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All-optical deflection and splitting by second-order cascading
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We describe a novel type of second-order cascading by which the signal that is cross polarized to the pump can
be split with an efficiency of more than 100%. The process requires the simultaneous phase matching of two
second-order parametric interactions, whcih can easily be achieved with recently fabricated two-dimensional
nonlinear photonic crystals. © 2002 Optical Society of America

OCIS codes: 190.4410, 190.4360.
Two major types of second-order cascading can be
achieved in nonlinear optical media with quadratic
response. The first type is based on a single sec-
ond-order process, such as second-harmonic generation
(SHG),1 and it is governed by a single phase-matching
parameter. The second type, called multistep second-
order cascading, involves at least two different second-
order processes, each of which is characterized by an
independent phase-matching parameter. Multistep
cascading can be described, in some respects, as an
effective third-order process. A famous example of
such a process is third-harmonic generation in a single
quadratic crystal.2,3

Recent studies of multistep second-order cascad-
ing led to the prediction of many interesting effects
based on self- and cross-phase modulation that in-
clude the accumulation of a nonlinear phase shift,4

multicolor parametric optical solitons,5,6 and paramet-
ric generation of cross-polarized waves in a single
quadratic crystal.7,8 Another important example of
the multistep cascading processes is the frequency
shifting effect in quasi-phase-matched (QPM) struc-
tures,9 – 11 which may find applications in optical
communications.

In this Letter we propose a spatial analog of the
frequency shifting effect: a multistep second-order
process, based on a double-phase-matched parametric
interaction, that permits splitting of the input signal
into two or three channels (see Fig. 1) and the simul-
taneous amplif ication of the split signals with respect
to the input signal.

The process of beam def lection, which can be
based on double phase matching in two-dimensional
nonlinear photonic crystals,12 is shown in Figs. 1(a),
2(b), and 2(c). The input pump and signal are at
the same frequency and are cross polarized. The
first process [Figs. 2(b)] is the collinear generation of
the second-harmonic (SH) wave by the pump beam
based on the fundamental vector Ka of the recip-
rocal lattice [Fig. 2(a)], k2 1 MKa � 2k1p, where
integer M indicates the order of the parametric
interaction.12 As the second process [Fig. 2(c)], the
SH wave generated by the pump interacts with the
cross-polarized input signal beam and is downcon-
verted into a new wave with the same frequency and
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polarization but with a deviation by angle u from the
propagation direction. The phase-matching condition
for the second step, k1s0 1 k1s 1 NKb � k2, can be
satisfied by the use of another fundamental vector,
Kb [Fig. 2(a)]. If the propagation direction is chosen
such that a symmetric reciprocal lattice vector is
situated on each side of the pump direction [as shown
in Figs. 2(d) and 2(e)], two def lected beams will be
generated: one at angle u and the other one at the
angle 2u. The polarizers shown in Fig. 1 are used to
block the pump beam.

The important condition for such a cascading pro-
cess to occur is the double-phase-matching parametric
interaction that can be achieved by periodic modu-
lation of the quadratic susceptibility in one-dimen-
sional QPM structures,13 and, as was shown in Refs. 12
and 14, in the recently fabricated two-dimensional non-
linear photonic crystals (2DNPCs).15

To develop the theory of the cascaded processes
shown in Fig. 1 we assumed that x is the propa-
gation direction, the subscripts p, s, and s0 stand
for the pump, the transmitted signal, and the de-
f lected signal, respectively, with the additional
subscripts 1 and 2 that mark the fundamental and
the second-harmonic waves, and that y and z stand
for the polarization directions of the interacting
waves. The processes involved in these paramet-
ric interactions can then be formally presented as
two possible chains: (a) z1pz1p 2 z2p, z2py1s 2 y1s0 ,
and *(b) y1py1p 2 z2p, z2pz1s 2 z1s0 . In both cases

Fig. 1. Schematic of the suggested cascading interaction
for (a) def lection and (b) splitting. Signal and pump are
cross polarized. TS, transmitted signal; DS, DS1, DS2,
def lected signals; P’s, polarizers.
© 2002 Optical Society of America
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Fig. 2. (a) Reciprocal lattice and the main reciprocal vec-
tors of a 2DNLC structure. Phase matching for (b) the
first and (c) the second steps of the process, z1pz1p 2 z2p
and z2py1s 2 y1s0 . Phase matching for (d) the f irst and
(e) the second steps of the process, y1py1p 2 z2p, z2pz1s 2
z1s0 . Drawings correspond to n1z , n2z , n1y.

the pump and the input signal are cross polarized;
the difference between them lies in which of the
subprocesses (SHG or difference-frequency mixing)
will profit from the use of second-order nonlinearity
with a larger value. For the crystals that permit
modulation of the second-order susceptibility (such
as LiNbO3, LiTaO3, KTiOPO4, and KNbO3), tensor
component d�2�

33 is several times larger than component
d�2�
32 . Moreover, the second-order nonlinearity that

governs the two steps of the proposed process has
an electronic origin, and therefore the def lection
(splitting) process should be instantaneous. The
overall parametric cascading interaction resembles
an effective totally degenerate four-wave mixing
process with the combined phase-matching condition
k1s 1 k1s0 1 �MKa 1 NKb� � 2k1p.

It is important to note that the def lection and split-
ting described here are optically addressable processes;
i.e., splitting (def lection) occurs only when a pump is
provided. The suggested parametric process can be
analyzed by use of equations similar to those that de-
scribe the frequency shifting effect.10 If we neglect, for
simplicity, the effect of walk-off, temporal pulse pro-
files, and losses at the fundamental and SH frequen-
cies, we can obtain the following system of equations
for the parametric processes shown in Fig. 1(a):

i
dA1p

dx
� s1A1p

�A2 exp�2iDk1x� ,

i
dA2

dx
� s1A1p

2 exp�iDk1x�

1 2s2A1sA1s0 exp�iDk2x� ,

i
dA1s

dx
� s2A2A1s0

� exp�2iDk2x� ,

i
dA1s0

dx
� s2A2A1s

� exp�2iDk2x� . (1)
In the system of Eqs. (1) the functions A1p, A2, A1s,
and A1s0 are the complex envelopes of the pump
wave, the SH wave generated by the pump, and non-
def lected and def lected signals, respectively. Here
s1 � 2pf1dI��l1n1� and s2 � 2pf2dII��l1n1� are the
coefficients that characterize the two parametric
processes, SHG and difference-frequency mixing,
respectively. The numerical coefficients f1 and f2
depend on the parameters of the 2DNPC (see, e.g.,
Ref. 16). If the input pump’s polarization is directed
along the crystallographic z axis, dI � d�2�

33 , then
dII � d�2�

32 and, for the input pump polarization per-
pendicular to the crystallographic z axis, dI � d�2�

32

and dII � d�2�
33 .

To f ind analytical solutions of Eqs. (1) we assume
that the pump intensity is much larger than the input
and output signal intensities. Using the well-known
solution for SHG, A2 � 2iA0 tanh�s1A0x�, we reduce
the system of Eqs. (1) to the equations for A1s and A1s0

and obtain, for Dk2 � 0, the intensity conversion effi-
ciency of the output signals:

h1�h1s0� � 1/4 ��sech�s1A0L��r 6 �cosh�s1A0L��r�2, (2)

where hj � �Aj �L��As�0��2, A0 is the input pump’s
amplitude, As�0� is the input signal’s amplitude, L is
the crystal length, and r � js2�s1j; 1 and 2 corre-
spond to nondef lected and def lected output signals,
respectively.

In Fig. 3 we show the dependence of the intensity
amplification of the def lected (solid curves) and non-
def lected (dashed curves) signal waves for the def lec-
tion process with the ratio r � js2�s1j equal to 6 (thick
curves) and 1�6 (thin curves). Thus the suggested
multistep cascading processes can be used for simulta-
neous splitting and amplif ication of the input signal,
and the f irst effect is more efficient.

Amplification for the scheme that results in three-
fold splitting [Figs. 1(b), 2(d), and 2(e)] is described by

Fig. 3. Eff iciency of the def lected (solid curves) and non-
def lected (dashed curves) signals relative to normalized
input pump amplitude, as given by the result [Eq. (2)] for
the def lection scheme and for two values of the ratio r,
namely, r � 6, shown by thick curves (lower scale), and
r � 1�6, shown by thin curves (upper scale).
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the same solution [Eq. (2)], the conversion efficiency of
the transmitted wave is equal to h1s and the conver-
sion efficiency of each def lected wave (DS1 and DS2;
Fig. 1) is 2 orders of magnitude less than h1s0 .

To f ind the exact phase-matching conditions we take
the example of a 2DNPC made from a planar hexago-
nally polled LiNbO3 structure for which z is the direc-
tion of the poling axis. The reciprocal lattice of the
2DNLC structure is shown in Fig. 2(a). As was done
in the research reported in Ref. 16, we select the re-
ciprocal lattice basis vectors Ka � k0�cos f, sin f� and
Kb � k0�2 cos f, 0�, with k0 � 2p�d. First we con-
sider the case of Fig. 1(a) with the pump polarized
in the xy plane, signals polarized along the z axis,
and vector Ka selected to phase match the SH pro-
cess directed along the direction of pump propagation.
Then the following equations define the parameters
of the 2DNPC [Figs. 2(b) and 2(c): k2 � 2k1p 2 Mk0,
k2 � k1s�1 1 cos u� 1 2Mk0 cos2 f, and k1s sin u �
Mk0 sin�2f�. Solutions of these equations are k0 �
�2k1p 2 k2��M , cos2 f � ��Nk0�2 1 w2 2 k2

1s���2wNk0�,
and sin u � �Nk0 sin�2f���k1s, where w � k2 2 Nk0 2
ks. Similar analytical solutions can be obtained for
the second case, which is presented in Figs. 1(b), 2(d),
and 2(e).

Taking the fundamental wavelength l � 1.53 mm
and the refractive indices n1z � 2.141645, n1y �
2.21227, and n2z � 2.18377 from Ref. 17 for T � 100 ±C
and the def lection geometry shown in Fig. 1(a), we
obtain (for M � N � 1) d � 26.84 mm, f � 30.38±,
and u � 1.33±. For the second process of the splitting
geometry [Figs. 1(b), 2(d), and 2(e)] the corresponding
results are d � 5.53 mm, f � 67.8±, and u � 6.64±.

So far, we have discussed collinear SH generation
as the f irst process in multistep cascading. However,
both def lection and splitting can be achieved with non-
collinear SH generation. In such a case a single QPM
structure can be employed to provide the phase match-
ing of both the parametric interactions. Additionally,
the so-called two-pass QPM geometry (previously sug-
gested in the context of the frequency shifting experi-
ments10) can also be applied for beam def lection and
splitting by means of second-order cascading.

Finally we should point out that the proposed
scheme could also be used for the generation of a
cross-polarized wave. Indeed, if only a pump wave
enters a nonlinear medium and the corresponding
double-phase-matching conditions are satisfied, the
generation of a pair of cross-polarized signals starts
from quantum f luctuations in the nonlinear medium
or from some source of depolarization of the pump
(e.g., surface depolarization), leading to the generation
of two or three waves of the fundamental frequency
propagating in different directions and polarized
perpendicularly to the pump wave.
In conclusion, we have suggested a new type of sec-
ond-order cascading interaction for the simultaneous
generation, amplification, def lection, and splitting of
waves that are cross-polarized to the pump by means
of a double-phase-matching parametric interaction.
We believe that the basic ideas presented in this Letter
can be useful in the construction of all-optical devices
for communications networks based on the properties
of nonlinear photonic crystals as well as of different
devices, such as interferometers and ellipsometers,
for which beam splitting and recombination are
required.

This research was supported by the Bulgarian
Science Foundation (grant 803) and the Australian
Research Council. Y. S. Kivshar’s e-mail address is
ysk124@rsphysse.anu.edu.au.

References

1. See, e.g., G. Stegeman, D. Hagan, and L. Torner, Opt.
Quantum Electron. 28, 1691 (1996).

2. S. A. Akhmanov, L. B. Meisner, S. T. Parinov, S. M.
Saltiel, and V. G. Tunkin, Zh. Eksp. Teor. Fiz. 73, 1710
(1977) [JETP 46, 898 (1977)].

3. P. S. Banks, M. D. Feit, and M. D. Perry, J. Opt. Soc.
Am. B 19, 102 (2002).

4. S. Saltiel, K. Koynov, Y. Deyanova, and Yu. S. Kivshar,
J. Opt. Soc. Am. 17, 959 (2000).

5. Yu. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel,
Phys. Rev. E 60, R5056 (1999).

6. I. Towers, R. Sammut, A. V. Buryak, and B. A.
Malomed, Opt. Lett. 24, 1738 (1999).

7. S. Saltiel and Y. Deyanova, Opt. Lett. 24, 1296 (1999).
8. G. I. Petrov, O. Albert, J. Etchepare, and S. M. Saltiel,

Opt. Lett. 26, 355 (2001).
9. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer,

Opt. Lett. 23, 1004 (1998).
10. K. Gallo and G. Assanto, J. Opt. Soc. Am. 16, 741

(1999).
11. G. P. Banfi, P. K. Datta, V. Degiorgio, G. Donelli,

D. Fortusini, and J. N. Sherwood, Opt. Lett. 23, 439
(1998).

12. S. Saltiel and Yu. S. Kivshar, Opt. Lett. 25, 1204,
1612(E) (2000).

13. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer,
IEEE J. Quantum Electron. 28, 2631 (1992).

14. S. M. Saltiel and Yu. S. Kivshar, Bulg. J. Phys. 27, 57
(2000).

15. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus,
D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett.
84, 4345 (2000).

16. M. de Sterke, S. M. Saltiel, and Yu. S. Kivshar, Opt.
Lett. 26, 539 (2001).

17. V. G. Dmitriev, G. G. Gurzadyan, and D. N.
Nikogosyan, Handbook of Nonlinear Optical Crystals
(Springer-Verlag, Berlin, 1999), p. 122.


