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Parametric vector solitons in tetragonal crystals
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We introduce novel types of spatial vector soliton that can be generated in anisotropic optical media, such as
tetragonal crystals with third-order nonlinear susceptibility. We demonstrate that these vector solitons pro-
vide a nontrivial generalization to both conventional vector solitons of birefringent cubic media and parametric
solitons supported by third-order cascaded nonlinearities. © 2003 Optical Society of America
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The study of complex nonlinear dynamics induced by
the vectorial nature of the electromagnetic f ield re-
cently attracted renewed interest because of its experi-
mental realization in soliton physics. The concept of
an optical vector soliton is usually associated with bi-
refringent Kerr media, in which interaction of two po-
larizations of light produces a solitonlike bound state of
two orthogonally polarized f ield components.1 Vector
solitons can also exist as a result of incoherent mu-
tual trapping induced by the cross-phase interaction
between the circularly polarized components of light
in Kerr media.2

In the waveguide geometry, spatial vector solitons
can appear as a superposition of the modes of the wave-
guide induced in a nonlinear medium through self- and
cross-phase modulations. In particular, Aitchison
et al.3 generated spatial mixed-polarization solitons
in AlGaAs planar waveguides and demonstrated
the complicated polarization dynamics of solitonlike
beams that is related to and can be explained by the
existence of linearly and elliptically polarized vector
solitons. A special case of such solitons corresponds
to the so-called Manakov solitons, for which the ratio
of self- to cross-phase modulation is unity and the
energy exchange vanishes.4

Many studies of the third-order optical effects in cen-
trosymmetric crystals have been performed for non-
linear crystals with cubic symmetry. In particular,
spatial vector solitons have been analyzed theoretically
and observed experimentally in the cubic crystals.3 – 5

However, many interesting effects can be expected
in centrosymmetric nonlinear crystals that belong to
crystallographic groups with lower symmetry.

To demonstrate the importance of symmetries in
nonlinear interactions, we consider the conventional
four-wave mixing process for the light propagating
along the z axis. For this geometry and cubic sym-
metry, the relevant components of the third-order
susceptibility tensor x

�3�
ijkl can be reduced, because of

the space and permutation symmetries, to only three
independent components (see, e.g., Ref. 6) as follows:
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cies should be taken into account as well. However,
for tetragonal crystals (or, more precisely, crystals
of symmetry classes 4, 4̄, or 4�m), we find that the
space and permutation symmetries allow additional
independent components, x
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yyxy � x
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yyyx

and x
�3�
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�3�
yxxx, which are connected

by the relation x
�3�
xxxy � 2x

�3�
xyyy . The additional tensor

components x
�3�
xxxy and x

�3�
xyyy may change the properties

of nonlinear interactions and vector solitons.7

Studies of nonlinear optical interactions in cen-
trosymmetric tetragonal crystals are rather limited.
Among a few publications, we would like to mention
a study in which measurements of nonlinear compo-
nents were reported8 and a theoretical analysis of the
nonlinear optical activity9 in PbMoO4. However, the
role of the additional tensor components is extremely
important, since the asymmetric components generate
parametric coupling between the polarizations that
dramatically changes the properties of the vector soli-
tons because of the effective nonlinear optical activity.
In this Letter we study both linear and elliptically
polarized vector solitons in tetragonal crystals and
discuss their stability.

We consider the propagation of optical beams along
the z axis and write out the nonlinear polarization
terms in the following form:
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We consider soliton formation in a slab waveguide, and
present the field components as Ex � Ax�x, z�Bx� y�
and Ey � Ay �x, z�By� y�, where Bx,y � y� are the pro-
files of the guided modes, and in the following we
assume normalization

R
1`

2` jBx, y � y�j2dy � 1. For sim-
plicity, we neglect the difference in the modal profiles,
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Bx, y� y� � B� y�, so that the propagation constants of
the guided modes Kx and Ky become close to each
other, jKx 2 Ky j ø Kx,y � K.

To derive the governing model, we average the non-
linear equations over the waveguide cross section ( y)
and obtain the reduced equations for Ax,y �x, z�, tak-
ing into account nonlinear coupling according to Eq. (1)
and the beam diffraction along the x axis in the parax-
ial approximation:

i
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Pz�Ax,Ay� � 0 ,
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Py �Ax,Ay� � 0 ,

(2)

where c is the speed of light, v is the circular fre-
quency, and S �

R
1`

2` B4� y�dy�
R

1`

2` B2� y�dy. It is
convenient to study Eqs. (2) in normalized form,
with the dimensionless variables Z � z�z0 and X �
x

p
2K�z0 and the envelope functions �u, v� �X,Z� �

�Ex,Ey� �x, z�exp�2iKxz� �v�c� �3pSz0x
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where d � z0�Kx 2 Ky � is the normalized phase mis-
match and s1 � x

�3�
xyxy�x
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xxxx, s2 � x
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xxyy�x

�3�
xxxx, and g �

x
�3�
xxxy�x

�3�
xxxx are the nonlinear coefficients. With no

loss of generality, we consider the case d $ 0, as
otherwise it is always possible to swap the definition
of the envelope functions u and v. Moreover, unless
the modes are exactly matched, we can choose the
coherence distance as a length scale, z0 � jKx 2 Ky j

21,
and accordingly normalize the mismatch parame-
ter to unity, d � 1. Since we neglect absorption,
Eqs. (3) conserve the normalized beam power,
P �

R1`

2`�juj2 1 jvj2�dx.
We now look for soliton solutions of Eqs. (3)

in the form u�x, z� � u0�x�exp�ibz� and v�x, z� �
v0�x�exp�ibz�, where b is the nonlinearity-induced
shift of the propagation constant. In the limit b ¿ 1,
the soliton solutions can be found analytically. First,
we find four different solutions for the linearly polar-
ized solitons, where the orthogonal components of the
electric field are in phase:
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where s � 2s1 1 s2, C � �k�2� 6
p

�k�2�2 1 1, and
k � �1 2 s 6 ��s 2 1�2 1 16g2�1�2���2g�. The corre-
sponding soliton powers can be found as P0 � 8

p
b��1 1

s 1 gk�. Second, we find solutions for elliptically po-
larized solitons, where the field components are p�2
out of phase:

u0�x� � 6iv0�x� � �2b��1 1 2s1 2 s2��1�2sech�
p

b x� ,
(4)

and P0 � 8
p

b��1 1 2s1 2 s2�. For large b, two pairs
of the linearly polarized solitons have the same power,
whereas the elliptically polarized solutions do not de-
pend on g. This degeneracy is removed for smaller b.

For intermediate values of b, the vector solitons are
found numerically. The powers of the vector solitons
in tetragonal crystals (when g fi 0) are shown in
Fig. 1(b). For comparison, in Fig. 1(a) we show the
results for the vector solitons in cubic crystals, which
can be found as solutions of Eqs. (3) with g � 0. Ex-
amples of the soliton profiles are displayed in Fig. 2.

When g � 0, Eqs. (3) have simple scalar solutions
with either u � 0 or v � 0, and the linearly and el-
liptically polarized vector solitons appear at the bi-
furcation points O1 and O2, respectively. However,

Fig. 1. Bifurcation diagram for vector solitons in (a) cubic
and (b) tetragonal crystals for s1 � s2 � 2�3. Dotted
curves, elliptic polarization; solid curves, linearly polar-
ized solitons with in-phase components; dashed curves,
linearly polarized solitons with out-of-phase components.
O1 and O2 are the bifurcation points.

Fig. 2. Characteristic profiles of the vector solitons in
tetragonal crystals: (a) in-phase and (b) out-of-phase
linearly polarized solitons corresponding to the A and B in
Fig. 1(b); (c) amplitude and (d) phase prof iles of elliptically
polarized solitons [point C in Fig. 1(b)].
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Fig. 3. Generation of type A vector soliton by an
x-polarized input Gaussian beam: (a) peak intensities of
two polarization components, (b) spatial evolution of the
y-polarized beam component.

because of the parametric coupling between the f ield
components in a tetragonal crystal, the solitons al-
ways have two nonzero components. This feature re-
sembles the properties of spatial solitons modif ied by
third-harmonic generation.10

Conventional vector solitons are invariant with re-
spect to the transformations u ! 2u and v ! 2v, and
that is why the power dependencies for out-of-phase
and in-phase solitons exactly coincide in Fig. 1(a).
However, this degeneracy is lifted when g fi 0, and, in
agreement with our analytical results, five branches
of vector solitons emerge at large b, as demonstrated
in Fig. 1(b). Profiles of the in-phase and out-of-phase
vector solitons are shown in Figs. 2(a) and 2(b), respec-
tively. On the other hand, the structure of elliptically
polarized solitons becomes less trivial, as the relative
phase shift between u and v components is no longer
constant across the soliton [see Figs. 2(c) and 2(d)].

Another novel feature is the absence of proper soli-
tons for b , 0, since in this region the u component
is in resonance with linear waves, and spatially local-
ized solutions are possible only when u 	 0. However,
this condition can be satisfied only when g � 0, as
otherwise the u field is always generated from the v
component because of effective nonlinear optical activ-
ity. In the region b , 0, we anticipate the existence
of quasi-solitons with oscillating tails, similar to those
found earlier for the problem of multistep cascading.11

To study stability and dynamics of these novel vec-
tor solitons, we perform direct numerical simulations
of Eqs. (3) with various input conditions. In Fig. 3, we
show generation of a vector soliton by an x-polarized in-
put Gaussian beam. First, we observe the parametric
generation of orthogonally polarized component v and
then strong interaction of two components, resulting
in periodic oscillations. As the radiation is emitted
from the interaction region, the bound state converges
to a stable vector soliton. Through numerical simu-
lations, we find that only linearly polarized solitons
of the types A and B [marked in Fig. 1(b)] are stable,
whereas all other soliton branches are unstable. How-
ever, for g . 0 the y-polarized component is generated
in-phase with the other component and, therefore, only
the generation of the type A soliton is observed.

In conclusion, we have introduced and analyzed
vector solitons in tetragonal crystals. Since the f ield
polarization components are coupled parametrically,
these novel solitons provide a nontrivial generalization
to both conventional solitons of birefringent cubic me-
dia and parametric solitons supported by third-order
cascaded nonlinearities.
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