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We investigate theoretically the process of phase-matched fourth-harmonic generation in a single quadratic
crystal. In the case of a plane-wave fundamental or weak focusing, the results have an analytical form. The
optimal focusing position of the fundamental beam depends on the values of the mismatches for each of the two
steps of the second-order cascading: doubling of the fundamental frequency and doubling of the frequency of
the generated second-harmonic wave. It is shown that the optimized scheme for the cascaded single-crystal
fourth-harmonic generation requires specially chosen mismatches of the two steps and focusing into the center
of the nonlinear media. © 2005 Optical Society of America

OCIS codes: 190.0190, 190.2620, 190.4410.

1. INTRODUCTION

The tendency for miniaturization and design of compact
integrated optical devices stimulates the research and de-
velopment of single-crystal devices for efficient third-,
fourth- and fifth-harmonic generation. Multistep cascad-
ing as a method for high-order harmonic generation in
single nonlinear media has been the subject of intensive
investigations for the past three decades. For example,
third-harmonic generation in a single quadratic crystal
has been studied both theoretically and experimentally in
a number of publications reviewed in Ref. 1. Recently sev-
eral papers reported single-crystal third-harmonic gen-
eration with efficiency exceeding 20%.2”* Fifth-harmonic
generation in a single cubic medium has also been studied
both experimentally and theoretically in a number of pub-
lications, e.g., Refs. 5-10. In Refs. 11-13 we investigated
the generation of the third and fifth harmonics by cascad-
ing two phase-matched processes in a single nonlinear
medium with a focused fundamental beam.

Another important example of multistep cascading in-
teraction, which could have significant application, is the
single-crystal fourth-harmonic generation (FoHG) based
on second-order cascading. There are two possible cas-
cades of second-order processes that will lead to FoHG.

(a) The second-harmonic field is the only intermedi-
ate field. The generation of the fourth harmonic involves
two frequency-doubling processes: w+w=2w and 2w+2w
=4w.

(b) Both second-harmonic and third-harmonic fields
are intermediate fields. The generation of the fourth har-
monic involves frequency doubling of the fundamental,
followed by two sum-frequency-generation processes: o
+w=20,20+w=3w, and 3w+w=4w.

In both cases the fourth-harmonic amplitude will be

proportional to (x2)3. Which of the two cases will be more
effective depends on the phase-matching conditions. Ob-
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viously, the first one is easier to be realized in that only
two phase-matching conditions have to be fulfilled simul-
taneously. Here we will consider the interaction w+w
=2w and 2w+2w=4w.

The first experiment with FoHG in a single crystal is
reported in the research of Akhmanov et al.,** in which
they investigated FoHG in a lithium formiate crystal. It
was concluded that the generated fourth harmonic is due
to the simultaneous action of two- and three-step cas-
caded processes with required quadratic, cubic, and direct
fourth-order nonlinearities. Single-crystal FoHG is re-
ported in CdGeAs,,'® LiNbO;,'*!8 and KTP' with effi-
ciency well below 1% in that one of the steps is far from
the phase-matched condition. As shown in Refs. 20-23, if
both steps are phase matched, efficiency close to 100% can
be expected. Some possibilities for double-phase-matched
single-crystal FoHG by using homogeneous quasi-phase-
matched (QPM) structures are shown in Refs. 24 and 25.
Double-phase-matched schemes for FoHG in two-
dimensional nonlinear photonics crystals are proposed in
recent studies.?2® However, in spite of the published pa-
pers, there is no systematic investigation of the phase-
matched conditions and efficiency for single-crystal FoHG
either for a plane wave or for a focused fundamental
beam.

Here in this study we present theoretical analysis of
the phase-matching conditions and the efficiency for
single-crystal FoHG for both weak and strong focusing
conditions in nondepleted approximation. The analytical
formula valid for weak focusing can be easily adopted for
the plane-wave case. We demonstrate that double phase
matching can be achieved with the so-called phase-
reversed QPM structure.

2. SOLUTION FOR PEAK AMPLITUDES

The effect of FoHG, as a result of simultaneous action of
the processes of second-harmonic generation and sum-
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frequency mixing of the second-harmonic waves, is de-
scribed by the following system of differential equations,
derived with the assumption of zero absorption of all in-
teracting waves:

d i
(— + —AL>A1 =—i 0'1AA] exp(-iAkqz),

o i
(— + —AL)AZ =—i 01A? exp(iAky2)

—i0' A A, exp(- iAkyz),

d 14
(; + ELAL)AAl = - l(TzAg exp(iAk2z) . (1)

Here A;,A5, and A, denote the complex amplitudes of the
fundamental, second-harmonic, and fourth-harmonic
waves, A, stands for the operator (6%/dx?)+(6%/dy?), oy
= 27Tdeff,1/)\1n2, 0'2=4’7Tdeff’11/)\1n4, o’ 1= (nz/nl)(rl, and 0',2
=(n4/ng)oy. Phase-mismatch parameters are Ak;=k,
-2k1-G; and Akgy=k4—2k9—Gg, where G and G4 are two
QPM vectors that can be used for achieving the phase
matching, where &; are the wave vectors of the waves in-
volved in the process. For birefringence phase matching,
G1=0 and G5=0. The high-order nonlinearities x® and
x® are neglected because their contribution is rather
small when we work in conditions close to double and
triple phase matching for the second-order processes.

For not high input fundamental intensities, the effects
of depletion of the fundamental wave and second-
harmonic wave due to FoHG can be neglected, and system
(1) reduces to

( a i )A
—+—A =0,
dz 2k1 + !

) i
(— + —AL)A2 =— i A% exp(iAkiz),

Jz 2k2
d 4 o )
; + EIAL Ay =—1094A5 exp(iAkyz). (2)

System (2) allows some of the results to be obtained in an
analytical form that will help to gain physical insight into
the process of cascaded FoHG.

We solve system (2) by assuming only one input beam—
the fundamental that has a Gaussian spatial distribution:

Al(xay’z)=A ul(x’yygl)' (3)

A is the electric field amplitude at the center of the focal
spot (0,0,z(), and &; is defined below, after Eqgs. (5a) and
(5b). With these notations the distribution of the funda-
mental field at the entrance of the nonlinear medium (z
=0) is

A(x,y,00=A (2% +y?) 1 _H (4)
W = in - + Ty _R ’
X,y exp x“+y izn R,

where the amplitude, beam radius, and wave-front curva-
ture at the nonlinear medium entrance are A;,
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=[wi /w? —i(b1/2R)1Ay, w2 =wi[1+4(z2/6)], Ry1=(z
+ b%/ 4z,), respectively.

To simplify system (2), we apply the procedure of the
trial solution as described in Refs. 29 and 30. In a non-
depletion approximation, a fundamental beam will pre-
serve its Gaussian form. Moreover, the generated second
and fourth harmonics will be Gaussian beams as well but
with different focal spot radii:

A2(x5y72) =S(Z)u2(x’y’§2)’ (53)

A4(x,y,2) = F(z)u4(x,y, ‘54)5 (5b)
with

( | 1 9c2+y2
u‘X,y,f‘ = . exp -7 - .. | j=1,274~
/ T1-ig we(1-i€)

In Egs. (3), (5a), and (5b), &=2(z-2()/b;, with b; as the
confocal parameters of the beams involved, & jzkjw%j,
where w; is the focal spot radius. The amplitudes S and
F also correspond to the center of the focal spot of the sec-
ond and fourth harmonics, respectively. The spot radii are
connected with the relations wg;=wq;/ \j, see Refs. 29 and
30, and this allows us to assume that b,=by=b,=0 (ne-
glecting a slight difference in the index of refraction of the
three waves) and &,=¢&3=¢=¢ Substituting Eqgs. (3),
(5a), and (5b) in system (2) and noting that

a__ "2
(ul) _(1—1:5),
g U
(ug) “1-io’ (6)

we come to the following system of first-order differential
equations, which is equivalent to system (2) but easier to
solve,

dA
oz
(98 iO'lA2 Ak
Iz == l—igexp(l IZ)’
3F iO'QSZ Ak
—=- Aksz). 7
7z 1- igeXp(l 22) (7)

The straightforward solution of system (7) gives

¢ exp(iAk,b7/2)

b
exp(iAklzo)J —dr,
A 1-i7

2

10,A
SE=-—

. i020,A D%explizg(2Ak, + Aky)] (P2 exp(iAkqbE/2)

8 b 1-i
¢ exp(iAkb72) |2

X ——dr| d§, 9
8 1-i7

where the limits of integrations are B;=-m(1+2l) and
Ba=m(1-21), with m as the strength of focusing m=L/b
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- 2.=0 @ (L is the length of the nonlinear medium) and [/ as the di-
> 32:200 ¥ n mensionless parameter indicating the position of the fo-
Ea cus, [=(2z¢-L)/2L.

% The efficiency of the FoHG is defined as
g 24

g fw foc ,

= A A dxdy

o 3. -

< a+2a =0 )

§ a*ta =0 Moo= % e .
S 1 B

11 L,

200 75 -150 125 00 75 50 25 O 25 50
normalized mismatch. a Equation (9) can be solved analytically in a weak focusing
B approximation and in a plane-wave limit. For arbitrary

focusing, Eq. (9) has to be solved numerically in Subsec-

tion 2.B.
e ®
a,=200 A. Weak Focusing and Plane-Wave Limits
.g‘ a+a=0 a,= With weak focusing (m < 1) the limits of integration in Eq.
S a,+2a =0 (9) will be much smaller than 1 and, as a result, when the
= . focus is in the center of the crystal (zo=L/2), we have
2
£ (01 2 explim(a, + ap)] - 1
= g1)" 09 explimlag +aq)|—
2 F(L)= : 3 A*b? exp(- 3im)
o (ay) (ag+ay)
L -
3 exp(imay) -1 explim(aqg+2a;)]-1
ha - - ) (10)
¥ T Y Qay (a2 + 2(11)

400 300 200 100 0 160
normalized mismatch, a,

Fig. 1. Relative intensities of the fourth-harmonic wave at dif- where a; =Akjb +2.

ferent phase-matching conditions in ‘a logarithmic’ scale. All in- In the plane-wave limit (m _’.0)’ we can set ma;
tensities are normalized to the case of phase matching for — Ak;L. Then the plane-wave version of Eq. (10) has the
second-harmonic generation (a;=0). (a) a;=200 and (b) a;=200. following form:

Table 1. Expressions for the Fourth-Harmonic Field F(L) for Both the Weak Focusing Limit
and the Plane-Wave Approximation

Relative Relative
Intensity Intensity
Plane-Wave Weak Focusing Ak, Fixed Ak, Fixed
Phase Matching Approximation F(L)= Limit F(L)= Aky Tuning Ak; Tuning
a;=0 {-83iFjexp[im(as—6)/2)/asm} 9/(ay)?
X[sin(a;m/2)/ (@aym/2)]?
Ak{L=0 {-8iFexp(i AkyL/2)/AksL} 9/(Ak,L)?
X [sin(Ak,L/2)/(Ak,L/2)]?
ay=0 {[-8F; exp(-i3m)]/ (aym)?} 9/(ay*
X{[sin (agm/2)]/(agm/2)}
AkyL=0 {-3Fsexp(-iAk L)/ (Ak,L)?} 9/(Ak,L)*
X[sin(AkyL/2)/(AkyL/2) T2
as+2a,=0 {-3Fexplim(ay+2a,—6)/2]/(ay)*m?} 9/(aq)* 144/(ay)*
x{sin[(aqy+2a)m/ 2]/ (ags+2a)m/2}
Ako+2Ak;=~0 {-8Fexpli(Aky+2Ak)L/2]/(Ak,L)?} 9/(Ak,L)* 144/(AkyL)*
X{sin[(Aky+2Ak,)L/2]/(Aky+2Ak,)L/2}
ag+a,;~0 {6F jexplim(agy+a;—6)/2]/(a;)*m?} 36/(aq)* 36/(ay)*
X{sin[(ag+a)m/2]/(ag+a;)m/2}
Aky+Aky =0 {6Fgexpli(Aky+Ak)L/2]/ (AR, L)%} 36/(Ak,L)* 36/(AkyL)*
X{sin[(Aky+Ak{)L/2]/(Aky+Akq)L/2}
ay=0; a,=0 Fyexp(-i3m) 1 1

Aky=0; Ak,=0 Fo=i{(0))05/3}AL3 1 1
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Fig. 2. Quantity of H as a function of both phase-matching con-
ditions (Ak;b) and (Akyb) for three positions of the focal spot: (a)
[=-0.4, (b) [=0, and (c) [=0.4. Each value of the H distribution is
normalized to its own maximum.



R. Ivanov and S. Saltiel

{

ant !

AN D)

H sk,

20 18 -16 -14 1.2 -10 08 06 04 02 0D
kb

Fig. 3. (a) Quantity of H calculated at optimal phase-matching
conditions as a function of the position of focusing / and (b) opti-
mal phase matching for both steps for several values of focusing
m and the position of focusing.

(01)%09 | 2 expli(Aky+ Akq)L]-1
F(L) = 5
(Akq) (Aky + Akq)
exp(iAkoL) -1 expli(Aky+ 2Ak;)L] -1
N Ak, - (Akg + 20k1)

(11)

Analyzing Eqs. (10) and (11), we find four possibilities for
phase-matched generation with a single-crystal cascaded
fourth harmonic.

(a) Phase matching for the first step w+w=2w. As
can be seen from Fig. 1 this phase matching gives maxi-
mum efficiency among the cases when only one phase-
matching case is close to be satisfied. The tuning curve is
peaked when a;=Ak6+2=0 and the required deviation
from exact phase matching is Ak{L=-2m. In the plane-
wave case the phase-matching condition is Ak{L=0.

(b) Phase matching for the second step 2w+2w=4w.
The maximum is obtained when ags=Aksb+2=0, which
corresponds to the deviation Ak,L=-2m. In the plane-
wave case the phase-matching condition is AkyL=0.
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(¢) Phase matching for the direct FOHG w+ w+w+w
=4w when as+2a;=(ks—4k;)b+6=0, which corresponds
to the deviation (Akg+2Ak{)L=—6m. In the plane-wave
case the phase-matching condition is (Aky+2Ak;)L=(ky
-4k,)L=0.

(d) Phase matching for the FoHG by FWM 2w+
+w=40w when ag+a;=(ky—2k;-k9)b+4=0, which corre-
sponds to the deviation (Aky+Ak{)L=-4m.It can be seen
that different phase-matching conditions are a linear
combination of the two main phase matchings A%k{L and
AksL, respectively, a; and ay. In addition, note that, fol-
lowing Eq. (11), in cases (c¢) and (d) the FoHG process is
also a result of cascading y'? processes, in spite of the fact
that the phase-matching conditions correspond to high-
order processes.

In Table 1 are shown the expressions of the fourth-
harmonic field for the different phase-matching condi-
tions for both the weak focusing limit and the plane-wave
approximation. On Fig. 1 is shown an example of their
relatives intensities. The intensities are normalized to the
case of the FoHG at Ak;L =0 (a;=0). If we compare the
widths of the tuning curves among the different single
phase-matching conditions, we can note that the width of
the tuning curves for the phase matching around Ak,L
~0 (a;=0) is narrower than the others.

When both main phase matchings are simultaneously
fulfilled, the conversion into the fourth harmonic is maxi-
mal. In the situation of exact double phase matching, the
field of the fourth harmonic in a plane-wave approxima-
tion is?®

2
p=i T s
3
Introducing normalized efficiency in total efficiency per
watts and per square centimeter units for the first step

and second step, respectively, as 7, and 75 we get for
the efficiency of FoHG!

p)

70,170,2

M= — o PILE.
9

Efficiency of the single-crystal x®-based FoHG de-

pends on the sixth power of the length and the third

o ¥ L ¥ 1 ¥ L} L T L 1 1
00 05 1.0 15 20 25 30 35 40 45 50 55 60

Hi4

Fig. 4. Quantity of H as a function of the strength of focusing m
for focusing in the center of the nonlinear media.
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power of the pump and can be easily estimated with
known efficiencies for the separated steps. For pump in-
tensities at which the depletion effect of the fundamental
and second-harmonic wave can not be neglected, system
(1) has to be solved numerically. For this range of pump
intensities, 100% conversion of the fundamental to the
fourth-harmonic wave is possibly independant of th ratio
of the nonlinear coupling coefficients op/c7.2>2® This be-
havior strongly contrasts with the y®-based cascaded
third-harmonic generation in single nonlinear media in
which 100% conversion is possible only for a specific ratio
of nonlinear coupling coefficients.

B. Arbitrary Focusing

In this subsection we consider the arbitrary value of the
strength of focusing m, still keeping the nondepletion ap-
proximation for the fundamental and second-harmonic
beam. The efficiency conversion in the fourth harmonic is
calculated from Eq. (9) and is found to be

20705 ,L°P3

Mo = H(m’l’Akl’AkZ)’ (12)

egcs)\?nl
where
H(m,l,Akl,Akz)

P2 exp(iAkobé/2)| (¢ exp(iAkb7/2) |2

- dr| dé

B 1-ig
The dependence of H on the four parameters describing

the system (strength of focusing m, position of focusing /,
and conditions for phase matching of both steps Ak{b and
Akyb) was investigated. For maximum FoHG efficiency it

is necessary to tune both mismatches to their optimal val-
ues (Ak 1> Ak2) =(Ak 1,0pt> AkZ,opt)

1 2

m3

8 1-ir

Table 2. Optimal Phase Matchings and
Corresponding Values of H for Focusing in the
Center of the Nonlinear Medium for Different

Values of the Ratio m=L/b

m (Aklb)opt (Akzb)opt H

1 -1.73 -1.70 3.32
15 -1.55 -1.48 6.05
2 -1.39 -1.30 7.78
3 -1.15 -1.04 8.64
4 -0.98 -0.86 7.87
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This can be seen on the contour plots shown on Figs.
2(a)-2(c) calculated for four different strengths of focus-
ing. Figure 2(a) is calculated for focusing position /=-0.4,
close to the input face of the nonlinear medium. Figure
2(b) illustrates the two-dimensional phase-matching
curves when focusing is in the center of the nonlinear me-
dium, /=0, whereas Fig. 2(c) is calculated for focusing po-
sition /=0.4, close to the output face of the nonlinear me-
dium. Each efficiency distribution is normalized to its
own maximum. Figures 3(a) and 3(b) allow one to obtain
the maximum H for arbitrary values of these four param-
eters. Figure 2(a) shows the dependence of H on the
strength of focusing m and the position of focusing /. The
optimal (Ak1b)p, and (Akgb),p; for each point of Fig. 3(a)
can be found from Fig. 3(b). For example, as can be seen
from Fig. 3(a), point B (m=1, [=0.4, with H=1.5181) cor-
responds to the following optimal phase mismatches
(Ak1D)opt=—1.15(Akgb) 4, =—1.78, as can be seen from Fig.
3(b). The optimal phase matchings, for the most impor-
tant case of focusing in the center of the nonlinear crystal
are given in Table 2.

We found out that, in the process of cascaded FoHG in
a single crystal by a focused beam, for maximum effi-
ciency the phase matching Ak{b and Akyb have optimal
values, different from 0, and these values are different for
each m and [. However, for best conversion the optimal
position for focusing is in the center of the nonlinear me-
dium. On Fig. 4 we present the dependence of the FoHG
efficiency on the focusing parameter m. The optimal
strength of focusing for small conversion efficiency is m
=2.84.

3. DOUBLE-PHASE-MATCHED FOURTH-
HARMONIC GENERATION WITH
PHASE-REVERSED QUASI-PHASE-
MATCHED STRUCTURES

The idea of the phase-reversed QPM structures developed
in Ref. 31 can be used for realization of double-phase-
matched FoHG in a single quadratic crystal. This struc-
ture can be explained as aperiodic QPM grating with
QPM period Aq that changes its phase with another pe-
riod App. The two periods Aq and Ay, are the two degree
of freedom that allow two different nonlinear processes to
be simultaneously phase matched. The designs of the
phase-reversed QPM structures as described in Ref. 31
impose an additional condition that the ratio 6=A,,/2Aq
be an even integer number. The study of the effect of ar-
bitrary Ap;n/Aq is not systematically investigated yet, to
the best of our knowledge. The exception is a

Table 3. Data for the Phase-Reversed QPM Structures in KTP, LiTaO3, and LiNbO3 by Different Values of
the Orders p;, ps, q1, and q»

Orders of QPM Grating

Crystal p1 D2 q1 qs A; (um) Aq (um) Apn (um) T (°C)
KTP 1 3 3 1 1.402 5.111 20.440 20
LiTaOgq 1 1 5 1 1.622 3.766 22.596 20

1 5 -1 1 1.622 16.950 67.811 20
LiNbOg 1 1 5 -1 1.724 3.935 23.609 20
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publication® in which it was found that in the case of cas-
caded third-harmonic generation the ratio Ap,/2Aq could
take values different from an integer.

Starting with the two conditions Ak{=ky-2k;-G{=0
and Ak2=k4—2k2—G2=O, with

2 2 2 2
G,= A_Qpl + A_phfh, Gy = A_sz + A_phfh,
we find
A= M(gap1 —q1p2) ,
2n9,(2p1 +p9) = 2n,py — 4n4py

Mi(gop1 - q1p2)
2n9,(2q1 + q2) = 21,9 — 4N 4,91

’

where p;,ps are two orders of the QPM grating and ¢1,q»
are two orders of the phase grating. In Table 3 some ex-
amples of calculated periods for double-phase-matched
FoHG in congruent LiNbO3,33 LiTaO3,34 and KTP? are
shown. Recently this type of QPM structure has been
used for experimental realization of double-phase-
matched third-harmonic generation.32

4. CONCLUSION

In conclusion, we investigated here the conditions for
single-crystal phase-matched fourth-harmonic genera-
tion. Efficient FoHG is possible at four different phase-
matching conditions. The interaction with fulfilled phase-
matching conditions for the second-harmonic-generation
process gives maximum efficiency for FoHG (among
single phase-matching cases). For highest efficiency, si-
multaneous phase matching of the two steps is required.
The optimal focusing for the double-phase-matched FoHG
is in the center of the crystal. An example of double phase
matching in LiNbOj,LiTaO3, and KTP with phase-
reversed QPM gratings is presented.
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