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A study was made of nonequilibrium mixing of ultrashort laser pulses, The theory wzl;s developed for the
Gaussian and Lorentzian distributions of the original waves; the latter case was analyzed in detail. Nonequil-
ibrium generation (bya cascade method) of the third harmonic of a laser emitting locked longitudinal modes
was observed experimentally. It was predicted theoretically and confirmed experimentally that the width of
the spectrum of the harmonic frequency reached saturation under nonequilibrium mixing conditions. The mea-
sured spectra of the second and third harmonics generated under quasistatic conditions and the ratio of their
widths indicated that the spectrum of a train of ultrashort laser pulses was Lorentzian. Calculations were also
made of the characteristic parameters of the nonequilibrium generation of sum frequencies in KDP and CaCO,

crystals,
INTRODUCTION

Nonequilibrium interactions between optical waves are

a subject of constant interest. This interest is primarily
due to the availability of lasers emitting picosecond pulses.
A considerable number of theoretical and. experimental
investigations have been made of the stimulated scatter-
A considerable number of theoretical stimulated scatter-
ing of laser radiation and of the multiplication of optical
frequencies under nonequilibrium conditions (see, re-
spectively, refs. 1, 2 and 3, 4 as well as the literature cited
in these references). Among the multiplication processes
the greatest attention has been paid to the frequency dou-
bling of ultrashort pulses when an ordinary laser wave
excites an extraordinary second-harmonic wave in a non-
linear crystal, i.e., a two-wave nonequilibrium interaction
is observed. On the other hand, the generation of higher
harmonics (used frequently to raise the optical frequency)
is in most cases a three-wave process: The frequencies
or polarizations of the waves being mixed are usually dif-
ferent.’~® However, there have been hardly any investiga-
tions of nonequilibrium mixing of optical frequencies,
although this method has produced the fifth harmonic.5®
The width of the coherent mixing spectrum is estimated
in refs. 7-9 and elsewhere, subject to the phase matching
of the waves.

We shall show that this approach is unsuitable in the
nonequilibrium mixing case. We shall give a theoretical
analysis of nonequilibrium mixing of optical frequencies
and report an experimental study of the cascade genera-
tion of the third harmonic. We shall show that in the
strong-nonequilibrium mixing the energy and width of the
sprectrum of the third harmonic reach saturation. A com-
parison of the measured widths of the spectra of the second
and third harmonics excited under quasistatic conditions
confirms the Lorentzian form of the spectrum of ultrashort
laser pulses, deduced from spectral analysis.

1. THEORY OF NONEQUILIBRIUM
OPTICAL MIXING

For the sake of simplicity we shall consider nonequi-~-
librium mixing of plane waves. In this case the genera-
tion of the sum frequency w; = w, + W, considered on the
assumption that the fields of the exciting frequencies are
fixed, is described by
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where Aj and uj are the complex amplitudes and group ve-

locities of the waves of frequencies identified by the sub-
script; Ajo(t) is the amplitude at the input of a nonlinear
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crystal in the plane z = 0; v is the nonlinear interaction
coefficient; the direction of the z axis is assumed to bethe
same as the phase-matching direction in the crystal.

The solution of Eq. (1) can be analyzed conveniently
by representing the amplitudes A (t) in the form of their
Fourier spectra; in this way we find that

AQ 2)=i —,};S exp (ivy,$22,)
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+9o
X | A (@) A (@ — Q) exp (v Q12,) ddz,. (2)
Here, vjp = 1/uj = 1/up is the detuning of the group ve-
locities;
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We shall consider the spectral density S;(&, z) = | A5(%,
z) |? of the sum frequency for the Lorentzian and Gaussian
forms of the exciting Fourier spectra. Then,

Aoy

A5, (@) =V S;(0) To;+ 7@ (3a2)
or
A5 (@ =V 5500 exp[ "_;Q%)”n 2J, (3b)

where Awj is the half-width of the spectrum at the 0.5
level.

In the (3a) case, we obtain
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p=va/vay; L=2/la; I= (varhor)™, Va1 >0. (6)

The normalized spectral density of the sum frequency
is given by the expression
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(Ao, /p)? 4 Q2

in? (nLQ/24 f-sh2L/2 ¥
e = 80 @ (1)

5@ 1) =
In general, the spectrum of the frequency being ex~
cited, Eq. (4) or (7), depends on the parameters pand L =
z/1;. The expressions (4) and (7) are asymmetric under
the transposition of the subscripts 1 = 2, which is due
to the structure of the interacting pulses. The spectrum
(3a) corresponds to pulses with a steep leading edge. There-

Copyright © 1974 American Institute of Physics 160




fore, the spectrum and, consequently, the intensity of the
sum frequency practically cease to change when the delay
time between the exciting pulses T = z/u, ~ z /u; becomes
equal to the duration of the pulse traveling at the higher
velocity. In the case under consideration we have u; > u, *
(vyy > 0) and the characteristic pulse separation lengthis
Iy, = (yAw ) 1. If vy, > 0, we obviously have I, = (V,Aw,) "1,

Under quasistatic frequency mixing conditions (in this
case the length of a crystal z is shorter than either of the
pulse separation lengths, z << Ly and z < L), it follows

from Eq. (7) that
5, @ L) =3 @

@)

and, consequently, the half~width of the sum frequency

spectrum is

Aa{?) == Aw = Aw, 4 Aw,

Under nonequilibrium conditions we can distinguish
two cases. If the exciting pulses do not separate in the

length of the crystal (z < 1,,), we have

F sin? Q/2) =
3,(@ 2 =L A3w ()

(9)

This mixing case is analogous to the nonequilibrium
frequency doubling discussed in detail in ref. 3, so that
we shall not consider it any further, However, if z > I,

we find that

o~ A I/ 2 o~
3, @ z):wj;%y%sgq’(g).

(10)

Thus, in contrast to Eq. (9), in the present case the
sum frequency spectrum is smooth and its width is in-
dependent of the crystal length z. The expression for the

width of the spectrum can be written in the form

240, = 2K (n) Awl@),
where the coefficient of proportionality is

1

(11)
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and
g == AofAwo,.

Equation (11) represents the minimum nonequilibrium
width of the sum frequency spectrum; if {qu | > 1, we find
that Aw§ = Aw,/p. Numerical calculations show that the

minimum width Aw§ of Eq. (11) is effectively reached
when L ~ 3. In the L < 3 range the value of Aw; naturally
lies between Aw§ and Awsq . In the cascade generation

of higher harmonics the parameter q is independent of the
spectral width of the original radiation if the process of
multiplication of the optical frequencies in the preceding
cascades is quasistatic. In this case the coefficient K(u)
of Eq. (12) represents the maximum narrowing of the
spectrum under nonequilibrium excitation conditions and
is governed solely by the dispersion properties of a non-
linear crystal (values of &) and by the nature of the mixing
process.

Table 1 gives the values of the characteristic param-
eters of the nonequilibrium mixing of frequencies in the
generation of optical harmonics in KDP and CaCQ; crys-
tals.

Integrating Eq. (4) with respect to §2, we obtain the
following expression of the sum frequency energy:

32 Awgr2ly
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where a is the radius of the exciting beams; W, and W,
are the energies of the exciting beams;

. lgelesp(—2L) —esp[—{l +]qu]) L}
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It follows readily from Egs. (13) and (14) that if L< 1
the energy is W; = z?, whereas for L > 1, we have W; <
12, [F(L) ® 1]. The sum frequency energy reaches its
maximum value in the latter case. The maximum energy
conversion coefficient of the nonequilibrium mixing process
is

o Wamee 2T (1
e = g, a0 k) (15)
Here, Iy = [v/A,(0)A,(0)]~"; A;(0) are the maximum values
of the pulse amplitudes.

These characteristics of the nonequilibrium mixing
of optical frequencies in the case of a Lorentzian spec-
trum (3a) are also basically valid in the case of a Gaussian
spectrum (3b). The normalized spectral density of the
sum frequency is now given by

5,(Q, Ly=exp[— 2 (xpQ/A0)| | @ (iL[2p) |~* | © (xpQ/ Aw
LiL[2p) — @ (xpQfAw) [ 59 (@), (16)

TABLE 1. Parameters y, K, and ly, Representing Nonequilibrium Mixing of Optical

Frequencies®)
I s )
No, of . . Ay
Crystal harmonicl LYPe of interaction w | K= W 3w, cm
2 0.E, = E, 0.42 | 0.70 1.3
KDp 3 E0, — E, 0.37 | 0.62 1.0
3 0,0y — E4 2.1 0.15 3.0
5 0,0, > Ey 0.25 0.87 0.2
3 00,8, = E; 0.72 | 0.40 1.0
CaCo, 3 0,E.\E, = E, 0.09 | 0.92 0.5
5 0,0,0, = Eg 3.3 0.08 0.3

*) These parameters are given for Ay = 1.06 y; the characteristic lengths I,; are calcu-
lated for pulses of 1, = 1 psec duration.
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where @ (x) is the error function;
QD oy _ o .
59 (@) =exp ( v 2),
Ao = (Aw;” 4 Aa; )17
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An analysis of Eq.(16) canbe made in the same way as
that of Eq. (7). However, in contrast to Eq. (7), Eq. (16)
is symmetric relative to the exciting waves. This is re-
flected in the definition of the characteristic length I, for
the Gaussian pulses [see Eq. (3b)].

2. EXPERIMENTAL RESULTS.
CASCADE GENERATION OF THIRD HARMONIC
BY PICOSECOND LASER PULSES

We used 2 mode~locked neodymium laser as themas-
ter oscillator. The reflection coefficients of the resonator
mirrors were 98 and 4%. The resonator was 1.5 m long.
A cell, 0.3 mm thick and containing a nonlinear absorber,
was placed next to the 98% mirror; the initial transmission
of the cell was 75-80%. The thermal lens effect, which
appeared in the neodymium rod, was compensated by in-
troducing a spherical lens (f = 4.5 m) into the resonator.
The laser radiation was in the form of a train of 15-20
pulses. The energy of the train was 0.1 J and the average
pulse duration was 3.3 psec (these results were obtained
by a two-photon method whose capabilities in the case of
ultrashort pulses are considered in refs. 3 and 10).

The laser frequency was tripled by the cascade meth-
od using two KDP crystals (one acted as the doubler and
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Fig. 1. Spectra of the second (a) and third (b) harmonics excited under

quasistatic conditions: O) experimental results; 1) Gaussian distribution;
2) Lorentzian distribution.
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Fig. 2. Spectrum of the third harmonic generated under nonequilibrium
conditions: O) experimental results; 1, 2) curves calculated for the quasi-
static and nonequilibrium condition, respectively (in both cases the
Lorentzian form is assumed).

the other as the mixer). The second harmonic was excited
in the first erystal 4 cm long) under quasistatic condi-
tions. The mixer was 0.5, 4, or 8 cm long, so that we could
observe the frequency {ripling under quasistatic and non-
equilibrium conditions. The o,0, — E, interaction was
used in the doubler and the Ejo, — E; interaction in the
mixer.

In mixing the frequencies of light pulses the output
depended on the delay time between the pulses at themixer
input. The group detuning between the exciting waves was
vy = 0.8:107% sec/cm in a KDP crystal and vy = 0.4 +10™1
sec/cm in air. Therefore, under our experimental condi-
tions (when the doubler was 4 cm long and the distance
between nonlinear crystals was 10 cm) the delay between
the pulses was of little importance.

The second-harmonic spectrum was recorded with
a UF-89 camera and a diffraction grating, whereas the
third harmonic was recorded with an STE-1 spectrograph
(the measurements were carried out simultaneously inthe
course of each laser flash). Spectrograms of a series of
flashes were subjected to a microphotometric analysis and
the results were then analyzed statistically. It was found
that the experimental error did not exceed 5%.

The quasistatic frequency tripling was studied using
a crystal 0.5 cm long (z < Iy, z < I3, and z < I3,). The

. experimentally obtained spectra of the second and third

harmonics are shown in Fig. 1. The continuous curves
represent the theoretical dependences for the Gaussian
and Lorentzian spectra. We can see that the experimental
resuits fit better the Lorentzian distribution. This is con-
firmed by the ratio of the widths of the spectra of the
second and third harmonics., The experimental value of
the ratio K = Aw;/Aw, was K = 143 = 0.05, whereasthe
theoretical value obtained under quasistatic mixing condi-
tions was K = 1.5 for the Lorentzian spectrum [see Egs.
(6) and (8)] and K = 1.2 for the Gaussian spectrum [see
Eq. (17)].

The third harmonic was also excited under nonequilib-
rium conditions using crystals 4 and 8 cm long (these
values were greater than all the characteristic lengths
listed in Table 1). Figure 2 shows the spectrum of the
third harmonic obtained experimentally under nonequilib-
rium excitation conditions employing laser radiation of
width Ay, = 6.5 em™! and the second harmonic of this ra-
diation Av, =13 em™!). We can see that the experimental
distribution agrees better with curve 2, which is plotted
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Fig. 3. Dependence of the relative width Aw,/Aw, of the spectrum of the
third harmonic on the reduced length L = z/ly of a nonlinear crystal (the
continuous curve shows the dependence for the Lorentzian form of the ex~
citing radiation; the points are the experimental values).

for the nonequilibrium conditions.

Figure 3 shows the experimentally determined de-
pendence of the width of the third harmonic spectrum on
the reduced length L of a crystal. The narrowing of the
spectrum of the third harmonic stops in the range L > 3.
The experimental values corresponding fo the quasistatic
mixing conditions (L < 1) are in good agreement with the
calculated results, whereas the values obtained under the
nonequilibrium conditions diverge somewhat from the
theoretical curve. This may be due to the fact that the
lengths of the nonlinear crystals used in the nonequilib-
rium case are such that they are affected by the aperture
effects which are ignored in our theory; moreover, the
width of the spectrum of laser pulses may vary along a
train (the time structure of picosecond pulses is discussed
in ref. 11). However, it should be pointed out that in the
case of pulses of identical intensity the fluctuations in
their duration do not affect the ratio of the average widths
of the spectra of the sum and laser frequencies in the
cascade generation process. This follows from Eq. (11)
and from the observation that the coefficient K(u) is in~
dependent of the width of the original spectrum.

Spectral measurements indicated that the energy con-
version coefficient of the third harmonic generation did
not exceed 0.5%. The maximum energy efficiency of the
cascade tripler was ~10% when the maximum conversion
efficiency of the second harmonic was ~ 30 % and the laser
radiation power was ~ 10° w.

2. CONCLUSIONS

The results of the present investigation can be sum-
marized as follows.

1. Detailed measurements of the form of the spectra
of the second and third harmonics of a train of ultrashort
pulses make it possible to determine the spectrum of the
original laser radiation. Ultrashort pulses are found to
have the Lorentzian spectra. This is in agreement with
the conclusions reached in ref. 12. However, in some
earlier investigations (see, for example, refs. 13 and 14)
the spectra of ultrashort pulses have been found to be peaks
of ~ 5 ecm~! width superimposed on a wide pedestal ( >
100 em-'). The difference between our spectra and those
reported in refs. 13 and 14 is evidently due to the lower
nonlinear losses in our experiments because of the higher
minimum transmission of the cell containing a nonlinear
absorber (the phenomena associated with the nonlinear
losses in picosecond lasers are discussed thoroughly by
Basov and others in refs. 15 and 16),
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2. Nonequilibrium mixing of optical frequencies does
not give rise to an unlimited improvement in the mono-
chromaticity of the output radiation: The detuning of the
group velocities results in the spatial separation of the
pulses so that after a certain distance the sum frequency
is no longer generated. This process differs considerably
from the nonequilibrium frequency doubling® in which the
width of the harmonic spectrum can be made as small as
we please. It should be pointed out that the nonequilibrium
mixing results cannot be deduced from the theory of mixing
of monochromatic waves [A; = sinldz/2)/(A/2)] if allow-
ance is made for the detuning A =k, + ky—k; away from
the output frequency (this procedure is widely used in
analyses of the nonequilibrium doubling of optical fre-
quencies). This is due to the fact that the nonequilibrium
mixing mechanism is subject to the simultaneous influence
of the group detuning between the original waves as well
as between the original and excited waves (usually the
detunings v,, and vj, are of the same order of magnitude
as vy, as shown in Table 1). Consequently, the condition
of phase matching gives an incorrect estimate of thewidth
of the spectrum of the radiation which can be transformed
effectively into the sum frequency.

The results of the present study are applicable not
only to the generation of the sum frequency, but they can
be applied also (in the case of small conversion coefficients)
to the nonequilibrium generation of the difference frequency.

The authors are grateful to S. A. Akhmanov and V.
G. Tunkin for valuable discussions.
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