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ABSTRACT Generation of a fifth harmonic by the cascading
of two phase-matched third-order processes in a single cen-
trosymmetric nonlinear medium with a focused fundamental
beam is investigated theoretically. With the help of analytical
and numerical investigations the optimized conditions for max-
imum conversion into the fifth harmonic are found. In general
the optimal position of focusing depends on the values of the
mismatches ∆k1 and ∆k2 for both “steps” of the third order cas-
cading (ω+ω+ω = 3ω; 3ω+ω+ω = 5ω). It is shown that for
best efficiency this method of fifth harmonic generation requires
specially chosen ∆k1,opt and ∆k2,opt and focusing in the cen-
ter of the nonlinear media. If the phase matching parameters are
fixed and they deviate from the optimal values, then the opti-
mal strength of focusing and position of the focus spot should
be calculated according to the analysis presented here.

PACS 42.65.-k; 42.65.Ky; 42.79.Nv

1 Introduction

Generation of high order harmonics is an efficient
way to obtain coherent radiation in the UV and VUV region
when it is needed. Cascading processes play an important
role in these types of interactions [1, 2]. This work considers
theoretically fifth harmonic generation (FHG) by third order
cascading in a single nonlinear medium, with a focused fun-
damental beam. This investigation is an extension of previous
work [3] where the efficiency of cascaded third harmonic gen-
eration in a single quadratic crystal in a focussed beam, has
been considered.

Theoretical descriptions of the FHG in a single cubic
medium has been published by Tomov and Richardson [4],
while the first experimental work on fifth harmonic gen-
eration in a single centrosymmetic media was reported by
Akhmanov et al. [5]. Later, several works contributed to the
understanding of the interference of the direct and cascade
processes [6–10]. An efficient fifth harmonic can be gener-
ated when phase matching exists for the direct process ω+
ω+ω+ω+ω = 5ω. Additionally, the fifth harmonic can be
generated through several channels of third-order cascading.
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For example, those generated in the nonlinear media third
harmonic in the first step of possible cascading, can produce
the fifth harmonic through one of the interactions 3ω+ω+
ω = 5ω or 3ω+3ω−ω = 5ω as summarized in Table 1.

A common way to increase FHG efficiency is the use of
a focused fundamental beam. Conditions for optimal focus-
ing for the direct process and for the case when only one of
the steps is phase matched, are considered in [4, 7–9]. The
fifth harmonic generation by third order cascading however, is
most efficient when both steps (i.e. ω+ω+ω = 3ω and 3ω+
ω+ω = 5ω) are simultaneously phase matched. Although
it is not straight forward, such simultaneous phase match-
ing of several processes can be achieved by using a multi-
component gas mixture or appropriate quasi-phased-matched
(QPM) structures [2, 11, 12].

To best of current knowledge there is no systematic inves-
tigation of the role of focusing on the efficiency of FHG in this
very interesting case. This paper presents a detailed study of
the optimal conditions for FHG with a focused fundamental
beam through the chain of interactions A as shown in Table 1.
The system of reduced amplitude equations (1) describing the
process of fifth harmonic generation in focused beams in three
levels of approximation were solved. The case of weak and ar-
bitrary focusing are considered separately in the condition of
the non depleted approximation of the fundamental beam. To
account for the deletion of the fundamental beam, a direct nu-
merical approach was used. It was found that optimal phase

Type of the I step II step Observed at phase matching
process

A cascaded ω+ω+ω 3ω+ω+ω k1 + k1 + k1 ∼ k3
= 3ω = 5ω or/and

k3 + k1 + k1 ∼ k5
or

k1 + k1 + k1 + k1 + k1 ∼ k5

B cascaded ω+ω+ω 3ω+3ω−ω k1 + k1 + k1 ∼ k3
= 3ω = 5ω or/and

k3 + k3 − k1 ∼ k5
or

k1 + k1 + k1 + k1 + k1 ∼ k5

C direct ω+ω+ω+ω+ω = 5ω k1 + k1 + k1 + k1 + k1 ∼ k5

TABLE 1 Some of the interactions and the phase matching conditions for
fifth harmonic generation in single nonlinear cenrosymmetric media
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mismatches ∆k1,opt and ∆k2,opt exist for both steps and that
the optimal position of the beam waist is in the center of the
nonlinear medium. Any deviation of ∆k1 and ∆k2 from their
optimal value results in a shift of the optimal position of the
focus.

2 Main equations

The effect of FHG as a result of the simultaneous
action of the processes of third harmonic generation, and four
wave mixing of the fundamental and third harmonic wave
(chain A in Table 1), can be described by the following system
of reduced amplitude equations, derived in the assumption of
zero absorption of all interacting waves:

(
∂

∂z
+ i

2k1
∆⊥

)
A1 =

− iγ1 A3
(

A∗
1

)2
exp(−i∆k1z)−2iγ2 A5 A∗

3 A∗
1 exp(−i∆k2z),(

∂

∂z
+ i

2k3
∆⊥

)
A3 =

− iγ1 A3
1 exp(i∆k1z)− i3γ2 A5

(
A∗

1

)2
exp(−i∆k2z),(

∂

∂z
+ i

2k5
∆⊥

)
A5 = −i5γ2 (A1)

2 A3 exp(i∆k2z). (1)

Here A1, A2, A3 denote the complex amplitudes of the funda-
mental, third and the fifth harmonic waves, ∆⊥ stands for the
operator ∂2

∂x2 + ∂2

∂y2 , and γ1 = 6πχ
(3)
(eff,THG)/(8λ1n1), and γ2 =

6πχ
(3)
(eff,FWM)/(8λ1n1) are the nonlinear coupling coefficients.

The wave-vector mismatches are defined as ∆k1 = k3 −3k1
and ∆k2 = k5 − k3 −2k1, where kj are the wave vectors of the
waves involved in the process.

For low input fundamental intensities, the effects of de-
pletion of the fundamental and third harmonic waves can be
neglected and eqn. (1) reduces to

(
∂

∂z
+ i

2k1
∆⊥

)
A1 = 0,

(
∂

∂z
+ i

2k3
∆⊥

)
A3 = −iγ1 A3

1 exp(i∆k1z),
(

∂

∂z
+ i

2k5
∆⊥

)
A5 = −i5γ2 A3 A2

1 exp(i∆k2z). (2)

Equation (2) allows some of the results to be obtained in an-
alytical form that will help to gain physical insight of the
process of cascaded FHG.

The other possible chain of cascaded interactions leading
to FHG (marked as B in Table 1) can be described with the
system of differential equations similar to (2) except for the
last equation that has the form:

(
∂

∂z
+ i

2k5
∆⊥

)
A5 = −i5γ2 (A3)

2 A∗
1 exp(i∆k4z) (3)

where ∆k4 = k5 −2k3 + k1.
The rest of this paper will concentrate on the chain of pro-

cesses A; results for the second cascading possibility can be
obtained in a similar way.

Systems (1) and (2) are solved assuming only one input
beam – the fundamental that has Gaussian spatial distribution.
Its propagation is described by [4, 9]

A1(x, y, z) = Aou1(x, y, ξ1) (4)

with

u1(x, y, ξ1) = 1

1 − iξ1
exp

[
− x2 + y2

w2
o1(1 − iξ1)

]

where ξ1 = 2(z − zo)/b1, with zo is marked the position of
the focal spot, b is the confocal parameter of the fundamental
beam, b1 = k1w

2
o1, wo1 is the focal spot radius, and Ao is the

electric field amplitude at the center of the focal spot (0, 0, zo ).
With these notations the distribution of the fundamental field
at the entrance of the nonlinear medium (z = 0) is

A(x, y, 0) = Ain exp

[
−

(
x2 + y2)(

1

w2
in

− ik1

2R1

)]
, (5)

where the amplitude, beam radius, and wave-front curvature

at the nonlinear medium entrance are Ain = (
w2

o1

w2
in

− i
b

2R1
)Ao,

w2
in = w2

o1(1 +4
z2

o

b2
), and R1 = (zo + b2

4zo
) respectively.

3 Non depleted approximation

The starting point of considerations will be the so-
lution for the amplitude of the fifth harmonic beam that is
obtained from (2) by applying the procedure of trial solution
as described in [13, 14].

It must be emphasized that in the non depletion approxi-
mation the fundamental beam will preserve its Gaussian form.
Moreover, the generated third and fifth harmonics will be
Gaussian beams as well, but with different focal spot radii:

A3(x, y, z) = T(z)u3(x, y, ξ3) (6a)

with u3(x, y, ξ3) = 1

1 − iξ3
exp

[
− x2 + y2

w2
o3(1 − iξ3)

]

A5(x, y, z) = F(z)u5(x, y, ξ5), (6b)

with u5(x, y, ξ5) = 1
1−iξ5

exp

[
− x2+y2

w2
o5(1−iξ5)

]

In (6a) and (6b), ξ3 = 2(z − zo)/b3, and ξ5 = 2(z − zo)/b5.
The amplitudes Ao, T and F that appear in (4) and (6) are the
electric field amplitudes that correspond to the center of the
focal spot (0, 0, zo). Importantly, they depend on the length of
the nonlinear media. The spot radii are connected by the rela-
tion wo j = wo j√

j
[13–15]. As a result all interacting waves have

practically the same confocal parameters b5 ∼= b3 ∼= b1 = b
(neglecting a slight difference in the index of refraction of the
three waves) and this means that ξ5 ∼= ξ3 ∼= ξ1 = ξ .

Substituting (4) and (6) into (2) and noting that

(u1)
3 = u3

(1 − iξ)2

(u1)
2u3 = u5

(1 − iξ)2
(7)
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gives the following system of first order differential equations,
that are equivalent to (2) but easier to solve.

∂Ao

∂z
= 0,

∂T

∂z
= − iγ1 A3

o

(1 − iξ)2
exp(i∆k1z),

∂F

∂z
= − i5γ2TA2

o

(1 − iξ)2
exp(i∆k2z). (8)

The straightforward solution of (8) gives

T(ξ) = − iγ1 A3
ob

2
exp(i∆k1zo)

ξ∫
β1

exp(i∆k1bτ/2)

(1 − iτ)2
dτ (9)

F = G

β2∫
β1

exp(i∆k2bξ/2)

(1 − iξ)2

ξ∫
β1

exp(i∆k1bτ/2)

(1 − iτ)2
dτdξ (10)

where the limits of integrations are β1 = −m(1 +2l) , β2 =
m(1 −2l); with m denoting the strength of focussing m =
L/b, (L is the length of the nonlinear medium), and l is the
dimensionless parameter indicating the position of the focus,
l = (2zo − L)/2L. The coefficient G in (10) is

G = −5γ1γ2 A5
ob2

4
exp(izo(∆k1 +∆k2)). (11)

The efficiency of the fifth harmonic generation is defined as

η5ω =

∞∫
−∞

∞∫
−∞

A5 A5
∗dxdy

∞∫
−∞

∞∫
−∞

A1 A∗
1dxdy

. (12)

After performing the integration, the following is obtained

η5ω = 1

5

|F|2
|Ao|2 .

Equation (10) can be solved analytically in the weak focussing
approximation. For arbitrary focusing (10) has to be solved
numerically.

3.1 Weak focussing limit

When considering very weak focusing, m � 1 the
limits of integration in (10) will be much smaller than 1 and as
a result yields

F(L) =4G exp(−ima3l)

a3

[
a3

a1a2
exp

(
im(a2 −a1)

2

)

−exp(ima3/2)

a1
− exp(−ima3/2)

a2

]
, (13)

where, a1 = b∆k1 +4, a2 = b∆k2 +4, a3 = a1 +a2. Analyz-
ing expression (13) gives four possibilities for the phase-
matched generation of the cascaded fifth harmonic in a cubic
media in a condition of weak focussing:

i) Phase-matching for the first step ω+ω+ω = 3ω. The
maximum FH efficiency is obtained when a1 = b∆k1 +
4 = 0 and the required deviation from exact phase match-
ing is: ∆k1L = −4m. The conversion efficiency into the
fifth harmonic with the condition a1 � a2 is

η5ω(a1 � a2) = 20γ 2
1 γ 2

2 |Ao|8b4

a2
3

sin2(ma1/2)

a2
1

; (14)

ii) Phase-matching for the second step. The maximum FH
efficiency is obtained when a2 = b∆k2 +4 = 0 that corres-
ponds to the deviation ∆k2L = −4m. Then for a2 � a1 the
following is obtained

η5ω(a2 � a1) = 20γ 2
1 γ 2

2 |Ao|8b4

a2
3

sin2(ma2/2)

a2
2

; (15)

iii) Phase-matching when both steps ω+ω+ω = 3ω and
ω+ω+3ω = 5ω are non-phase-matched, but a3 = a2 +
a1 ≈ 0 . The optimal phase mismatch for this case is
(∆k2 +∆k1)L = ∆k3L = −8m. The generated fifth har-
monic when a3 � a1, a2 is governed by

η5ω(a3 � a1, a2) = 20γ 2
1 γ 2

2 |Ao|8b4

a2
1

sin2(ma3/2)

a2
3

; (16)

iv) The last and most interesting possibility that is charac-
terized with the highest FH efficiency is the situation
when both steps are simultaneously phase-matched, a1 ≈
0, a2 ≈ 0. The expression for FH conversion efficiency in
these conditions takes the form:

η5ω(a1, a2 ≤ 1) ≈ 20γ 2
1 γ 2

2 |Ao|8b4

× sin2(ma2/2)

a2
2

sin2(ma1/2)

a2
1

. (17)

The optimal deviations from the exact phase-matching
condition for the both steps are equal: ∆k2L = ∆k1L = −4m.
Equation (17), when double phase-matching conditions are
fulfilled, exceeds (14)–(16) with the magnitude of the square
of the normalized phase mismatch |a1|2 or |a2|2of the “step”
that is not phase-matched.

The main conclusion at this level of consideration is that
even at weak focussing a deviation from the exact phase
matching conditions is required in order to optimize the pro-
cess of cascaded FHG. The required “shift” from the exact
phase matching is −4m. It was verified by direct numerical in-
tegration of (10) that the analytical formulas (13)–(17) can be
used until m < 1.

3.2 Arbitrary focussing

This section considers the arbitrary value of the
strength of focusing m, while still keeping the nondepletion
approximation for the fundamental and third harmonic beam.
The efficiency conversion in FH is calculated from (10) and is
found to be:

η5ω = 5S4

16

∣∣∣∣∣∣∣
β2∫

β1

exp(i∆k2bξ/2)

(1 − iξ)2

ξ∫
β1

exp(i∆k1bτ/2)

(1 − iτ)2
dτdξ

∣∣∣∣∣∣∣

2

(18)
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FIGURE 1 FHG efficiency as a function of both phase matching conditions
(∆k1b) and (∆k2b) for two different positions of the focal spot a l = 0 and
b l = 0.4. Each efficiency distribution is normalized to its own maximum.
Normalized input intensity S = 0.3

In (18) S = √
γ1γ2|Ao|2b = √

γ1γ2
8P1

εocλ1
(where P1 – input

power)
The dependence of η5ω on the four parameters, describ-

ing the system: strength of focusing m, position of focus-
ing l, and conditions for phase matching of both steps ∆k1b,
∆k2b were investigated. For maximum FHG efficiency it is
necessary to tune both mismatches to their optimal values
(∆k1,∆k2) = (∆k1,opt,∆k2,opt). This can be seen on the con-
tour plots shown in Fig. 1a and b as calculated for four dif-
ferent strengths of focusing. Figure 1 a illustrates the 2D
phase-matching curves when focusing is in the center of the
nonlinear medium, l = 0 while Fig. 1b is calculated for the
focusing position l = 0.4, close to the output face of the non-
linear medium. Each efficiency distribution is normalized to
its own maximum. Figure 2a and b allow the obtaining of the

FIGURE 2 a FHG efficiency η5ω calculated at optimal phase matching con-
ditions as a function of position of focusing l and b optimal phase matching
for both steps for several values of level of focusing m and the position of
focusing l. Normalized input intensity S = 0.3
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FIGURE 3 FHG efficiency as a function of the strength of focussing m for
focusing in center of the nonlinear cenrosymmetric media

maximum η5ω for arbitrary values of these four parameters.
Figure 2a shows the dependence of the conversion efficiency
η5ω on the strength of focusing m, and the position of focus-
ing l. The optimal (∆k1b)opt and (∆k2b)opt for each point of
Fig. 2a can be found from Fig. 2b. For example, as seen in
Fig. 2a point B (m = 5, l = 0.4, S = 0.3 with efficiency η5ω =
1.04%), this corresponds to the following optimal phase mis-
matches: (∆k1b)opt = −0.85, (∆k2b)opt = −3.75, as can be
found from Fig. 2b.

It was found that in the process of cascaded fifth harmonic
generation in a single cubic nonlinear medium, with a fo-
cussed beam, that for maximum efficiency the phase matching
∆k1b and ∆k2b have optimal values, different from 0, and
that these values are different for both m and l. However, for
best conversion the optimal position for focusing is in the cen-
ter of the nonlinear medium. Figure 3 shows the dependence
of the FH efficiency on the focusing parameter m. The opti-
mal strength of focusing for a small conversion efficiency is
m = 4.02. Recall that the direct process of FHG at the phase
matching condition has no optimum focusing parameter [8].

4 Accounting for depletion

For calculating the process of the single crystal
cascade FHG, without neglecting the depletion of the fun-
damental and third harmonic beams, and evaluating the ap-
plicability of the nondepleting approach used in the pro-
ceeding sections, (1) was solved by direct numerical inte-
gration. For this purpose FORTRAN code was written based
on the Split-Step Fourier Method. The base principle of this
method is the assumption that in propagating the nonlinear
media over a small distance h, the diffraction and nonlin-
ear effects act independently. The Fast Fourier Transform-
ation (FFT) algorithm was used to calculate the diffraction
effects, and the Runge–Kuta method was used for the nonlin-
ear effects.

The investigation, carried out at low input fundamental in-
tensities, confirms the results in paragraph 3.2. – the optimal
position of focusing is in the center of the nonlinear medium
with (∆k1b)opt and (∆k2b)opt, and the optimal strength of fo-
cusing has the same value. Figure 4 shows calculations for

FIGURE 4 Dependence of FHG efficiency on normalized input intensity.
Solid line – calculations with the semi analytical approach given in Sect. 3.2.
Dash line – direct numerical integration of system (1) for the case γ1 = γ2

m = 1; 2; 3 and 4, and allows the establishment of the max-
imum normalized intensity of the semi analytical approach
described in Sect. 3.2. It can be concluded that this approach
can be used for the normalized fundamental beam intensity
S ≤ 0.3. In addition, it is seen that with the depletion effects
taken into account, the maximum conversion practically does
not depend on the strengths of focusing.

5 Conclusion

In conclusion, this work presented both analytical
and numerical investigations of the process of cascaded fifth
harmonic generation in single centrosymmetric nonlinear me-
dia, in a condition of simultaneous phase matching of both
steps and a focused fundamental beam. If the design of the
nonlinear media allows tuning of the phase matching condi-
tions to its optimal values, then optimal focussing is in the
center of the crystal. If the phase matching parameters can not
be changed and they deviate from the optimal values, then the
optimal position of the focus spot should be calculated accord-
ing to the analysis presented here.
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