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Generation of higher optical harmonics in focused beams
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An analysis is made of the influence of focusing on third, fourth, and fifth harmonic generation allowing for
both direct and cascade processes taking place due to lower-order nonlinearities. It is found that as the
focusing parameter increases under conditions of optimized wave mismatch, the fourth and fifth harmonic
powers increase monotonicaUy. It is also shown that in the case of phase-matched cascade processes, the
harmonic power is highest for focusing on one of the faces rather than at the center of the nonlinear medium.

PACS numbers: 42.65.Cq

In excitation of optical harmonics or other nonlinear
parametric processes, an important part is played by
the principle of optimal focusing of the waves in the non-
linear medium (crystal, liquid, or gas) in order to max-
imize the efficiency of the process. The influence of
focusing on the power of the second optical harmonic
excited by a Gaussian pump beam was analyzed in detail
in Refs. 1-4. Calculations were made of the optimal
focusing parameter m =L/b (L is the length of the non-
linear medium, b is the confocal parameter) for which
the harmonic energy is highest. Analyses have also
been made of the dependence of the third harmonic
power5·6 and of nondegenerate four-wave parametric
processes of the type ω = ω1+ω2+ω3 (Ref. 7) on the foc-
using conditions.

Higher-order optical harmonics, fourth,8 fifth,9·10 and
seventh,11·12 have recently been obtained. These har-
monics were obtained both under conditions of phase
matching for the direct process, i.e., the process taking
place due to a nonlinearity of the same order as the har-
monic and under phase-matching conditions for the cas-
cade processes taking place due to lower-order non-
linearities. It was confirmed experimentally that the
harmonic generation efficiencies are similar in both
cases. Some aspects of optimal focusing in fifth har-
monic generation were analyzed in Refs. 13 and 14.

In optimal harmonic generation in crystals it is neces-
sary to allow for the influence of birefringence on the
conversion efficiency. The optimal focusing parameter
allowing for birefringence was obtained for the second
harmonic in Refs. 3 and 6 and for the third harmonic in

Ref. 15.

The present paper analyzes the influence of focusing
on third, fourth, and fifth harmonic generation, allowing
for cascade processes taking place due to lower-order
nonlinearities. Generation of higher harmonics is an-
alyzed both with and without birefringence.

1. BASIC EQUATIONS

We shall describe generation of higher harmonics
(third, fourth, and fifth) in focused Gaussian beams
under conditions of tangential phase matching in a non-
centrosymmetric medium using parabolic equations for
the amplitudes, neglecting the influence of higher har-
monics on the lower harmonics and allowing for cascade
processes

with the boundary conditions An(,x,y, 0) = 0, η = 2, 3 , . . . ,
and the pump wave

Here, An are the wave amplitudes; ζ is the direction of
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propagation of the beams; &± = dz/dx2+d2/dy2 is the
transverse Laplacian; £in = kn-nkl, Δ ,̂ =kl)+2lI-pkl -qk2,

the wave mismatches of the direct and cascade proces-
ses; σ are the nonlinear coupling coefficients (the in-
dices denote the nonlinear process, for example, α Λ ,
refers to the process pta^qu}2

J>-r(j}3)·, a is the radius of
a Gaussian beam; b =kia

z is the confocal parameter; η
- 2(z - zo)A); z0 is the coordinate of the center of the
constriction.

We shall solve system (1) with its boundary conditions
using Green's functions and we shall then convert to the
total harmonic power Pn = c/&n J"^A*AJixdy.

An analysis of the final expressions for Pn showed that
the dependences of the fourth and fifth harmonic powers
on the focusing parameters are approximately the same,
so that we shall subsequently everywhere omit expres-
sions for the fourth harmonic.

We shall introduce the notation:

Λη(α, Δ) =

ln = ionhn[m{\-2l), Δη];
m(l—21)

H p q r = = - ί h\ (η, A,) ftS (η, A,) di\.

where 1= (2z0- L)/L is a prameter characterizing the
position of the constriction of the pump beam in the non-
linear medium.

In this notation the expressions for the harmonic pow-
ers take the form

/Y=c,&|//a|
3, Ρ,

(4)

where cn are coefficients independent of the focusing

(parameters. For centrosymmetric medium the expres-
sions for the harmonic power are simplified since σ2 = σχ1

= σ ι ι = σ4 = "ιοί = σ02 = σ31 = σ1001 = σ011 = 0 and thus the ampli-
tudes of even harmonics are zero.

The harmonic power increases with ζ when any of the
wave mismatches in system (3) is small. For example,
in third harmonic generation in a noncentrosymmetric
medium for Δ = k3 - Zk^ 0, we have phase matching for
the direct process whereas for Δ =fe2- 2*^» 0 or Δ =fe3

-k2 — kl^0, we have phase matching for the cascade
processes.1 6

We shall subsequently assume that if one of the mis-
matches Δ' is small ( | Δ ' | ~ 1 / 6 ) , the other mismatches
are fairly large ( | Δ | » 1 / 6 ) . System (3) consists of in-
tegrals of the type j | /(η) exp(i6A/2rj)d7j. We shall find
an expression for this integral for large | Δ | . Succes-
sively integrating by parts and neglecting all terms of

order (6Δ)"2, (6Δ)"3, and so on, we obtain

f / (η) exp (!£ η) * | « , ^ / (η) exp ( (5)

2. PHASE MATCHING FOR THE DIRECT PROCESS

In this case, we have \^n\ = \kn-nk1\^l/b, and α|Δ>β |
» l / 6 , |Δρ,Γ |»1/δ. Transforming system (4), allowing
for Eq. (5), and using the explicit relationships Δ ίι + Δ 2

= Δί>+2, Δ/,0 1+Δ3 = Δ/,+ 3, Δ1ΟΟι + Δ 4 = Δ5, Δ ί 2 +2Δ 2 = Δ(>+4,
ana ^ η 1 1 + Δ 2 + Δ 3 = Δ5, we obtain

Pn=cnb^"aniii\ An[m0-2/), Δη]|
2, (6)

where a3 e f f =σ3 + σησ2/Δ2; cr5eff =σ5+σ3 1σ2/Δ2+σ2 0 1σ3/Δ3

Thus, in the case of phase matching for the direct
process, both the direct and cascade processes make
contributions to the phase-matched increase in the har-
monic, these contributions having exactly the same de-
pendence on the focusing parameter m, position of the
center of the constriction in the nonlinear medium, and
wave mismatch Δπ.

We shall analyze the dependence of the harmonic pow-
er on the focusing parameter for some typical cases.
Figure 1 shows dependences of the second, third, and
fifth harmonic powers on m for Δπ = 0 and focusing at the
center of the nonlinear medium (1 = 0). The integral in
Eq. (6) between plus and minus infinity for n * 3 is zero,
so that the powers of all the higher harmonics tend to
zero. This is attributed to an additional phase shift of
the pump and harmonic fields described by the factor
exp[-iarctan[2(z -£„)/&]}. As a result, the harmonic
field generated by the region situated ahead of the con-
striction plane (z<20), is completely compensated by the
harmonic field generated by the region situated beyond
the constriction plane (z >z^. We note that the second
harmonic power for m — °° also tends to zero 1 which is
not due to the behavior of the integral in Eq. (6) but to
the presence of the factor 6 in front of the integral. In
the case of focusing at the boundary of the nonlinear

FIG. 1. Dependences of the harmonic power on the degree of
focusing under conditions of exact phase matching for the di-
rect process (Δπ= 0) with focusing at the center of the nonlinear
medium (a) and at the front face (b) for the second (1), third
(2), and fifth (3) harmonics.
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medium, no such compensation is found and the char-
acter of the dependence changes: the third harmonic
power reaches saturation and the fourth and fifth har-
monic powers increase monotonically (Fig. lb). Under
these conditions, the second harmonic power tends to
zero. This behavior of the harmonic powers is asso-
ciated with the factor ft3"" in Eq. (6) and also with the
fact that the integral in Eq. (6) between semiinfinite
limits has a certain finite value, regardless of the num-
ber of the harmonic.

An additional diffraction phase shift of the pump and
harmonic fields during focusing has the result that the
wave mismatch Δ = 0 is not generally optimal and in
order to maximize the harmonic power, Δ must be op-
timized.

By replacing the limits of integration in Eq. (6) by
infinite limits, an expression was obtained in Ref. 5 for
the harmonic power in the case of strong focusing (m
» 1 ) at the center of a nonlinear medium

' " I o, Δ, 5*0.
(7)

From this we can obtain the optimal mismatch: A°pt

= -2(n - 2)/b. Substituting this expression into Eq. (7),
we obtain the dependence of the harmonic power on the
degree of focusing for optimized Δ in the strong focus-
ing approximation

>'-η- (8)

In the case of weak focusing, Eq. (6) is reduced to
give

»i(I— 21)

(1+2D (1 + W 2

We then have Δ°ρ' = -2(» -l)/!> and the harmonic powers
in the weak focusing approximation depend on the focus-
ing parameters as follows:

= Δ/ ) -
.opt

-6 In2 2m (t + 1/2) + Υ I + 4m
2m (i — 1/2) + γ 1 + 4m» (/

» (I + 1/2)»" "1
» (/ — 1/2)» J '

Pa(A, = Δ3

Ρ ) ~ |arctg[2m(Z + 1/2)]-arctg[2m(Z- 1/2)]|«,

Λ(Δ5 = Δ ? ' ) ~ ^ %

-arctg[2m(/-l/2)]} 0)

Figure 2 shows dependences of the third and fifth har-
monic powers on m in the case of focusing at the center
of a nonlinear medium with optimized Δ. The continuous
curve gives the results of calculations of the power in
the weak focusing approximation (9), the dashed curves
gives the results for the strong focusing approximation
(8), and the circles give the results of direct calcula-
tions of the integral (6) by numerical techniques. It can
be seen that the approximations fairly accurately des-
cribe the dependence of the power on the focusing and
the character of these dependences is the same as those
for focusing at the boundary of a nonlinear medium for
Δη = 0.

The power of the higher harmonics generated with op-
timized Δ is highest when the focal constriction is sit-
uated at the center of the nonlinear medium (I = 0) and
decreases as the focus is shifted toward the boundary.

FIG. 2. Dependences of the harmonic power on the degree of
focusing with optimized wave mismatch for direct processes
(ΔΠ = Δ^Ι>* with focusing at the center of the nonlinear medium
(I = 0) for the third (a) and fifth (b) harmonics; the continuous
curves correspond to the weak focusing approximation; the
dashed curves correspond to the strong focusing approxima-
tion; the circles give the results of direct calculations of the
integral (6).

3. PHASE MATCHING FOR CASCADE PROCESSES

In this case, the wave mismatch for any stage of the
cascade process is small and the other mismatches are
large. Using Eq. (5), we can obtain from system (4) an
expression for the harmonic power. For example, for
third harmonic generation processes in a noncentrosym-
metric medium we have

(10)

For a cascade process in a centrosymmetric medium
we have

Ps (Δ, « 0) = c5 A 2 , ! ^ " ! , , ^ , ) , I A» I"1 (1-20, Δ,] |s

(ID
- 2 i ) , Δ Μ 1 ]

Figure 3 shows dependences of the third harmonic
power on the parameter Ζ in a noncentrosymmetric
medium for two cases of phase matching: Δ 2 « 0, Δ Χ 1

« 0 (Δ is optimized for each value of I). It can be seen

as ι

FIG. 3. Dependences of the third harmonic power on the posi-
tion of the focus with optimized wave mismatches for the direct
process (1, ΔΠ=Δ^Β*), the second harmonic generation process
(2, Δ2 = Δ2·*), and the synchronous summation process (3, An
=Δ{?*). The degree of focusing is m = 5.4 and the circles give
the experimental results.
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that the harmonic power does not reach a maximum for
focusing at the center of the nonlinear medium, as in
the case of phase matching for the direct process, but
for focusing at the boundary, this being for Δ Μ « Ο at
the front face and Δ 2 « Ο at the rear face.

These dependences may be given the following phys-
ical interpretation. The phase matching Δ1 χ = &3-&2

- kn » 0 may be considered to be synchronous mixing of
a "free" second harmonic wave and a pump wave. The
amplitude of the free second harmonic wave is governed
by the amplitude of the pump wave at the front face of
the nonlinear medium. In the case of fairly strong foc-
using on the rear face, the amplitude of the pump wave
on the front face is small and thus the amplitudes of
the free second harmonic wave and of the cascade third
harmonic are also small.

In the case of Δ2 = &2- 2k^ 0 phase matching, nonsyn-
chronous summation of the synchronous second harmon-
ic and pump wave takes place, described by a relation-
ship such as Eq. (5). In accordance with Eq. (5), the
third harmonic power is governed by the difference be-
tween the products of the amplitudes of the pump and
second harmonic waves at the entrance and exit faces of
the nonlinear medium, respectively. One of these pro-
ducts is invariably zero since the second harmonic am-
plitude at the entrance face is zero. Thus, third har-
monic generation is more efficient in the case of fairly
strong focusing on the rear face.

These relationships were confirmed by experimental
measurements of the dependence on the position of the
focus for the power of the third harmonic excited in a
KDP crystal in the phase-matching direction for cas-
cade processes by pumping with the zeroth radiation
mode of a Q-switched YAGjNd3* laser (Fig. 3). The
KDP crystal was 4 cm Ion?, the focal length of the lens
was 8.3 cm, and the length of the focal constriction was
0.76 cm. For each position of the focus relative to the
crystal, optimization of the wave mismatch was
achieved by slightly rotating the crystal.

It should be noted that the difference between the har-
monic powers when the pump wave is focused on the
front and rear faces of the nonlinear medium increases
as the degree of focusing m increases (Fig. 4) and also
as the number of the harmonic increases [compare, for
example, Eqs. (10) and (11)].

FIG. 4. Dependences of the third harmonic power on the de-
gree of focusing under conditions of exact phase matching for
the cascade process Δ2 = 0; similar dependences are obtained
for the other phase-matched cascade process Διι = 0, but in
this case the upper curve corresponds to I = — 0.5 and the lower
curve corresponds to I =+ 0.5.

4. HARMONIC GENERATION BY FOCUSED BEAMS
ALLOWING FOR BIREFRINGENCE

We shall analyze the excitation of harmonics by fo-
cused beams in a crystal using as an example the prop-
agation of an ordinary pump wave in the phase-matching
direction for the direct process (type O^ •.. en interac-
tion). Allowing for birefringence, the power of the w-th
harmonic may be calculated from

exp — I F(ft,) I'd*,, (12)

where

'F(kx)= f ( ΐ - . ; η Γ - ι expjir(A+p*a)ld.l,
— " 1 ( 1 + 2 0 *• '

kx is the transverse component of the wave vector; β is
the angle of birefringence.

For |3=0, Eq. (12) yields Eq. (6). The quantity \F{kx)\2

characterizes the conversion efficiency for the angular
component defined by the transverse component of the
wave vector kx. For β = 0 the wave mismatch for all the
angular components is Δπ whilst in the presence of bire-
fringence, this becomes Δπ+|3£χ. The conversion effi-
ciency of the whole beam is found as an integral over
the conversion efficiencies of the individual angular
components allowing for a Gaussian profile of the pump
wave.

The results of calculations of the dependence of the
third harmonic power on the focusing parameter for dif-
ferent angles of birefringence and focusing at the center
of the crystal are plotted in Fig. 5. In the calculations,
the wave mismatch was optimized. It can be seen from
Fig. 5 that up to fairly large m, the influence of the bi-
refringence is small and the third harmonic power tends
to that for 0 = 0. The influence of birefringence becomes
small when the aperture drift over the length of the con-
striction is smaller than the constriction diameter a
Φ β «α); since we have b =kaz, this is found subject to
the conditions «l/j32fc.

Similarly, for any harmonic the influence of birefrin-
gence decreases as the focusing parameter increases.

5. CONCLUSIONS

In terms of the dependence of their power on the fo-
cusing conditions, all harmonics with «> 3 are similar
and differ substantially from the second harmonic,
whilst the third harmonic occupies an intermediate posi-
tion in this respect. The difference between the depen-

FIG. 5. Dependences of the third harmonic power on the degree
of focusing with optimization of the direct process with respect
to Δ3 for different angles of birefringence β.
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dences of the harmonic power as the confocal parameter
b decreases is due to the influence of two factors: on
the one hand, the effective length of the nonlinear med-
ium, which makes the main contribution to the harmonic
power, decreases and, on the other hand, the amplitude
of the nonlinear polarization increases. For the second
harmonic the first factor predominates over the second,
for the third harmonic these factors compensate for
each other, and for harmonics with n> 3 the second fac-
tor predominates.

For higher harmonics generated by cascade proces-
ses, there are two types of dependences of the power on
the focusing conditions. If the phase-matching condition
is satisfied for the direct process, the contribution of
the cascade process to the total harmonic power de-
pends on the main parameters in the same was as the
contribution of the direct process. If the phase-match-
ing condition is satisfied for any stage of the cascade
process, we find a strong dependence of the power on
the position of the constriction, asymmetric with re-
spect to the center of the nonlinear medium, the asym-
metry increasing sharply as the number of the harmonic
increases.

In harmonic generation in crystals, the output power
decreases due to birefringence. However, when focused
pumping is used, the generation process takes place ef-
ficiently mainly near the constriction and thus the influ-
ence of birefringence may be neglected when the aper-
ture drift over the length of the constriction does not
exceed its diameter.
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Injection laser with an unstable resonator
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A report is given of the first ever investigations of an injection laser having an unstable resonator. It was

found that in such a laser the transverse field distribution is stabilized and only one longitudinal mode is

excited.

PACS numbers: 42.55.Px, 42.60.Da

An efficient method of selecting transverse oscillation
modes and reducing the angular divergence of laser
radiation is that in which an unstable resonator is used
(see, for example, Ref. 1 and the review in Ref. 2). In
a laser having an unstable resonator, the transverse
field configuration is mainly determined by the reson-
ator geometry and is to a lesser degree (than in lasers
having a stable resonator) a function of the spatial vari-
ation of the complex permittivity ε (the refractive index
and the gain) of the active medium. The transverse
field distribution (configuration) therefore remains
stable even when there is a complex and irregular
change in the spatial dependence of ε. This situation is
produced by the high degree of spatial coherence in las-

ers having an unstable resonator.

In injection lasers having a plane-parallel resonator
the dependence of the transverse field configuration on
the spatial variation of ε is stronger than for other
types of laser (in practice, the configuration is given
entirely by the variation of ε). The most unfavorable
situation occurs for the direction parallel to the p-n
junction. In this direction ε is almost constant, and all
the changes are of a random nature. In addition, be-
cause of the inhomogeneous "depletion" of the inversion
(the electron density) and the strong dependence of the
refractive index on the electron density, an additional
profile of ε appears which changes in a complex way
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