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Cascaded fourth-harmonic generation in a
single nonlinear crystal
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We investigate theoretically the process of phase-matched fourth-harmonic generation in a single quadratic
crystal. In the case of a plane-wave fundamental or weak focusing, the results have an analytical form. The
optimal focusing position of the fundamental beam depends on the values of the mismatches for each of the two
steps of the second-order cascading: doubling of the fundamental frequency and doubling of the frequency of
the generated second-harmonic wave. It is shown that the optimized scheme for the cascaded single-crystal
fourth-harmonic generation requires specially chosen mismatches of the two steps and focusing into the center
of the nonlinear media. © 2005 Optical Society of America

OCIS codes: 190.0190, 190.2620, 190.4410.
v
t
t
=

r
t
w
t
c
f
p
c
t
b
b
s
m
D
d
r
p
m
e
b

t
s
c
f
t
m
r

2
T
t

. INTRODUCTION
he tendency for miniaturization and design of compact

ntegrated optical devices stimulates the research and de-
elopment of single-crystal devices for efficient third-,
ourth- and fifth-harmonic generation. Multistep cascad-
ng as a method for high-order harmonic generation in
ingle nonlinear media has been the subject of intensive
nvestigations for the past three decades. For example,
hird-harmonic generation in a single quadratic crystal
as been studied both theoretically and experimentally in
number of publications reviewed in Ref. 1. Recently sev-

ral papers reported single-crystal third-harmonic gen-
ration with efficiency exceeding 20%.2–4 Fifth-harmonic
eneration in a single cubic medium has also been studied
oth experimentally and theoretically in a number of pub-
ications, e.g., Refs. 5–10. In Refs. 11–13 we investigated
he generation of the third and fifth harmonics by cascad-
ng two phase-matched processes in a single nonlinear

edium with a focused fundamental beam.
Another important example of multistep cascading in-

eraction, which could have significant application, is the
ingle-crystal fourth-harmonic generation (FoHG) based
n second-order cascading. There are two possible cas-
ades of second-order processes that will lead to FoHG.

(a) The second-harmonic field is the only intermedi-
te field. The generation of the fourth harmonic involves
wo frequency-doubling processes: �+�=2� and 2�+2�
4�.

(b) Both second-harmonic and third-harmonic fields
re intermediate fields. The generation of the fourth har-
onic involves frequency doubling of the fundamental,

ollowed by two sum-frequency-generation processes: �
�=2� ,2�+�=3�, and 3�+�=4�.

In both cases the fourth-harmonic amplitude will be
roportional to ���2��3. Which of the two cases will be more
ffective depends on the phase-matching conditions. Ob-
0740-3224/05/081691-8/$15.00 © 2
iously, the first one is easier to be realized in that only
wo phase-matching conditions have to be fulfilled simul-
aneously. Here we will consider the interaction �+�
2� and 2�+2�=4�.
The first experiment with FoHG in a single crystal is

eported in the research of Akhmanov et al.,14 in which
hey investigated FoHG in a lithium formiate crystal. It
as concluded that the generated fourth harmonic is due

o the simultaneous action of two- and three-step cas-
aded processes with required quadratic, cubic, and direct
ourth-order nonlinearities. Single-crystal FoHG is re-
orted in CdGeAs2,15 LiNbO3,16–18 and KTP19 with effi-
iency well below 1% in that one of the steps is far from
he phase-matched condition. As shown in Refs. 20–23, if
oth steps are phase matched, efficiency close to 100% can
e expected. Some possibilities for double-phase-matched
ingle-crystal FoHG by using homogeneous quasi-phase-
atched (QPM) structures are shown in Refs. 24 and 25.
ouble-phase-matched schemes for FoHG in two-
imensional nonlinear photonics crystals are proposed in
ecent studies.26–28 However, in spite of the published pa-
ers, there is no systematic investigation of the phase-
atched conditions and efficiency for single-crystal FoHG

ither for a plane wave or for a focused fundamental
eam.
Here in this study we present theoretical analysis of

he phase-matching conditions and the efficiency for
ingle-crystal FoHG for both weak and strong focusing
onditions in nondepleted approximation. The analytical
ormula valid for weak focusing can be easily adopted for
he plane-wave case. We demonstrate that double phase
atching can be achieved with the so-called phase-

eversed QPM structure.

. SOLUTION FOR PEAK AMPLITUDES
he effect of FoHG, as a result of simultaneous action of

he processes of second-harmonic generation and sum-
005 Optical Society of America
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requency mixing of the second-harmonic waves, is de-
cribed by the following system of differential equations,
erived with the assumption of zero absorption of all in-
eracting waves:

� �

�z
+

i

2k1
���A1 = − i ��1A2A1

* exp�− i�k1z�,

� �

�z
+

i

2k2
���A2 = − i �1A1

2 exp�i�k1z�

− i��2A4A2
* exp�− i�k2z�,

� �

�z
+

i

2k4
���A4 = − i�2A2

2 exp�i�k2z�. �1�

ere A1 ,A2, and A4 denote the complex amplitudes of the
undamental, second-harmonic, and fourth-harmonic
aves, �� stands for the operator ��2 /�x2�+ ��2 /�y2�, �1
2�deff,I /�1n2, �2=4�deff,II /�1n4, ��1= �n2 /n1��1, and ��2
�n4 /n2��2. Phase-mismatch parameters are �k1=k2
2k1−G1 and �k2=k4−2k2−G2, where G1 and G2 are two
PM vectors that can be used for achieving the phase
atching, where kj are the wave vectors of the waves in-

olved in the process. For birefringence phase matching,
1=0 and G2=0. The high-order nonlinearities ��3� and

�4� are neglected because their contribution is rather
mall when we work in conditions close to double and
riple phase matching for the second-order processes.

For not high input fundamental intensities, the effects
f depletion of the fundamental wave and second-
armonic wave due to FoHG can be neglected, and system
1) reduces to

� �

�z
+

i

2k1
���A1 = 0,

� �

�z
+

i

2k2
���A2 = − i�1A1

2 exp�i�k1z�,

� �

�z
+

i

2k4
���A4 = − i�2A2

2 exp�i�k2z�. �2�

ystem (2) allows some of the results to be obtained in an
nalytical form that will help to gain physical insight into
he process of cascaded FoHG.

We solve system (2) by assuming only one input beam—
he fundamental that has a Gaussian spatial distribution:

A1�x,y,z� = A u1�x,y,�1�. �3�

is the electric field amplitude at the center of the focal
pot �0,0,z0�, and �1 is defined below, after Eqs. (5a) and
5b). With these notations the distribution of the funda-
ental field at the entrance of the nonlinear medium �z
0� is

A�x,y,0� = Ain exp�− �x2 + y2�� 1

win
2 −

ik1

2R1
�� , �4�

here the amplitude, beam radius, and wave-front curva-
ure at the nonlinear medium entrance are A
in
�w01
2 /win

2 − i�b1 /2R1��A0, win
2 =w01

2 �1+4�z0
2 /b1

2��, R1= �z0
b1

2 /4z0�, respectively.
To simplify system (2), we apply the procedure of the

rial solution as described in Refs. 29 and 30. In a non-
epletion approximation, a fundamental beam will pre-
erve its Gaussian form. Moreover, the generated second
nd fourth harmonics will be Gaussian beams as well but
ith different focal spot radii:

A2�x,y,z� = S�z�u2�x,y,�2�, �5a�

A4�x,y,z� = F�z�u4�x,y,�4�, �5b�

ith

uj�x,y,�j� =
1

1 − i�j
exp�−

x2 + y2

w0j
2 �1 − i�j�

�, j = 1,2,4.

In Eqs. (3), (5a), and (5b), �j=2�z−z0� /bj, with bj as the
onfocal parameters of the beams involved, bj=kjw0j

2 ,
here w0j is the focal spot radius. The amplitudes S and
also correspond to the center of the focal spot of the sec-

nd and fourth harmonics, respectively. The spot radii are
onnected with the relations w0j=w01/	j, see Refs. 29 and
0, and this allows us to assume that b4
b2
b1=b (ne-
lecting a slight difference in the index of refraction of the
hree waves) and �4
�3
�1=�. Substituting Eqs. (3),
5a), and (5b) in system (2) and noting that

�u1�2 =
u2

�1 − i��
,

�u2�2 =
u4

�1 − i��
, �6�

e come to the following system of first-order differential
quations, which is equivalent to system (2) but easier to
olve,

�A

�z
= 0,

�S

�z
= −

i�1A2

1 − i�
exp�i�k1z�,

�F

�z
= −

i�2S2

1 − i�
exp�i�k2z�. �7�

he straightforward solution of system (7) gives

S��� = −
i�1A2b

2
exp�i�k1z0��

�1

� exp�i�k1b	/2�

1 − i	
d	, �8�

F =
i�1

2�2A4b3exp�iz0�2�k1 + �k2��

8
�

�1

�2 exp�i�k2b�/2�

1 − i�


��
�1

� exp�i�k1b	/2�

1 − i	
d	�2

d�, �9�

here the limits of integrations are �1=−m�1+2l� and
=m�1−2l�, with m as the strength of focusing m=L /b
2
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L is the length of the nonlinear medium) and l as the di-
ensionless parameter indicating the position of the fo-

us, l= �2z0−L� /2L.
The efficiency of the FoHG is defined as

�4� =

�
−�

� �
−�

�

A4A4
*dxdy

�
−�

� �
−�

�

A1A1
*dxdy

.

quation (9) can be solved analytically in a weak focusing
pproximation and in a plane-wave limit. For arbitrary
ocusing, Eq. (9) has to be solved numerically in Subsec-
ion 2.B.

. Weak Focusing and Plane-Wave Limits
ith weak focusing �m
1� the limits of integration in Eq.

9) will be much smaller than 1 and, as a result, when the
ocus is in the center of the crystal �z0=L /2�, we have

F�L� =
��1�2�2

�a1�2 A4b3 exp�− 3im��2 exp�im�a2 + a1�� − 1

�a2 + a1�

−
exp�ima2� − 1

a2
−

exp�im�a2 + 2a1�� − 1

�a2 + 2a1� 
 , �10�

here aj=�kjb+2.
In the plane-wave limit �m→0�, we can set maj
�kjL. Then the plane-wave version of Eq. (10) has the

ollowing form:

eld F„L… for Both the Weak Focusing Limit
Approximation

Weak Focusing
Limit F�L�=

Relative
Intensity
�k1 Fixed

�k2 Tuning

Relative
Intensity
�k2 Fixed

�k1 Tuning

3iF0exp�im�a2−6� /2� /a2m�

�sin�a1m /2� / �a1m /2��2

9/ �a2�2

9/ ��k2L�2

�−3F0 exp�−i3m�� / �a1m�2�

��sin �a2m /2�� / �a2m /2��

9/ �a1�4

9/ ��k1L�4

exp�im�a2+2a1−6� /2� / �a1�2m2�
��a2+2a1�m /2� / �a2+2a1�m /2�

9/ �a1�4 144/ �a2�4

9/ ��k1L�4 144/ ��k2L�4

exp�im�a2+a1−6� /2� / �a1�2m2�
in��a2+a1�m /2� / �a2+a1�m /2�

36/ �a1�4 36/ �a2�4

36/ ��k1L�4 36/ ��k2L�4

F0exp�−i3m� 1 1
1 1
Table 1. Expressions for the Fourth-Harmonic Fi
and the Plane-Wave

hase Matching
Plane-Wave

Approximation F�L�=

1�0 �−

k1L�0 �−3iF0exp�i �k2L /2� /�k2L�

�sin��k1L /2� / ��k1L /2��2

2�0 �

k2L�0 �−3F0exp�−i�k1L� / ��k1L�2�

�sin��k2L /2� / ��k2L /2��2

2+2a1�0 �−3F0


�sin
k2+2�k1�0 �−3F0exp�i��k2+2�k1�L /2� / ��k1L�2�


�sin���k2+2�k1�L /2� / ��k2+2�k1�L /2�

2+a1�0 �6F0


�s
k2+�k1�0 �6F0exp�i��k2+�k1�L /2� / ��k1L�2�


�sin���k2+�k1�L /2� / ��k2+�k1�L /2�

2=0; a1=0
k2=0; �k1=0 F0= i���1�2�2 /3�A4L3
ig. 1. Relative intensities of the fourth-harmonic wave at dif-
erent phase-matching conditions in ‘a logarithmic’ scale. All in-
ensities are normalized to the case of phase matching for
econd-harmonic generation �a =0�. (a) a =200 and (b) a =200.
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Fig. 2. Quantity of H as a function of both phase-matching con-
ditions ��k1b� and ��k2b� for three positions of the focal spot: (a)
l=−0.4, (b) l=0, and (c) l=0.4. Each value of the H distribution is
normalized to its own maximum.
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F�L� =
��1�2�2

��k1�2 A4�2 exp�i��k2 + �k1�L� − 1

��k2 + �k1�

−
exp�i�k2L� − 1

�k2
−

exp�i��k2 + 2�k1�L� − 1

��k2 + 2�k1� 
 .

�11�

nalyzing Eqs. (10) and (11), we find four possibilities for
hase-matched generation with a single-crystal cascaded
ourth harmonic.

(a) Phase matching for the first step �+�=2�. As
an be seen from Fig. 1 this phase matching gives maxi-
um efficiency among the cases when only one phase-
atching case is close to be satisfied. The tuning curve is

eaked when a1=�k1b+2=0 and the required deviation
rom exact phase matching is �k1L=−2m. In the plane-
ave case the phase-matching condition is �k1L=0.

(b) Phase matching for the second step 2�+2�=4�.
he maximum is obtained when a2=�k2b+2=0, which
orresponds to the deviation �k2L=−2m. In the plane-
ave case the phase-matching condition is �k L=0.

ig. 3. (a) Quantity of H calculated at optimal phase-matching
onditions as a function of the position of focusing l and (b) opti-
al phase matching for both steps for several values of focusing
and the position of focusing.
2

(c) Phase matching for the direct FoHG �+�+�+�
4� when a2+2a1= �k4−4k1�b+6=0, which corresponds

o the deviation ��k2+2�k1�L=−6m. In the plane-wave
ase the phase-matching condition is ��k2+2�k1�L= �k4
4k1�L=0.

(d) Phase matching for the FoHG by FWM 2�+�
�=4� when a2+a1= �k4−2k1−k2�b+4=0, which corre-
ponds to the deviation ��k2+�k1�L=−4m.It can be seen
hat different phase-matching conditions are a linear
ombination of the two main phase matchings �k1L and
k2L, respectively, a1 and a2. In addition, note that, fol-

owing Eq. (11), in cases (c) and (d) the FoHG process is
lso a result of cascading ��2� processes, in spite of the fact
hat the phase-matching conditions correspond to high-
rder processes.

In Table 1 are shown the expressions of the fourth-
armonic field for the different phase-matching condi-
ions for both the weak focusing limit and the plane-wave
pproximation. On Fig. 1 is shown an example of their
elatives intensities. The intensities are normalized to the
ase of the FoHG at �k1L�0 �a1�0�. If we compare the
idths of the tuning curves among the different single
hase-matching conditions, we can note that the width of
he tuning curves for the phase matching around �k1L
0 �a1�0� is narrower than the others.
When both main phase matchings are simultaneously

ulfilled, the conversion into the fourth harmonic is maxi-
al. In the situation of exact double phase matching, the
eld of the fourth harmonic in a plane-wave approxima-
ion is28

F0 = i
��1�2�2

3
A4L3.

ntroducing normalized efficiency in total efficiency per
atts and per square centimeter units for the first step
nd second step, respectively, as �0,1 and �0,2 we get for
he efficiency of FoHG1

�4� =
�0,1

2 �0,2

9
P1

3L6.

Efficiency of the single-crystal ��2�-based FoHG de-
ends on the sixth power of the length and the third

ig. 4. Quantity of H as a function of the strength of focusing m
or focusing in the center of the nonlinear media.



p
k
t
a
(
i
f
o
h
t
w
o

B
I
s
p
b
c

w

H

t
a
�
i
u

2
i
c
2
c
d
s
d
o
t
e
s
o
c
f
r
�
3
t
a

a
c
v
e
p
d
e
s
=

3
H
P
M
T
i
m
t
Q
r
o
b
p
i
b
b
t

m

1
1
2
3
4

C

K
L

L

1696 J. Opt. Soc. Am. B/Vol. 22, No. 8 /August 2005 R. Ivanov and S. Saltiel
ower of the pump and can be easily estimated with
nown efficiencies for the separated steps. For pump in-
ensities at which the depletion effect of the fundamental
nd second-harmonic wave can not be neglected, system
1) has to be solved numerically. For this range of pump
ntensities, 100% conversion of the fundamental to the
ourth-harmonic wave is possibly independant of th ratio
f the nonlinear coupling coefficients �2 /�1.20–23 This be-
avior strongly contrasts with the ��2�-based cascaded
hird-harmonic generation in single nonlinear media in
hich 100% conversion is possible only for a specific ratio
f nonlinear coupling coefficients.1

. Arbitrary Focusing
n this subsection we consider the arbitrary value of the
trength of focusing m, still keeping the nondepletion ap-
roximation for the fundamental and second-harmonic
eam. The efficiency conversion in the fourth harmonic is
alculated from Eq. (9) and is found to be

�4� =
2�1

4�2
2n4L3P1

3

�0
3c3�1

3n1

H�m,l,�k1,�k2�, �12�

here

�m,l,�k1,�k2�

=
1

m3��
�1

�2 exp�i�k2b�/2�

1 − i� ��
�1

� exp�i�k1b	/2�

1 − i	
d	�2

d��2

.

The dependence of H on the four parameters describing
he system (strength of focusing m, position of focusing l,
nd conditions for phase matching of both steps �k1b and
k2b) was investigated. For maximum FoHG efficiency it

s necessary to tune both mismatches to their optimal val-
es ��k1 ,�k2�= ��k1,opt,�k2,opt�

Table 2. Optimal Phase Matchings and
Corresponding Values of H for Focusing in the
Center of the Nonlinear Medium for Different

Values of the Ratio m=L /b

��k1b�opt ��k2b�opt H

−1.73 −1.70 3.32
.5 −1.55 −1.48 6.05

−1.39 −1.30 7.78
−1.15 −1.04 8.64
−0.98 −0.86 7.87

Table 3. Data for the Phase-Reversed QPM Structu
the Orders p

Orders of QPM Grating

rystal p1 p2 q1 q2

TP 1 3 3 1
iTaO3 1 1 5 1

1 5 −1 1
iNbO3 1 1 5 −1
This can be seen on the contour plots shown on Figs.
(a)–2(c) calculated for four different strengths of focus-
ng. Figure 2(a) is calculated for focusing position l=−0.4,
lose to the input face of the nonlinear medium. Figure
(b) illustrates the two-dimensional phase-matching
urves when focusing is in the center of the nonlinear me-
ium, l=0, whereas Fig. 2(c) is calculated for focusing po-
ition l=0.4, close to the output face of the nonlinear me-
ium. Each efficiency distribution is normalized to its
wn maximum. Figures 3(a) and 3(b) allow one to obtain
he maximum H for arbitrary values of these four param-
ters. Figure 2(a) shows the dependence of H on the
trength of focusing m and the position of focusing l. The
ptimal ��k1b�opt and ��k2b�opt for each point of Fig. 3(a)
an be found from Fig. 3(b). For example, as can be seen
rom Fig. 3(a), point B (m=1, l=0.4, with H=1.5181) cor-
esponds to the following optimal phase mismatches
�k1b�opt=−1.15��k2b�opt=−1.78, as can be seen from Fig.
(b). The optimal phase matchings, for the most impor-
ant case of focusing in the center of the nonlinear crystal
re given in Table 2.
We found out that, in the process of cascaded FoHG in
single crystal by a focused beam, for maximum effi-

iency the phase matching �k1b and �k2b have optimal
alues, different from 0, and these values are different for
ach m and l. However, for best conversion the optimal
osition for focusing is in the center of the nonlinear me-
ium. On Fig. 4 we present the dependence of the FoHG
fficiency on the focusing parameter m. The optimal
trength of focusing for small conversion efficiency is m
2.84.

. DOUBLE-PHASE-MATCHED FOURTH-
ARMONIC GENERATION WITH
HASE-REVERSED QUASI-PHASE-
ATCHED STRUCTURES

he idea of the phase-reversed QPM structures developed
n Ref. 31 can be used for realization of double-phase-

atched FoHG in a single quadratic crystal. This struc-
ure can be explained as aperiodic QPM grating with
PM period �Q that changes its phase with another pe-

iod �ph. The two periods �Q and �ph are the two degree
f freedom that allow two different nonlinear processes to
e simultaneously phase matched. The designs of the
hase-reversed QPM structures as described in Ref. 31
mpose an additional condition that the ratio �=�ph/2�Q
e an even integer number. The study of the effect of ar-
itrary �ph/�Q is not systematically investigated yet, to
he best of our knowledge. The exception is a

n KTP, LiTaO3, and LiNbO3 by Different Values of
, q1, and q2

�1 ��m� �Q ��m� �ph ��m� T �°C�

1.402 5.111 20.440 20
1.622 3.766 22.596 20
1.622 16.950 67.811 20
1.724 3.935 23.609 20
res i
1, p2
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ublication32 in which it was found that in the case of cas-
aded third-harmonic generation the ratio �ph/2�Q could
ake values different from an integer.

Starting with the two conditions �k1=k2−2k1−G1=0
nd �k2=k4−2k2−G2=0, with

G1 =
2�

�Q
p1 +

2�

�ph
q1, G2 =

2�

�Q
p2 +

2�

�ph
q2,

e find

�ph = � �1�q2p1 − q1p2�

2n2��2p1 + p2� − 2n�p2 − 4n4�p1
� ,

�Q = � �1�q2p1 − q1p2�

2n2��2q1 + q2� − 2n�q2 − 4n4�q1
� ,

here p1 ,p2 are two orders of the QPM grating and q1 ,q2
re two orders of the phase grating. In Table 3 some ex-
mples of calculated periods for double-phase-matched
oHG in congruent LiNbO3,33 LiTaO3,34 and KTP35 are
hown. Recently this type of QPM structure has been
sed for experimental realization of double-phase-
atched third-harmonic generation.32

. CONCLUSION
n conclusion, we investigated here the conditions for
ingle-crystal phase-matched fourth-harmonic genera-
ion. Efficient FoHG is possible at four different phase-
atching conditions. The interaction with fulfilled phase-
atching conditions for the second-harmonic-generation

rocess gives maximum efficiency for FoHG (among
ingle phase-matching cases). For highest efficiency, si-
ultaneous phase matching of the two steps is required.
he optimal focusing for the double-phase-matched FoHG

s in the center of the crystal. An example of double phase
atching in LiNbO3,LiTaO3, and KTP with phase-

eversed QPM gratings is presented.
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