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Nonlinear phase shift as a result of cascaded third-order processes
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In centrosymmetric media, in addition to the third- and fifth-order nonlinearity, a cascadedx (3):x (3) non-
linearity contributes to the nonlinear refraction. The described effect takes place when the input beam is
involved in nearly phase-matched third-harmonic generation. The nonlinear phase shift produced by this new
cascaded nonlinearity is comparable to the nonlinear phase shift caused by the direct third-order nonlinearity
x (3). A new analytical approach, low depletion approximation, was developed and used to study the cascaded
third-order processes in the conditions of not very high third-harmonic conversion coefficients. At higher
conversion coefficients the effect was studied by numerical simulations. The presence of a seeded third-
harmonic wave gives another possibility of controlling the additional phase shift of the fundamental wave. The
conditions for stationary copropagation of the fundamental and the generated wave are presented.
@S1050-2947~98!01004-X#

PACS number~s!: 42.65.Ky, 42.60.Gd
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I. INTRODUCTION

An intense wave propagating through nonlinear me
collects a nonlinear phase shift~NPS! that is described by the
expansion of the refractive index on powers of the light
tensity I:

n5n01n2I 1n4I 21n6I 31••• . ~1!

The x (3) nonlinear refractive indexn2 @n253x (3)/
(4«0cn0

2)] has a key role for such nonlinear optical pr
cesses as optical bistability@1#, all optical switching@2#, self-
focusing, and self-defocusing@3#. Recently it was shown tha
in noncentrosymmetric media it is possible to control t
magnitude and the sign of the effectiven2 by exploring the
so-called cascaded second-order processes@4–9#. The value
of this ‘‘cascade type’’n2,casc is as a rule higher than th
nonlinear index of refraction that is connected with the
herent cubic nonlinearity of the media. Then2,cascpresenta-
tion of the additional phase shift due tox (2):x (2) cascaded
processes is valid only for relatively low input intensities;
higher intensities, however, the NPS becomes asymptotic
linear in the field@4,7#. Is this change of the slope of th
‘‘NPS versus irradiance’’ dependence a generic behavior
all cascade nonlinearities? We will try to answer this qu
tion by exploring the next order cascade nonlinearity.

The second nonlinear constant in Eq.~1!, n4 , known as
the x (5) nonlinear index of refraction @n455x (5)/
(4«0

2c2n0
3)], is also an important parameter in contempora

nonlinear optics. Theoretical investigations show that in
der to obtain spatial solitary waves a certain relation betw
n2 and n4 must imply @10,11#. In particular, in @10# it is
shown that the lower the ratio ofn2 /n4 , the lower is the
power for stable beam propagation. In analogy with the
571050-2947/98/57~4!/3028~8!/$15.00
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portunity to control the magnitude and the sign of then2 in
noncentrosymmetric media one can ask: is it possible to c
trol the magnitude and the sign ofn2 andn4 in centrosym-
metric media? As we have found this can be done us
cascaded third-order nonlinear processes.

The influence of cascaded third-order processes~CTOP!
on the amplitude of the generated wave by six photon ph
matched nonlinear interactions was analyzed for the fi
time 20 years ago in@12#. This role of CTOP was describe
in detail in Refs.@3,13,14#. The main conclusion resulting
from these investigations is that the efficiency of the s
photon phase matched processes is proportional to the sq
of the effective fifth-order nonlinearity, which is a sum o
two terms:

xeff
~5!5xint

~5!1xcasc
~5! . ~2!

The second term is a result of a consequence of two th
order processes@xcasc

(5) 5const3x(3)
•x(3)#. From Eq. ~2!, by

measuringxeff
(5) and by calculatingxcasc

(5) it is possible to de-
terminex int

(5) @12,15#. At that time no attention was paid t
the influence of the CTOP on the phases of the fundame
waves. In Ref.@16# we published our preliminary investiga
tion of the phase modulation of the fundamental wave
volved in the process of low efficiency third-harmonic ge
eration. Shortly after that the effect of CTOP on the struct
and stability of spatial solitary waves was studied in@17#.

In this paper we consider the process of nearly pha
matched type-I efficient third-harmonic generation in ce
trosymmetric media and in more detail the effect of NPS
the intense fundamental wave that arises as a result of CT
At these conditions, the consideration of the effect of se
phase modulation of the third-harmonic wave is importa
and is taken into account. The presence of seeding~nonzero
3028 © 1998 The American Physical Society
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57 3029NONLINEAR PHASE SHIFT AS A RESULT OF . . .
input at third-harmonic frequency! is also considered. We
show that the magnitude and the phase of the seeded w
gives an additional degree of freedom for controlling t
NPS of the fundamental wave. The conditions for station
copropagation of the fundamental and the third-harmo
wave are defined following the approach developed for
case of second-harmonic generation@18–20#.

II. PLANE-WAVE EQUATIONS

The amplitude equations that describe the process
type-I third-harmonic generation (v35v11v11v1) in
lossless cubic media for linear polarized plane waves
@21#:

dA1

dz
5 i ~g1uA1u21g2uA3u2!A11 ig3A1*

2A3exp~ iDkz!,

dA3

dz
5 i ~g4uA1u21g5uA3u2!A31 ig3A1

3exp~2 iDkz!. ~3!

The phase velocity mismatch isDk5k323k1 . In case of
using the quasi-phase-matched technique@22,23# the wave
vector mismatch isDk5k323k12K, whereK52p/T and
T is the periodicity of the grating. g j are the nonlinear
coupling coefficients that include convolutions of the thir
order susceptibility tensorx (3) with the polarization vectors
of the interacting waves@16,24#. Aj are the complex am
plitudes that incorporate both the real amplitudesuAj u and
the phasesw j of the waves: Aj5uAj uexp(iwj).

It is convenient to work with normalized waves am
plitudes defined by f 5uA1u/u and h5uA3u/u, where
u is determined by the boundary conditionsu5
AuA1(0)u21uA3(0)u2. Then Eqs.~3! can be rewritten as

2
d f2

dj
5

dh2

dj
52p f3h sinF, ~4a!

f

p

dw1

dj
5g̃1f 31g̃2f h21 f 2h cosF, ~4b!

h

p

dw3

dj
5g̃4f 2h1g̃5h31 f 3 cosF. ~4c!

In Eq. ~4! p5g3u2L is the normalized input intensity
g̃ j5g j /g3 ( j 51,2,4,5),F5w323w11DkLj, andj5z/L
is the normalized distance withL—the length of the nonlin-
ear media.

The system~4! has two invariants:

f 21h251

and

f 3h cosF1Lh21 1
4 Dgh45G0 . ~5!

The following notations have been introduced in Eq.~5!: the
normalized mismatch D k̃5Dk/g3u2, L50.5(g̃423g̃1

1D k̃), andDg5g̃52g̃413(g̃12g̃2).
There are three approaches to solving Eq.~4!. The first is

to obtain formula forf , h, w1 , andw3 expressed in specia
ve

y
ic
e

of

re

functions without any approximations as is done for c
caded second-order processes@19,25#. The second approac
is to numerically solve the system and the last one is to
an approximation that is valid only for low levels of th
efficiency of the third-harmonic generation process. We
veloped here low depletion approximation, described in
next section. The numerical approach was applied for
case of high-efficiency third-harmonic generation.

III. LOW DEPLETION APPROXIMATION

A. Nonlinear phase shift due to CTOP

The use of the approximation valid for low depletion
the fundamental wave can be justified by two argumen
First, it allows the obtaining of simple analytical formula
suitable for analyzing the physical background of the pro
lem. Second, this approximation is valid only for the descr
tion of nonlinear optical processes with low conversion c
efficients. This is exactly the case of third-harmon
generation in most of the nonlinear media. The repor
third-harmonic generation efficiency coefficients do not e
ceed several percent even for the highest possible nonda
ing intensities@3,15,26–30#.

The low depletion~LD! approximation described here
an extension of the fixed intensity approximation develop
for description of second harmonic generation@31–33#. The
fixed intensity approximation suggests no depletion of
intensity of the fundamental wave@ f (j)5 f 0#, but a possible
change of its phase. In the LD approximation presented h
we suggest not only possible changes of the phases o
interacting waves, but also the possibility of not very stro
depletion of the fundamental wave (f 2>0.8, h2<0.2).

Using Eq. ~5! and neglecting the terms that are propo
tional to h6 and h8, an expression forf 3h sinF can be
found:

f 3h sinF5A2Q2h41Vh22G0, ~6!

whereQ2531L220.5G0Dg andV5112G0L.
Then integrating Eq.~4a! we obtain for the intensity of

the third-harmonic signal:

h2~j!5
1

2Q2 @V2N cos~2pQj!2S sin~2pQj!#. ~7!

In Eq. ~7! S52Q f0
3h0sin(F0), N5V22Q2h0

2, F05w3(0)
23w1(0), andh0 and f 0 are the input normalized ampli
tudes for the third-harmonic and fundamental waves.

In case of no seeding,h050, and

h2~z!5g3
2u4z2sinc2S p

2

z

l coh
D . ~8!

In Eq. ~8! sincx replaces sinx/x and the coherence lengthl coh
of the third-harmonic generation process was defined,l coh
5p/2g3u2Q.

Using again Eq.~5! and keeping only terms proportiona
to hn (n<4) we obtain from Eq.~4b!
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1

p

dw1

dj
5g̃11G01a1h21a2h4. ~9!

Herea15@G02L1(g̃22g̃1)] and a25@G02L2(Dg/4)#.
Integration of Eq.~9! with the use of Eq.~7! gives, for the

nonlinear phase shift

Dw15w1~j!2w1~0!,

Dw15p~ g̃11G0!j1
a1pj

2Q2 $V2N sinc~2pQj!

2SpQj sinc2~pQj!%1
a2pj

4Q4 H V21
N21S2

2

1
N22S2

2
sinc~4pQj!22VN sinc~2pQj!

12pSQj@N sinc2~2pQj!2V sinc2~pQj!#J .

~10!

For the case of no third-harmonic signal at the input of
nonlinear media,

Dw15pg̃1j1
a1pj

2Q2 @12sinc~2pQj!#

1
a2pj

8Q4 @31sinc~4pQj!24 sinc~2pQj!#.

~11!

The range of validity of the derived formulas was verifi
by comparison with the exact numerical calculations,
shown in the following sections. As we already mention
the depletion of the fundamental wave~respectively, the con-
version coefficient into third harmonic! should not exceed
20%.

B. Physical explanation of the phase modulation by CTOP:
Definition of xcasc

„5…

For very low input intensitiesp!uDkuL the normalized
mismatch isuD k̃u@1 and we can seta1/2Q2'21/2L'
2g3u2/Dk. Then expression~11! is simplified to

Dw15g1u2z2
g3

2

Dk
u4z@12sinc~Dkz!#. ~12!

The first term in Eq.~12! is a result of direct one-ste
processes of self-phase-modulation described by the na
x (3) susceptibility of the media. The second term in Eq.~12!
is a result of two-step CTOP~x (3):x (3) cascading!. The
physical explanation of the process of the NPS due to
CTOP is based on the interference of three waves~see Fig.
1!: ~i! the linearly shifted fundamental wave,~ii ! the wave
generated as a result of a single-step third-order process
degenerate and nondegenerate four-wave-mixing proce
and ~iii ! the wave generated as a result of the two-step n
degenerate four-wave-mixing interactionsv53v2v2v.
The phase shift for the waves~ii ! and ~iii ! is different from
e

s
,

ral

e

—
es,
n-

that of linearly shifted wave~i!. The amplitude of waves~ii !
and ~iii ! depends nonlinearly on the input wave amplitud
As a result the output wave has intensity dependent N
The schematic drawing shown in Fig. 1 refers to thir
harmonic generation with zero input third-harmonic sign
(h050). In fact, the phase shift due to cascaded third-or
processes~the lower channel in Fig. 1! is a result of effective
fifth-order process withxcasc

(5) }(x (3))2.
Taking into account thatg35(3v/c)(1/8n0)x (3) we ob-

tain that the NPS due tox (3):x (3) cascading is described b
the effective fifth-order nonlinearity,

xcasc
~5! 52

9p

10
ux~3!u2

1

DkL

L

nl
. ~13!

The contribution ofxeff
(5) can exceed the contribution of th

intrinsic x int
(5) of the media. For example, for the Shott gla

RG 780, for whichx int
(5) and x int

(3) are known@34#, we esti-
mated thatxcasc

(5) /x int
(5)511.4~for this estimationDkL5p and

L/nl51000 were taken!.
For this range of input intensities the cascaded NPS

be presented as depending on an effectiven4,cascthat has the
form

n4,casc52
2n2

2

Dkl
. ~14!

It is interesting to point out that the cascade-type fif
order nonlinearity responsible for the fifth-harmonic gene
tion has the same structure as expression~13! @3,12–14#.
However,xcasc

(5) responsible for obtaining NPS is much high
in value in comparison withxcasc

(5) , responsible, for example
for the fifth-harmonic generation because of the fact tha
the last case the mismatchDk is some orders of magnitud
larger.

Let us now consider the opposite case for the input f
damental intensity,p>uDkuL, then the normalized mismatc
D k̃ can be neglected in the expression forL. For this high
input intensity limit L, Q, a1 , and a2 are constants tha
depend only on the nonlinear coupling coefficientsg i . Then
the cascaded part of the NPS,Dw1,casc5Dw12g1u2z, is

FIG. 1. Schematic drawing for illustration of the physical exp
nation of the process of formation of a nonlinear phase shift
nearly phase-matched third-harmonic media in the case of a
input third-harmonic signal. The upper channel represents the lin
phase shift of the input wave, the middle channel the generatio
the wave by degenerate four-wave mixing, and the lower chan
the generation of the wave by two-step third-order processes.
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Dw1,casc5
1

2Q2 S a113
a2

2Q2Dg3u2z

2
1

2Q3 H a11
a2

Q2 F11
1

8
cosS p

z

l coh
D G J

3sinS p
z

l coh
D . ~15!

From Eq.~15! it can be seen that for this intensity rang
the cascaded NPS depends linearly on the input inten
The last term in Eq.~15! causes small steps. The cascad
NPS,Dw1,casc, has the same behavior as the NPS caused
the naturalx (3) of the media. The numerical calculation
described in the next section confirmed that for higher val
of p the cascaded NPS has a tendency to saturate an
proportional to the square of the input fundamental am

FIG. 2. Phase-plane portraits for nonseeded third-harmonic
eration for various normalized mismatchesD k̃.

FIG. 3. Periodic depletion of the fundamental wave intens
~respectively, the pick to pick change of the third-harmonic inte
sity! as a function of the normalized mismatchD k̃5Dk/g3u2, as
found from Eq.~16!. The patterned sectors give the initial cond
tions for which the low depletion approximation should be used
ty.
d
by

s
is

i-
tude. In this case the additional phase shift should be
scribed by an effectiven2,casc.

IV. HIGH-INTENSITY FUNDAMENTAL BEAM

In this section we will use numerical solution of Eq.~1! in
order to evaluate the amplitude and phase of the fundame
beam at the output of the nonlinear media. However, so
idea of the behavior of the amplitudes can be achieved by
phase portrait technique@19,21,35#. This method allows us
easily to evaluate the conditions for stationary waves in
media.

For all calculations presented in this section we cho
hypotheticalx (3) media withg3.0 and the following rela-
tions between other nonlinear coupling coefficien
g15g3 , g252g3 , g456g3 , andg553g3 . Such relations
are valid for isotropicx (3) media. Phase-matching condition
for this type of media can be obtained by the quasi-pha
matching technique@22#.

A. Evolution of the fundamental amplitudes

From Eqs.~4a! and ~5! it can be obtained that

1

p

dh2

dj
562Ah2~12h2!32FG02Lh22

Dg

4
h4G2

.

~16!

n-

-

FIG. 4. Phase-plane portraits for seeded third-harmonic gen
tion with F050 ~a!, F05p ~b!, andD k̃50. The parameter is the
seeded third-harmonic intensity. With filled circles are shown n
essaryheg

2 for stationary copropagation of the fundamental a
third-harmonic wave.
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Equation ~16! describes trajectories in the phase pla
„(1/p)(dh2/dj),h2

… that represent the dynamics of the ge
eration of the third-harmonic wave. Lets first consider t
case of no third-harmonic signal of the input of the cryst
On Fig. 2 the correspondent curves for different values of
normalized mismatchD k̃5Dk/g3u2 are shown. Closed or
bits correspond to periodical energy exchange between
fundamental and the third-harmonic waves. It is interest
to note that only one parameter,D k̃, is enough to define the
amount of the periodic depletion of the fundamental wave
shown in Fig. 3. Note that the conversion into third harmo
can be maximum 83% whenD k̃520.56. In this figure we
marked the area where the LD approximation developed
the previous section is appropriate to be used.

For the case of seeded third-harmonic signal the traje
ries depend also on the amount of seeding and on the i
phase difference between the two input signalsF0 . The in-
put phase of the seeded wave has strong influence on
process. ForF050,p eigenmode solutions of the system~4!

are possible. Figure 4 represents the phase curves forD k̃
50 F050,p and different values ofh0 . From the figure it
can be seen that for these initial conditions the propaga
of stationary waves~waves that do not alter their intensit
but only change their phases! through the nonlinear media i
possible, as it is possible in quadratic media@19,20,35#.

B. Stationary waves

The stationary waves are characterized by constant am
tude and as follows from Eq.~4a! they can exist only for
sinF50 and, i.e., fordF/dj50. Using this condition and
Eqs.~4b! and~4c! one may obtain the following equation fo
the eigensolutions of system~4!:

@~Dg2116!h61~4LDg224!h41~4L219!h221#50.
~17!

FIG. 5. Third-harmonic eigensolutions vs normalized misma
D k̃ for the two input phase differencesF050 ~dotted line! and
F05p ~solid line!. Trivial eigensolutionh0

251 is shown with a
dashed line. Unstable eigensolutions are marked with crosses~3!.
e
-
e
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e
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In addition to the trivial solutionh251, Eq. ~17! gives the
other eigenmodes of the system~1!. In Fig. 5 the dependenc
of the eigensolutionsheg

2 on the normalized mismatchD k̃
5Dk/g3u2 is shown forF050 and F05p. Some of the
eigensolution values do not correspond to the station
waves in the media and they are marked with~3!.

The evolution of the phase for the stationary waves
linear with the propagation distance and the irradiance. In
grating Eq.~4b! we have

w15w101@ g̃1~12heg
2 !1g̃2heg

2

1sgn~cosF0!A~12heg
2 !heg#g3u2z. ~18!

Only the last term in the square brackets is connec
with the process of third-harmonic generation. We have
bear in mind that in the case of second-harmonic genera
the phase evolution of the eigensolutions is linear with
field @19#. In the case of eigensolutions in the third-harmon

h

FIG. 6. Cascaded NPS~a! and fundamental intensity~b! vs nor-
malized mismatchD k̃ for different values of the paramete
p5g3u2L for the case of unseeded third-harmonic generation. T
solid line represents the numerical solution of system~1!, the dotted
line represent the analytical solution obtained from expression~11!.
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57 3033NONLINEAR PHASE SHIFT AS A RESULT OF . . .
generation process the nonlinear media acts as lossless m
for both waves with the nonlinear index of refraction defin
as

n2,eg5n2F11~g2 /g1!
heg

2

f eg
2 1~g3 /g1!sgn~cosF0!

heg

f eg
G .
~19!

C. The evolution of the fundamental phase

The phase evolution of the fundamental wave can be
primary interest for all optical applications as well as f
measurement purposes. For finding the phase we applie
rect integration of Eq.~1!. The two invariants@Figs. 5~a! and
5~b!# of the system were used to control the accuracy of
calculated data.

Let us first consider the case of zero third-harmonic sig
at the input of the nonlinear media. The dependence of
NPS due to CTOP on the normalized mismatchD k̃ is shown
in Figs. 6~a! and 6~b!. Only the cascaded part of the NP
Dw1,casc5Dw12g1u2L5Dw12p is presented on the graph
It can be seen that the dispersionlike curves are centered
at D k̃50, but at a small negative value forD k̃ and this can
be explained by the correct accounting for the nonlinear
fractive indices. Forp!1, the positive and negative branch
of the curves have the same magnitude, while for big
values ofp the positive branch has a higher amplitude~when
g3.0!. The amount of the phase shift due to CTOP is co
parable to the phase shiftDwdir due to the inherentx (3) of
the media (Dw1,dir5p). In fact we see that forp.1 the
additional phase shift isDwcasc5~0.420.5!Dwdir.

In Fig. 7 the cascaded part of the NPS,Dw1
cascis shown as

a function of the normalized length of the media. The n
malized mismatchD k̃ was used as a parameter. The pha
shift depends linearly on the normalized lengthj for almost

FIG. 7. Variation of the cascaded nonlinear phase shift with
normalized distancej5z/L for various phase mismatches for th
case of unseeded third-harmonic generation. Normalized inpu
tensityg3u2L510.
dia

of

di-

e

l
e

ot

-

r

-

-
e

all values ofD k̃ except for the values between20.56 and
25, for which high conversion coefficients in the third
harmonic wave are predicted~see Fig. 3!. For these values o
the D k̃ the NPS due CTOP has a stepwise dependence.
asymmetric behavior of the curves with respect to the n
malized phase mismatchDkL is evident. For the chosen
positive sign ofg3 and the relations between nonlinear co
pling coefficients it is possible to obtain a large positive a
ditional phase shift for negative mismatches.

The dependence of the cascaded NPS on the input in
sity is shown in Fig. 8. The parameter is the normaliz
DkL. Three types of graphs can be distinguished from
figure. The first one is obtained for positive not very b
values for the mismatch (DkL<p). Cascaded NPS is linea
with the input intensity. The linear dependence of the N
due to CTOP on the distance and the input intensity me
that the cascadex (3):x (3) process hasn2 behavior. For small
negative values ofDkL the depletion of the wave intensity i
substantial@Fig. 8~b!# and the cascaded NPS has stepl
dependence on the intensity. The jumps in the curves
DkL523 and DkL525 correspond to the points wher

e

n-

FIG. 8. Cascaded NPS~a! and fundamental transmittance~b! vs
the normalized input intensity for the case of unseeded th
harmonic generation. The parameter is the mismatchDkL.
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3034 57SALTIEL, KOYNOV, TZANKOV, BOARDMAN, AND TANEV
the parameterD k̃ crosses the value20.56. These abrup
changes ofDwcasc can be used for constructing all optic
switching elements that discriminate the intensity of the
put pulses. Quadratic dependence for the NPS as a func
of the intensity is obtained for high values of the mismat
uDkuL@p ~see the graph forDkL5250!. For the range of
the intensities shown on the graph the normalized misma
is uD k̃u@1 and as we explained in Sec. III B,Dw1,casc

}g3
2u4L. Note that at these conditions the high-value c

caded NPS is combined with relatively low depletion of t
fundamental wave intensity.

In the case of the nonzero third-harmonic wave at
input of the media the situation becomes considerably m
complex. The relative input phaseF05w3(0)23w1(0) be-
tween the seeded and the fundamental beam influences
the magnitude and the collected phase of the interac
waves. We present here two dependencies. The depend
of the cascaded NPS onD k̃, for F050, F05p, andF05
2p/2 is shown in Fig. 9. The change of the input pha
leads to a shift of the curves with respect to the nonsee
position ~see Fig. 6!. We use this graph to demonstrate t
applicability of the developed low depletion analytical a
proach in the previous section.

At input intensities that correspond top.4 it is possible
to obtain a change in the value of the cascaded phase sh
more thanp by controlling the input phase differenceF0 .
This is illustrated in Fig. 10, where the cascaded part of N
is plotted vs the input phase differenceF0 for three different
values of the parameterp. The seeded third harmonic inten
sity is 3% of the total input intensity. The change inF0 by p
leads to a change inDwcascby values exceedingp. This can

FIG. 9. Cascaded NPS for the case of seeded third-harm
generation as a function of the normalized mismatchD k̃. The input
phase differenceF053w3(0)2w1(0) is indicated. The normalized
input intensity isg3u2L50.3. The amount of the seeding ish0

2

50.05. The dotted line represents the analytical calculations
tained from Eq.~10!. The solid line is the numerical solution o
system~1!.
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S

be used for constructing switching interferometric devices
one takes 1-cm-long polydiacetilene paratoluene sulfon
~PTS!, as nonlinear media@4,36#, thenp54.5 corresponds to
50 MW/cm2.

V. CONCLUSION

We have investigated the nonlinear phase shift due
two-step cascaded third-order processes in centrosymm
media at different input conditions. NPS due to CTOP can
of the same order of magnitude as NPS due to directx (3)

processes.
For low input intensities (p!uDkuL) the NPS due to

CTOP hasn4 behavior~cascaded NPS is linear with distanc
and quadratic with input intensity!. For higher input intensi-
ties (p>uDkuL) NPS due to CTOP has a behavior that
closer ton2 ~linear with distance and input intensity afte
averaging over the steps!. This means that the nonlinea
phase shift due tox (3):x (3) processes has a similar behavi
to the nonlinear phase shift due tox (2):x (2) processes only in
the sense that there is a saturation with increasing irradia
We remind that the initial dependence of the NPS due
x (2):x (2) processes on the field is quadratic and at hig
irradiance becomes linear.

It is interesting to perform similar analysis for type-
phase-matched third-harmonic generation. As in the cas
type-II phase second-harmonic generation@37,38#, but now
as a result of cascadex (3):x (3) processes, cross phase mod
lation for the two fundamental waves is observed@39#. The
third-order cascade processes should influence the pha
the pump beams involved in other types phase match
cubic processes as four-wave mixing, electric-field-induc
second-harmonic generation and phase conjugation.

ic

b-

FIG. 10. Cascaded NPS for the case of seeded third-harm
generation as a function of the input phase differenceF0 . The
normalized input intensityp5g3u2L is indicated on the graph. The
other parameters are the mismatchDkL520.3 and the seeded in
tensityh0

250.03.
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