiltonian describing the effect of the sur-
face Hsurf

eff . We want not only its diagonal elements (vdW
shifts are already found (see Eqs. (29–31)) and the modifi-
cation by the surface of transition rates (see Eqs. (33–35)),
but also the mean effect of the reservoir on off-diagonal
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elements. W ′, as defined above, is purely diagonal and
non-Hermitian (see Eqs. (44–46)).

One obtains an off-diagonal element for the atom’s
Hamiltonian by taking the mean value over the reservoir
states of the corresponding off-diagonal element of the to-
tal Hamiltonian: H = H0 + V = Hat +HR + V :∑

I

p(I) 〈a, I |H0 + V | b, I〉 =
∑
I

p(I)
〈
a
∣∣HI

eff

∣∣ b〉
=
〈
a

∣∣∣∣∑
I

p(I)HI
eff

∣∣∣∣b〉 (47)

(here p(I) = e−EI/kT /Z, if we suppose the reservoir at
thermal equilibrium at temperature T ).

So we look for an Hamiltonian:

Heff =
∑
I

p(I)HI
eff , (48)

with the following properties:

(i) hermitic,
(ii) giving the same eigen-values that H, with the same

degeneracy, at least at second order in V. (We have
calculated the shift of any atomic level due to the
surface taking the second order perturbation in V ),

(iii) which does not act between two different states I
and J of the reservoir. That comes from the defini-
tion of the trace (see Eq. (47)): HI

eff acts only inside
the I-multiplicity of the reservoir.

Such a calculation is classical in atom-field interactions
(see [26], p. 41, and references therein). One has to find
an unitary transformation T = eiS , with an operator S
chosen to be non-diagonal on the field states. Let us report
the result obtained at second order in V :

〈a|HI
eff |b〉 = (EI +Eaδab) + 〈a, I|V |b, I〉

+
1
2

∑
n,N 6=I

〈a, I|V |n,N〉 〈n,N |V |b, I〉

×
[

1
EI +Ea −EN −En

+
1

EI +Eb −EN −En

]
, (49)

where the energies of the two levels play a symmetric role.
The first term gives the energy of the free system, when

a = b.
The second term is zero because the interaction po-

tential: V = −µ ·D(r0) = −µαDα is made of products of
non-diagonal operators (Dα in the basis of field-states as
well as µα in the basis of atomic states).

When Ea = Eb, if |a〉 is a non-degenerate state, the
third term will give the second order correction like it is
obtained from perturbation theory. We can write it, after
doing the statistic average over the reservoir states:

〈a|Heff |a〉 = P
∑
I,N,n

p(I)〈a, I|V |n,N〉〈n,N |V |a, I〉

×
[

1
EI +Ea −EN −En

]
, (50)

where P denotes the principal part.
This result has already been obtained (see Eqs. (12,

13)). For the contribution of the surface (anisotropic or
isotropic), we can write (see Eqs. (24–31)):

δEsurf
a =

〈
a
∣∣Hsurf

eff

∣∣ a〉 = 〈a |W (a)| a〉 . (51)

When Ea 6= Eb, we can now write the matrix elements of
Hsurf

eff . Formula (49) gives us:〈
a
∣∣Hsurf

eff

∣∣ b〉 =
〈
a

∣∣∣∣12(W (a) +W (b))
∣∣∣∣b〉. (52)

When |a〉 is a degenerate level, we obtain in the same way
the matrix elements in the a-multiplicity:〈

a
∣∣Hsurf

eff

∣∣ a′〉 = 〈a |W (a)| a′〉 . (53)

8 Application: the case of cesium 6D3=2 level
and sapphire

The key-point is that transition ωna = −12.147 µm from
6D3/2 to 7P1/2 of cesium is resonant with one of the ab-
sorption frequencies of sapphire surface.

We want to evaluate the resonant part, which is the
main contribution to the shift for this excited state [27].
Formulas (24–26) are written in function of the Cartesian
components of dipole:

δEres
a (θ) = − 1

16d3

∑
n

A′θ(ωna) |µanx |
2 +B′θ(ωna)

∣∣µany ∣∣2
+ [A′θ(ωna) +B′θ(ωna)] |µanz |

2 (54)

with

A′θ(ωna) =
∫ 2π

0

dϕ
π

2
[
ReRst

θ (ϕ, ωna)
]

cos2 ϕ,

B′θ(ωna) =
∫ 2π

0

dϕ
π

2
[
ReRst

θ (ϕ, ωna)
]

sin2 ϕ. (55)

The label a represents several quantum numbers of the
free atom. For example, the level 6D3/2 has J = 3/2,
L = 2, S = 1/2, n = 6. We will consider first that the
van der Waals interaction is a small perturbation to the
free-atom Hamiltonian, this one including the fine struc-
ture term: so, eigen-vectors of the free atom are labelled
|τ, J,M〉. We consider first the cesium atom without hy-
perfine structure: indeed, the vdW surface interaction does
not couple to the nuclear spin, and the hyperfine energy
is small compared to the energy scale relevant to the sap-
phire resonance. One has to add the hyperfine correction
once found the new eigen-states, after coupling with the
surface.

So, levels a, a′, ... will be here levels |τ, J,M〉, with
J = 3/2.

Among all the transitions in emission, we will keep
only the (6D3/2 → 7P1/2) one, which has the larger tran-
sition dipole moment [18]: consequently, the only cou-
pled levels n, n′, ... taken into account here will be levels
|τ ′, J ′,M ′〉, with J ′ = 1/2 (level 7P1/2).
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In order to find the new eigen-values of the Hamil-
tonian, and their degeneracies, we have to write in the
a-multiplicity (2J + 1 degenerate levels before interaction
with the reservoir (vacuum+surface)) the contribution of
the surface to the effective atomic Hamiltonian defined in
Section 7.

The diagonal elements are given by equations (29–31).
Keeping only the resonant part:

δEres
a (θ) =

〈
a

∣∣∣∣Hsurf,res
eff

∣∣∣∣a〉 = 〈a |W res(a)| a〉

= 〈a |W res
a (θ)| a〉 . (56)

In the same way, off-diagonal elements of the effective
atomic Hamiltonian defined in the precedent section are:〈

a

∣∣∣∣Hsurf,res
eff

∣∣∣∣a′〉 = 〈a |W res
a (θ)| a′〉 . (57)

The operator W res(a) is named now W res
a (θ) because we

are interested here by the dependence on θ, which is
no longer a fixed parameter. Let us remember its form
(see Eq. (31)):

W res
a (θ) = − 1

16d3
[A′µx|n〉〈n|µx +B′µy|n〉〈n|µy

+ (A′ +B′)µz|n〉〈n|µz ]

W res
a (θ) = − 1

16d3

[
A′ +B′

2
(2µ0|n〉〈n|µ0 − µ+|n〉〈n|µ−

− µ−|n〉〈n|µ+) +
A′ −B′

2
(µ+|n〉〈n|µ+ + µ−|n〉〈n|µ−)

]
(58)

in which A′ = A′θ(ωna), B′ = B′θ(ωna), and µ0 = µz,
µ± = ∓(µx ± iµy)/

√
2.

We recall that, in the cesium-sapphire case, only one
degenerate level n is strongly coupled to the degenerate
level a, so we keep only that level in the sum over n of
equation (54).

Calculating numerically the Fresnel coefficient for ω ≈
ωna and a given value of θ, it is possible with equa-
tions (57, 58) to obtain all the matrix elements for the
6D3/2 level of cesium (coupled to 7P1/2) and to diago-
nalise the Hamiltonian in order to find the new eigen-
values and the new eigen-vectors. For θ 6= 0, A′ is dif-
ferent from B′, and the Hamiltonian (58) couples levels
|τ, J,M〉 and |τ, J,M ′〉 such that M −M ′ = ±2, and the
two degenerate levels are no longer the |+M〉 and |−M〉
sub-levels.

Degeneracy is not completely lifted by anisotropy, as
one could expect from the fact that this atomic state has
an half-integer spin: all levels remain two-fold degenerate,
like in isotropic case. For a level with an integer-spin, de-
generacy would be completely lifted when θ is different
from zero (Kramers theorem, see [28]).
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Fig. 4. Resonant part of the vdW shifts (δEi = −αi/d3) for
the eigenstates v1 and v2 of cesium near a sapphire interface,
and their half-sum in function of θ.

The expressions of the two degenerate eigen-values
(contribution of the resonant part of the vdW shift) are:

δEres
1,2(θ) = − 1

16d3
|〈τ, J = 3/2 ‖ µ ‖ τ ′, J ′ = 1/2〉|2

× A′ +B′

6

[
1∓ sgn(A′ +B′)

1
4

√
1 + 3∆2

]
(59)

in which ∆ = (A′ − B′)/(A′ + B′) (subscript 1 is for the
sign (−), subscript 2 for the sign (+)).

To report the variations of δEres
1,2(θ) and their half-sum

in function of θ, we write: δEres
i = ~δω = −αi/d3. For

θ = 0, previous calculations [27] give us the mean value
α = (α1 + α2)/2 in kHzµm3 for the transition 6D3/2

to 7P1/2:

α(θ = 0) = −108 kHzµm3.

That gives the scale of our graph giving: −α(θ), −α1(θ),
−α2(θ), (or else the shifts in kHz, in function of θ, when
the atom is located at a distance of one micrometer from
the surface) (Fig. 4).

The mean value of the two twice-degenerate shifts has
the sign of −(A′ + B′). It is positive for the cylindrical
symmetry (θ = 0). We see in Figure 4 that, for the 6D3/2

level, this sign is changing when θ = 36◦25. So, the van der
Waals potential, repulsive for an angle θ < 36◦25, becomes
attractive for θ > 36◦25.

When θ = 0, the upper curve (−α1) gives the shift of
the degenerate level u1 (e.g. M = −1/2) and (−α2) gives
the shift of the degenerate level u2 (M = +3/2).

For other angles, we can write the rotation matrix
giving the new degenerate eigenstates v1 and v2 in the
basis u1, u2: (

cosβ − sinβ
sinβ cosβ

)
with:

cosβ =
∆
√

3√
η2 + 3∆2

and sinβ =
η√

η2 + 3∆2
·
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In these formulas: η =
√

1 + 3∆2 − 1, and ∆ has been
defined above in equation (59).

Of course, to calculate the static limit of Fresnel coeffi-
cient, we have used experimental data of sapphire: the un-
certainties over the values of ordinary and extraordinary
dielectric constants, as well as the position of absorption
frequency of sapphire at 12.15 µm, are discussed in [27].

If an experiment could be done (using different cells
whose sapphire windows would be cut at different angles
with optic axis, which is not easy to realize), it would be-
come possible to determine more accurately the frequency
of the surface-resonance of sapphire: for an angle depend-
ing only on this frequency, the vdW potential becomes at-
tractive, and that should appear in the selective reflection
signal [19]. The experiment has been done in our group for
only the two limit angles: θ = 0◦ (C⊥) and θ = 90◦ (C‖)
[27–29].

To get the total eigen-values and corresponding eigen-
states of cesium 6D3/2 atom interacting with sapphire,
one has to combine the vdW interaction with the hyper-
fine Hamiltonian. This gives a diagonalisation of the to-
tal Hamiltonian which will depend on the atom-surface
distance d. At long distances, the eigen-states and eigen-
values are those of the hyperfine Hamiltonian: |τ, J =
3/2, F,MF 〉. When the atom approaches the surface, the
vdW interaction grows, and, after an intermediate com-
plicated situation, takes it over at very short distances,
where eigen-states and eigen-values become: v1, v2 and
δEres

1,2(θ).

9 Conclusion

In this paper, we have presented the quantum-mechanical
theory of van der Waals interactions between atoms in
ground or excited state and birefringent dielectric sur-
faces. One has shown that, when there is a resonant cou-
pling between excited atoms and dielectric surface reso-
nances, an adequate choice of the direction of the C-axis
allows one to shift the surface resonance and then, tune
the atom-surface interactions, affording for an engineer-
ing of the surface forces. Also the symmetry of the atom
wavefunction is broken by the surface near-field: while, for
an isotropic dielectric, a cylindrical symmetry is kept, this
is no longer true for a birefringent dielectric with an arbi-
trary orientation of the C-axis. This makes the dynamic
study of an atom moving near a birefringent dielectric a
quite difficult problem, similar to the one encountered in
collisional studies, in which the atom quantization axis is
rotating as a function of the distance to the surface.

Extensions of our work could include a detailed analy-
sis of the retarded interactions with birefringent surfaces
(either of the Casimir-Polder type, or of the resonant
type). Another extension concerns the higher-order con-
tributions in the atom-surface resonant coupling, which
could turn on or off the atom-surface resonance, due to
the huge vdW atomic shift at close distances. This might
produce non-monotonic (6= 1/z3) vdW shifts: energy levels
crossing or anticrossing, van der Waals wells with possible
long-range atom trapping, etc.

The authors wish to thank Daniel Bloch and Michèle Fichet
for stimulating discussions. Two of us (Solomon Saltiel and
Horacio Failache) acknowledge financial support from the
French Government and the University of Paris-Nord.

Appendix A: Calculation of “Fresnel
coefficient” in the quasi-static limit

We report here the calculation of the electrostatic Fresnel
coefficient (see geometry given in Figs. 1–3).

We are looking for solutions of Maxwell equations in
the quasi-static limit:

div D = 0
rot E = 0⇔ ∃V such as E = −gradV.

In the vacuum, D = E. Into the uniaxial dielectric, D =
(ε)E with:

(ε) =

 ε0 0 0
0 A C
0 C B

 · (A.1)

If θ is the angle between the normal to the surface and
the principal optic axis (with 0 ≤ θ ≤ π/2), we have:

A = ε0 cos2 θ + εe sin2 θ, B = ε0 sin2 θ + εe cos2 θ,

C = (ε0 − εe) sin θ cos θ. (A.2)

We look for solutions of the form “plane waves” with real
wave-vector components in the interface in the quasi-static
limit ω/c→ 0. So, we try:
– above the interface (0 < z < d), an electrostatic po-

tential:

V0(r) = V +
0 eik+

0 ·r + V −0 eik−0 ·r (A.3)

(superscript (−) means “incident”, (+) means “re-
flected”),

– into the uniaxial dielectric (z < 0), an electrostatic
potential:

V1(r) = V −1 eik−1 ·r. (A.4)

Why an unique value of the wave-vector in an
anisotropic media? We will show below that the “disper-
sion equation” in the birefringent media gives an unique
value for the “wave-vector” in quasi-static limit (corre-
sponding to the extraordinary wave of the retarded-case).
We can see an example in Appendix B, where we have
calculated the two wave-vectors in anisotropic media in
the simplest case: θ = 0.

All the “wave-vectors” must have the same com-
ponents along the interface (K: Kx = K cosϕ,Ky =
K sinϕ), because the continuity of the potential in the
interface (z = 0) must be satisfied for every point (x, y).
The z-component is then defined by Maxwell equations in
function of K for each media. We write:

k±0 = K±W0ẑ,

k−1 = K−W1ẑ. (A.5)



M.-P. Gorza et al.: Van der Waals interactions between atom and birefringent dielectric surface 123

In the vacuum, for 0 < z < d: div E = −∆V = 0 ⇒
K2 + W 2

0 = 0, and then: W0 = iK (K > 0) ensures the
“reflected” potential to vanish at infinity.

Into the birefringent media, for z < 0: div(ε)E = 0,
with E = −∇V , gives a second degree equation:

B
W 2

1

K2
− 2C sinϕ

W1

K
+ cos2 ϕ+A sin2 ϕ = 0

whose solutions are:

W1

K
=
C

B
sinϕ± i

√
−∆
B

,

where

∆ = C2 sin2 ϕ−B
(
cos2 ϕ+A sin2 ϕ

)
= −ε0εe

(
1 +

ε0 − εe
εe

sin2 θ cos2 ϕ

)
. (A.6)

∆ is a priori negative when the two dielectric constants
are real of the same sign. In a dispersive media, they are
complex functions of the frequency, but they take purely
real positive values for imaginary frequencies, and we need
to have the value of Fresnel coefficient only in this case
(see integrals in Eqs. (13)).

We keep only the solution with ImW1 > 0. We can
always choose the orientation of x̂ (the perpendicular to
the optic axis which lies in the interface) in such a way
that (ε0 − εe) sinϕ – and then ReW1 – will be positive.
Finally, we can write:

B
W1

K
− C sinϕ = +i

√
ε0εe

(
1 + δ sin2 θ cos2 ϕ

)
. (A.7)

In equations (A.7), we have used: (ε0 − εe)/εe = δ.
Now, we write the boundary conditions at the interface

for the tangential component of E (or equivalently for the
potential) and for the normal component of D

V +
0 + V −0 = V −1 ,

iW0

(
V +

0 − V −0
)

= [C (iK sinϕ) +B (−iW1)]V −1 .

For a given “incident” field, defining r = V +
0 /V −0 and

t = V −1 /V −0 , this gives the system:

r + 1 = t,

r − 1 = −i
[
C sinϕ− W1

K

]
t

= −t
√
ε0εe

(
1 + δ sin2 θ cos2 ϕ

)
, (A.8)

where we have used equation (A.7) and we obtain:

r =
1−

√
ε0εe

(
1 + δ sin2 θ cos2 ϕ

)
1 +

√
ε0εe

(
1 + δ sin2 θ cos2 ϕ

) ,
t =

2

1 +
√
ε0εe

(
1 + δ sin2 θ cos2 ϕ

) · (A.9)

We are looking for the reflection coefficient for the elec-
tric field, not for the potential. With E+

0 (r) = −ik+
0 V

+
0 (r)

and E−0 (r) = −ik−0 V
−

0 (r), the electric fields are longitudi-
nal (along k±0 ). They have two components: E±0K and E±0z ,
respectively parallel to K and perpendicular to the sur-
face. How to define an electrostatic reflection coefficient
and how to be sure that this coefficient is the quasi-static
limit of a Fresnel coefficient defined for plane waves?

Only p-polarised electric fields have a z-component,
like electrostatic fields. If we make the z-components of
the unit vectors p̂±0 equal (p̂±0 = k−1

0 (∓W0K̂ +Kẑ)), we
have, in the retarded case:

ER
z

EI
z

=
E
p+

0
z

E
p−0
z

=
Ep

+
0

Ep
−
0

·

Then, the ratio of z-components of “reflected” and “inci-
dent” fields in the non-retarded case must be the limit for
ω/c→ 0 of the same ratio in retarded case:

lim
ER
z

EI
z

=
E+

0z

E−0z
=
−iW0V

+
0

+iW0V
−

0

= −r

=

√
ε0εe

(
1 + δ sin2 θ cos2 ϕ

)
− 1√

ε0εe
(
1 + δ sin2 θ cos2 ϕ

)
+ 1

= −E
+
0K

E−0K
,

where r has been defined in equation (A.9).
On the other hand, s-polarised electric fields cannot

have a static limit different of zero. The choice we made
to calculate electrostatic modes: E+

0 (r) = −ik+
0 V

+
0 (r) and

E−0 (r) = −ik−0 V
−

0 (r) implies that E0 belongs to the plane
(K, ẑ) and cannot be parallel to ŝ = K̂ × ẑ. More ex-
actly, this is only possible for vanishing components of k±0
(W0 = iK = 0), and then zero fields. So, we will consider
in equations (15) that we have only p-waves when looking
for the static limit. We obtain then from equations (15):

limRpp = lim
ER
p

EI
p

= lim
ER
z

EI
z

=
E+

0z

E−0z
·

We will call this limit Rst
θ (ϕ) (see Eq. (17)).

From equations (15), we have also: limRsp = 0.

Appendix B: Calculation of the retarded
Fresnel coefficients in the simple case
of the optic axis perpendicular to the surface.
Limit of these coefficients in non-retarded case

In the bulk of an anisotropic media, Maxwell equations
written for a plane wave of wave-vector k lead to the dis-
persion equation:

k2
0D− k2E + (k ·E)k = 0 (B.1)

with: k2
0 = ω2/c2 and D = (ε)E, where (ε) is given in

Appendix A (Eq. (A.1)). In the two cases θ = 0, θ = π/2,
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the tensor is diagonal and we write it under the form:

(ε) =

 ε0 0 0
0 A 0
0 0 B

 ,

with A, B, defined in Appendix A (Eq. (A.2)).
The components of k in the basis (x̂, ŷ, ẑ) are re-

spectively: (u = K cosϕ, v = K sinϕ, kz). The x, y-
components are determined by continuity with the same
components of the wave-vector in vacuum: k0. Our prob-
lem here is to find which values can take kz for a given
K(u, v).

Projecting equation (B.1), one obtains:

k2
0ε0Ex − k2Ex + (uEx + vEy + kzEz)u = 0,

k2
0AEy − k2Ey + (uEx + vEy + kzEz)v = 0,

k2
0BEz − k2Ez + (uEx + vEy + kzEz)kz = 0. (B.2)

Looking for a non-zero solution for the field, we have to
write the condition:

det

 k2
0ε0 − v2 − k2

z uv ukz
uv k2

0A− u2 − k2
z vkz

ukz vkz k2
0B −K2

 = 0.

This leads to a peculiar quartic equation, taking the form:
k4
z −Σk2

z +Π = 0.
When θ = 0 (A = ε0, B = εe), the values of Σ and Π

are respectively:

Σ = 2k2
0ε0 −K2 ε0

εe
−K2,

Π =
(
k2

0ε0 −K2
)(

k2
0ε0 −K2 ε0

εe

)
·

Two solutions appear, which are independent of ϕ:

the ordinary wave: k2
z = W 2

1 = k2
0ε0 −K2,

the extraordinary wave: k2
z = W ′21 = k2

0ε0 −K2 ε0

εe
·
(B.3)

For θ = π/2 (A = εe, B = ε0), one obtains in the same
way:

W 2
1 = k2

0ε0 −K2,

W ′21 = k2
0εe −K2 +

(
1− εe

ε0

)
K2 sin2 ϕ. (B.4)

Now, we have to write boundary conditions at the inter-
face to obtain reflection coefficients. In the vacuum (z > 0)
we write the field like the sum of an incident (s or p) field
and a reflected (s and p) one. In the media, we write the
field like a sum of an ordinary field and an extraordinary
one. For this purpose, we have to specify the polarisations
of these last fields which are no more TE or TM, unlike
in the vacuum. We show here how to do only for the case
of the optical axis perpendicular to the interface. (There

is no more difficulty to calculate the solution when the
axis C lies in the interface, but it is much longer).

We write that the displacement fields of the ordinary
and extraordinary waves are transverse: k1 ·D1 = 0 and
k′1·D′1 = 0, and we write their respective polarisations: D1

is perpendicular to Ĉ (and to k1); D′1 is in the contrary
situated in the plane (Ĉ,k′1), then perpendicular to the
vector Ĉ ∧ k′1 (and perpendicular to k′1).

When θ = 0, the optical axis is parallel to Oz.
For the ordinary wave, with the components of
D1 (D1x = ε0E1x, D1y = ε0E1y, D1z = εeE1z) and those
of k1(u, v,−W1), we can write:

D1z = 0,
u (ε0E1x) + v (ε0E1y) = 0.

This gives the polarisation of the electromagnetic ordinary
field:

E1 =

∣∣∣∣∣∣∣
E1x

E1y = −u
v
E1x

E1z = 0
· (B.5)

For the extraordinary wave, with the components of
D′1
(
D′1x = ε0E

′
1x, D

′
1y = ε0E

′
1y, D

′
1z = εeE

′
1z

)
and those

of k′1(u, v,−W ′1), we have:

k′1 ·D′1 = 0⇒ uε0E
′
1x + vε0E

′
1y −W ′1εeE′1z = 0(

Ĉ ∧ k′1
)
·D′1 = (ẑ ∧ k′1) ·D′1

= −vε0E
′
1x + uε0E

′
1y = 0

which gives the polarisation of the extraordinary electro-
magnetic field:

E′1 =

∣∣∣∣∣∣∣∣∣
E′1x
E′1y =

v

u
E′1x

E′1z =
εe
ε0

K2

uW ′1
E′1x

· (B.6)

The respective magnetic fields can be deduced immedi-
ately:

B1 =

∣∣∣∣∣∣∣∣∣∣∣∣

B1x = −W1

k0

u

v

E1x

c

B1y = −W1

k0

E1x

c

B1z = −K
2

vk0

E1x

c

, B′1 =

∣∣∣∣∣∣∣∣∣∣
B′1x =

v

u

k0

W ′1
ε0
E′1x
c

B′1y = − k0

W ′1
ε0
E′1x
c

B′1z = 0

·

(B.7)

We first suppose an incident wave in the vacuum with
one s (or p)-polarisation: E−0sŝ (or E−0pp̂

−
0 ) and its mag-

netic field: B−0pp̂
−
0 (or B−0sŝ). Reflected wave on the

anisotropic surface will be a superposition of s and p-
polarised waves: E+

0sŝ+E+
0pp̂

+
0 , with their respective mag-

netic fields: B+
0pp̂

+
0 +B+

0sŝ.



M.-P. Gorza et al.: Van der Waals interactions between atom and birefringent dielectric surface 125

One has: k̂±0 ∧ p̂±0 = ŝ and k̂±0 ∧ ŝ = −p̂±0 . So:

B−0p = −E
−
0s

c
, B+

0p = −E
+
0s

c
, B+

0s =
E+

0p

c
, B−0s =

E−0p
c

(B.8)

and also:

K̂

∣∣∣∣∣∣∣
cosϕ

sinϕ

0

ŝ

∣∣∣∣∣∣∣
sinϕ

− cosϕ

0

p̂−0

∣∣∣∣∣∣∣∣∣∣∣∣

W0

k0
cosϕ

W0

k0
sinϕ

K

k0

p̂+
0

∣∣∣∣∣∣∣∣∣∣∣∣

−W0

k0
cosϕ

−W0

k0
sinϕ

K

k0

·

(B.9)

We can write now the boundary conditions for each com-
ponent of the electromagnetic field. One introduces the
quantities: in the case of an s-incident electric field,

Rss =
E+

0s

E−0s
, Rps =

E+
0p

E−0s
, α =

E1x

E−0s
, β =

E′1x
E−0s

(B.10)

in the case of a p-incident field,

Rpp =
E+

0p

E−0p
, Rsp =

E+
0s

E−0p
, γ =

E1x

E−0p
, δ =

E′1x
E−0p
·

(B.11)

In each case, we obtain a system of six equations with
four unknowns, the solution of which gives us the Fresnel
coefficients.

S-system

Using equation (B.9), one gets:

E1x +E′1x = E−0s(sinϕ) +E+
0s(sinϕ)

+E+
0p

(
−W0

k0
cosϕ

)
E1y +E′1y = E−0s(− cosϕ) +E+

0s(− cosϕ)

+E+
0p

(
−W0

k0
sinϕ

)
εe(E1z +E′1z) = E+

0p

(
K

k0

)
B1x +B′1x = B−0p

(
W0

k0
cosϕ

)
+B+

0p

(
−W0

k0
cosϕ

)
+B+

0s(sinϕ)

B1y +B′1y = B−0p

(
W0

k0
sinϕ

)
+B+

0p

(
−W0

k0
sinϕ

)
+B+

0s(− cosϕ)

B1z +B′1z = B−0p

(
K

k0

)
+B+

0p

(
K

k0

)
· (B.12)

This system can also be written, using equa-
tions (B.8, B.10):

α+ β = (1 +Rss) sinϕ−RpsW0

k0
cosϕ

− cosϕ
sinϕ

α+
sinϕ
cosϕ

β = (1 +Rss) (− cosϕ)−RpsW0

k0
sinϕ

ε0
K

(cosϕ)W ′1
β = Rps

K

k0
⇒ Rps = ε0

k0

(cosϕ)W ′1
β

α

(
−W1

k0

cosϕ
sinϕ

)
+ β

(
ε0
k0

W ′1

sinϕ
cosϕ

)
=

(Rss − 1)
W0

k0
cosϕ+Rps sinϕ

α

(
−W1

k0

)
+ β

(
−ε0

k0

W ′1

)
=

(Rss − 1)
W0

k0
sinϕ−Rps cosϕ

α
K

k0 sinϕ
= (1 +Rss)

K

k0
⇒ (1 +Rss) =

α

sinϕ
· (B.13)

The third and sixth equations, when inserted in the first
one, give the expected result Rps = 0 (one cannot have:
W ′1 = −ε0W0) and then β = 0. The first and the fifth
equations give now:

Rss =
W0 −W1

W0 +W1
(B.14)

whose static limit is zero, because then: W0,W1 → iK
(see Eqs. (A.5, B.3) when k0 → 0).

P-system

When the incident wave is a p-wave, the “continuity” of
the six components at the boundary gives:

E1x +E′1x = E−0p

(
W0

k0
cosϕ

)
+E+

0s(sinϕ)

+ E+
0p

(
−W0

k0
cosϕ

)
E1y +E′1y = E−0p

(
W0

k0
sinϕ

)
+ E+

0s(− cosϕ) +E+
0p

(
−W0

k0
sinϕ

)
εe(E1z +E′1z) = E−0p

(
K

k0

)
+E+

0p

(
K

k0

)
B1x +B′1x = B−0s(sinϕ) +B+

0p

(
−W0

k0
cosϕ

)
+ B+

0s(sinϕ)

B1y +B′1y = B−0s(− cosϕ) +B+
0p

(
−W0

k0
sinϕ

)
+ B+

0s(− cosϕ)

B1z +B′1z = B+
0p

(
K

k0

)
· (B.15)
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Using equations (B.8, B.11), these equations (B.15) can
be written:

γ + δ = (1−Rpp)
(
W0

k0
cosϕ

)
+Rsp sinϕ(

−cosϕ
sinϕ

)
γ +

(
sinϕ
cosϕ

)
δ =

(1−Rpp)
(
W0

k0
sinϕ

)
−Rsp cosϕ

ε0

(
k0

W ′1 cosϕ

)
δ = 1 +Rpp

γ

(
−W1

k0

cosϕ
sinϕ

)
+ δ

(
ε0
k0

W ′1

sinϕ
cosϕ

)
=

(1 +Rpp) sinϕ+Rsp
(
W0

k0
cosϕ

)
γ

(
−W1

k0

)
+ δ

(
−ε0

k0

W ′1

)
=

− (1 +Rpp) cosϕ+Rsp
(
W0

k0
sinϕ

)
γ

(
1

sinφ

)
= Rsp. (B.16)

The first and last equations, when combined with the third
one, yield:

Rpp =
ε0W0 −W ′1
ε0W0 +W ′1

· (B.17)

The fourth one for example gives Rsp = 0 (because one
cannot have: −W1 = W0).

Looking now for the electrostatic limit (see formu-
las (B.3)):

W0 → iK W1 → iK W ′1 → iK
√
ε0

εe

limRpp =
√
ε0εe − 1
√
ε0εe + 1

=
ε̄− 1
ε̄+ 1

= Rstat
θ=0

We recover the image coefficient of reference [18] and also
check that our electrostatic coefficient is the static limit
of the Fresnel coefficient Rpp.
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