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Nonlinear phase shift as a result of cascaded third-order processes
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In centrosymmetric media, in addition to the third- and fifth-order nonlinearity, a casoddleg® non-

linearity contributes to the nonlinear refraction. The described effect takes place when the input beam is
involved in nearly phase-matched third-harmonic generation. The nonlinear phase shift produced by this new
cascaded nonlinearity is comparable to the nonlinear phase shift caused by the direct third-order nonlinearity
x®. A new analytical approach, low depletion approximation, was developed and used to study the cascaded
third-order processes in the conditions of not very high third-harmonic conversion coefficients. At higher
conversion coefficients the effect was studied by numerical simulations. The presence of a seeded third-
harmonic wave gives another possibility of controlling the additional phase shift of the fundamental wave. The
conditions for stationary copropagation of the fundamental and the generated wave are presented.
[S1050-294{@8)01004-X

PACS numbdis): 42.65.Ky, 42.60.Gd

I. INTRODUCTION portunity to control the magnitude and the sign of thein
noncentrosymmetric media one can ask: is it possible to con-
An intense wave propagating through nonlinear medidrol the magnitude and the sign of andn, in centrosym-
collects a nonlinear phase shiNP9 that is described by the metric media? As we have found this can be done using
expansion of the refractive index on powers of the light in-cascaded third-order nonlinear processes.
tensity I: The influence of cascaded third-order proce4§£EB0P
on the amplitude of the generated wave by six photon phase
N=ng+n,l +nyl%+ngl3+--- . (1)  matched nonlinear interactions was analyzed for the first
time 20 years ago ifl2]. This role of CTOP was described
The x® nonlinear refractive indexn, [n,=3x®/ in detail in Refs.[3,13,14. The main conclusion resulting
(4eqcnd)] has a key role for such nonlinear optical pro- from these investigations is that the efficiency of the six-
cesses as optical bistabilifg], all optical switching 2], self-  photon phase matched processes is proportional to the square
focusing, and self-defocusiig]. Recently it was shown that of the effective fifth-order nonlinearity, which is a sum of
in noncentrosymmetric media it is possible to control thetwo terms:
magnitude and the sign of the effectimg by exploring the
so-called cascaded second-order procegses|. The value X(e?f)ZXi(r?’z +X(023c 2
of this “cascade type”n,,s:iS as a rule higher than the
nonlinear index of refraction that is connected with the in- The second term is a result of a consequence of two third-
herent cubic nonlinearity of the media. The,s.presenta- order processefy2) = consix ¥ x¥]. From Eq.(2), by
tion of the additional phase shift due §62:x(®) cascaded measuringy$) and by calculatingyS). it is possible to de-
processes is valid only for relatively low input intensities; attermine ) [12,15. At that time no attention was paid to
higher intensities, however, the NPS becomes asymptoticalljhe influence of the CTOP on the phases of the fundamental
linear in the field[4,7]. Is this change of the slope of the waves. In Ref[16] we published our preliminary investiga-
“NPS versus irradiance” dependence a generic behavior fofion of the phase modulation of the fundamental wave in-
all cascade nonlinearities? We will try to answer this quesvolved in the process of low efficiency third-harmonic gen-

tion by exploring the next order cascade nonlinearity. eration. Shortly after that the effect of CTOP on the structure
The second nonlinear constant in Ed), n,, known as  and stability of spatial solitary waves was studied 1].
the x® nonlinear index of refraction[n,=5y®)/ In this paper we consider the process of nearly phase-

(4s§c2ng)], is also an important parameter in contemporarymatched type-| efficient third-harmonic generation in cen-
nonlinear optics. Theoretical investigations show that in ortrosymmetric media and in more detail the effect of NPS of
der to obtain spatial solitary waves a certain relation betweethe intense fundamental wave that arises as a result of CTOP.
n, and n, must imply [10,11]. In particular, in[10] it is At these conditions, the consideration of the effect of self-
shown that the lower the ratio af,/n,, the lower is the phase modulation of the third-harmonic wave is important
power for stable beam propagation. In analogy with the opand is taken into account. The presence of seeflingzero
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input at third-harmonic frequengyis also considered. We functions without any approximations as is done for cas-
show that the magnitude and the phase of the seeded wacaded second-order proces$&8,25. The second approach
gives an additional degree of freedom for controlling theis to numerically solve the system and the last one is to use
NPS of the fundamental wave. The conditions for stationaryan approximation that is valid only for low levels of the
copropagation of the fundamental and the third-harmoniefficiency of the third-harmonic generation process. We de-
wave are defined following the approach developed for thereloped here low depletion approximation, described in the

case of second-harmonic generatja8—20.

Il. PLANE-WAVE EQUATIONS

The amplitude equations that describe the process of

type-l third-harmonic generation wg=w;+ w,+ 1) in

lossless cubic media for linear polarized plane waves are

[21]:

A A,|? As|D)AL+iysAN2A iAk

az i(y1lAg]?+ 2| Ag|9)Ar+iysAT “AgexpiAkz),
dA3_. 2 2 . 3 .
az =i(yalALl“+ y5|As|9)Agt+iysATexp —iAkz). (3)

The phase velocity mismatch dk=k;—3Kk;. In case of
using the quasi-phase-matched technif@@,23 the wave
vector mismatch iAk=k;—3k; —K, whereK=2#/T and
T is the periodicity of the grating. y; are the nonlinear

coupling coefficients that include convolutions of the third-

order susceptibility tensop(® with the polarization vectors
of the interacting wave§l6,24. A, are the complex am-
plitudes that incorporate both the real amplitudas and
the phases; of the waves: A;=|A|exp(¢)).

It is convenient to work with normalized waves am-

plitudes defined byf=|A;|/u and h=|As|/u, where
u is determined by the boundary conditions=
VIA1(0)]?+]A5(0)|%. Then Egs(3) can be rewritten as

df? dn
—d—§=d—§=2pf h sind, (48)
fde, _ . _
Edi;=ylf3+ 3,fh2+ £2h cosb, (4b)
hdes _ . _
Bdi;=y4f2h+ Ssh3+ 3 cosb. (40

In Eq. (4 p=y3U°L is the normalized input intensity,

¥i=vilv3 (1=1,2,4,5),®=p3—3¢;+AkL{, andé=z/L
is the normalized distance with—the length of the nonlin-
ear media.

The systen4) has two invariants:

f2+h2=1
and
3h cogb + Ah?+ ;A yh*=T,,. (5)

The following notations have been introduced in E5): the
normalized mismatch Ak=Ak/ysu?, A=0.5(y,—37,;

+Ak), andAy="ys—y,+3 (71— 72).
There are three approaches to solving &g. The first is

next section. The numerical approach was applied for the
case of high-efficiency third-harmonic generation.

Ill. LOW DEPLETION APPROXIMATION
A. Nonlinear phase shift due to CTOP

The use of the approximation valid for low depletion of
the fundamental wave can be justified by two arguments.
First, it allows the obtaining of simple analytical formulas
suitable for analyzing the physical background of the prob-
lem. Second, this approximation is valid only for the descrip-
tion of nonlinear optical processes with low conversion co-
efficients. This is exactly the case of third-harmonic
generation in most of the nonlinear media. The reported
third-harmonic generation efficiency coefficients do not ex-
ceed several percent even for the highest possible nondamag-
ing intensitied 3,15,26—-30).

The low depletion(LD) approximation described here is
an extension of the fixed intensity approximation developed
for description of second harmonic generatj@i—33. The
fixed intensity approximation suggests no depletion of the
intensity of the fundamental wavé (&) =f,], but a possible
change of its phase. In the LD approximation presented here
we suggest not only possible changes of the phases of the
interacting waves, but also the possibility of not very strong
depletion of the fundamental wavé?=0.8,h?<0.2).

Using Eq.(5) and neglecting the terms that are propor-
tional to h® and h®, an expression forf3h sind can be
found:

3h sind = - Q?h*+Vh?>-T, (6)
whereQ?=3+A2-0.5)Ay andV=1+2T(A.

Then integrating Eq(4a) we obtain for the intensity of
the third-harmonic signal:

1
h2(¢)= 207 [V—N cog2pQ¢)—Ssin(2pQé)]. (7)

In Eq. (7) S=2Qf3hgsin@y), N=V—2Q?h3, &= ¢5(0)
—3¢4(0), andhy and f, are the input normalized ampli-
tudes for the third-harmonic and fundamental waves.

In case of no seedindy,=0, and

h%(z)= ygu“zzsinc?(; ﬁ) . (8)

In Eg. (8) sincx replaces sir'x and the coherence lengthy,
of the third-harmonic generation process was definggl,
= m/2y3uQ.

Using again Eq(5) and keeping only terms proportional

to obtain formula forf, h, ¢;, and ¢5 expressed in special to h" (n<4) we obtain from Eq(4b)
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p dé¢
Here a;=[Ty—A+(y,—y1)] and ap,=[Ty— A — (A y/4)].

Integration of Eq(9) with the use of Eq(7) gives, for the
nonlinear phase shift

Ap;=¢1(&)— ¢1(0),

=yl+F0+ Gflh2+(12h4. (9)

apé

Api=p(y1+To)E+ 207 {V—N sina2pQé)

N2+ &2
2

aypé
4Q4

—SpQ sin(pQé)}+ [V2+

N2_82
+

sind4pQ¢)—2VN sind2pQé)

+2pSQ[N siné(2pQ¢)—V sincz(pQg)]].

(10
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FIG. 1. Schematic drawing for illustration of the physical expla-
nation of the process of formation of a nonlinear phase shift in
nearly phase-matched third-harmonic media in the case of a zero
input third-harmonic signal. The upper channel represents the linear
phase shift of the input wave, the middle channel the generation of
the wave by degenerate four-wave mixing, and the lower channel
the generation of the wave by two-step third-order processes.

that of linearly shifted wavéi). The amplitude of wavegi)

and (iii ) depends nonlinearly on the input wave amplitude.
As a result the output wave has intensity dependent NPS.
The schematic drawing shown in Fig. 1 refers to third-
harmonic generation with zero input third-harmonic signal
(hg=0). In fact, the phase shift due to cascaded third-order

For the case of no third-harmonic signal at the input of theprocessegthe lower channel in Fig.)lis a result of effective

nonlinear media,

Aor=PTaé+ o7 [1-5ina2pQ8)]

apé . .
+ 8_Q4 [3+sind4pQ¢)—4sind2pQé)].

11

The range of validity of the derived formulas was verified

by comparison with the exact numerical calculations, as . . I
4 P intrinsic x{3) of the media. For example, for the Shott glass

shown in the following sections. As we already mentioned
the depletion of the fundamental wagrespectively, the con-
version coefficient into third harmonicshould not exceed
20%.

B. Physical explanation of the phase modulation by CTOP:

Definition of x5

For very low input intensitiep<|Ak|L the normalized

mismatch is|Ak|>1 and we can setr;/2Q%~ — 1/2A~
— v3u?/Ak. Then expressiofil]) is simplified to
%

Ak u*z[1—sind Akz)]. (12

Api= 7’1U22_

The first term in Eq.(12) is a result of direct one-step

processes of self-phase-modulation described by the naturBlowever

X susceptibility of the media. The second term in Ei®)
is a result of two-step CTORY®:x® cascading The

fifth-order process withy ) oc (x®)2.

Taking into account that;= (3w/c)(1/8n) x*) we ob-
tain that the NPS due t§®: x(®) cascading is described by
the effective fifth-order nonlinearity,

1 L

(5) — _ - =
AKL n\~

3)|2
Xcas¢ ¢ )|

Omw 13
10 X (13)

The contribution ofy$) can exceed the contribution of the

RG 780, for whichy{®) and x{2) are known[34], we esti-
mated thaty 3L/ x{5)=11.4 (for this estimatiomAkL= 7 and
L/nA=1000 were taken

For this range of input intensities the cascaded NPS can
be presented as depending on an effeatiyg,.that has the
form

2
2n5

AN (14)

N4 casc™ —

It is interesting to point out that the cascade-type fifth-
order nonlinearity responsible for the fifth-harmonic genera-
tion has the same structure as expres<it®) [3,12-14.
XL responsible for obtaining NPS is much higher
in value in comparison witly(3) | responsible, for example,

for the fifth-harmonic generation because of the fact that in

physical explanation of the process of the NPS due to théhe last case the mismatatk is some orders of magnitude

CTOP is based on the interference of three wases Fig.
1): (i) the linearly shifted fundamental wavé,) the wave

larger.
Let us now consider the opposite case for the input fun-

generated as a result of a single-step third-order processesdamental intensityp=|Ak|L, then the normalized mismatch
degenerate and nondegenerate four-wave-mixing processesk can be neglected in the expression for For this high
and (i ) the wave generated as a result of the two-step noninput intensity limit A, Q, «;, and a, are constants that

degenerate four-wave-mixing interactions=3w— 0 — w.
The phase shift for the wave#) and (iii) is different from

depend only on the nonlinear coupling coefficiepts Then
the cascaded part of the NPS¢; cos= A1 — y1U%Z, is
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FIG. 2. Phase-plane portraits for nonseeded third-harmonic gen-
eration for various normalized mismatch&k.
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. ) . . )
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Xsin m E]) : (15) third harmonic intensity, h2

. - . FIG. 4. Phase-plane portraits for seeded third-harmonic genera-
From Eq.(15) it can be seen that for this intensity range =
9.(19) y 9 ion with ®,=0 (a), ®,=7 (b), andAk=0. The parameter is the

the cascaded .NPS depends linearly on the input Intensr[)}l'eeded third-harmonic intensity. With filled circles are shown nec-
The last term in Eq(15) causes small steps. The cascade 2 . .

. essaryhg, for stationary copropagation of the fundamental and
NPS,A¢; caso has the same behavior as the NPS caused b%ird-harr%onic wave
the naturaly® of the media. The numerical calculations '
described in the next section confirmed that for higher values _ - .
of p the cascaded NPS has a tendency to saturate and tigde. In this case the additional phase shift should be de-

proportional to the square of the input fundamental ampli-scribed by an effectivey casc

0or——T7T7T—T1T7T

IV. HIGH-INTENSITY FUNDAMENTAL BEAM

In this section we will use numerical solution of E@) in

. order to evaluate the amplitude and phase of the fundamental
beam at the output of the nonlinear media. However, some
idea of the behavior of the amplitudes can be achieved by the
J phase portrait techniquel9,21,39. This method allows us
easily to evaluate the conditions for stationary waves in the
media.

For all calculations presented in this section we chose
hypotheticaly® media with y;>0 and the following rela-
tions between other nonlinear coupling coefficients
Y1i=7Y3, Y2=273, Ya=67v3, and ys=3y3. Such relations
are valid for isotropig(®) media. Phase-matching conditions
for this type of media can be obtained by the quasi-phase-
matching techniqug22].

0.8

0.6

04

02

Fundamental wave depletion

AN TS !

e i T
20 -15 10 5 0 5 10 15 20

normalized mismatch A. Evolution of the fundamental amplitudes

FIG. 3. Periodic depletion of the fundamental wave intensity From Egs.(4a) and(5) it can be obtained that

(respectively, the pick to pick change of the third-harmonic inten- 1 dh? A
. . . : n 2

sity) as a function of the normalized mismatalk= Ak/y;u®, as - —+2 \/hz(l— h2)3—{I‘O—Ah2— Ty h4

2

found from Eg.(16). The patterned sectors give the initial condi- p d¢
tions for which the low depletion approximation should be used. (16)
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Ak for the two input phase differenceB,=0 (dotted ling and
®y=7 (solid ling). Trivial eigensolutionhézl is shown with a
dashed line. Unstable eigensolutions are marked with cr@gsses
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Equation (16) describes trajectories in the phase plane
((1/p)(dh?/dé&),h?) that represent the dynamics of the gen-
eration of the third-harmonic wave. Lets first consider the
case of no third-harmonic signal of the input of the crystal.
On Fig. 2 the correspondent curves for different values of the
normalized mismatcthAk=Ak/y;u? are shown. Closed or-
bits correspond to periodical energy exchange between the

0.6

04

fundamental intensity, f 2

fundamental and the third-harmonic waves. It is interesting 02¢ . . : ! R
to note that only one parameteXk, is enough to define the -20 10 0 10 20
amount of the periodic depletion of the fundamental wave, as () normalized mismatch

shown in Fig. 3. Note that the conversion into third harmonic - ¢ ~.scaded NP@) and fundamental intensitp) vs nor-
can be maximum 83% wheftk= _0'56'_ In t_h's figure we ~malized mismatchAk for different values of the parameter
marked the area where the LD approximation developed ify—., .2 for the case of unseeded third-harmonic generation. The

the previous section is appropriate to be used. _ solid line represents the numerical solution of systémthe dotted
For the case of seeded third-harmonic signal the trajectqime represent the analytical solution obtained from expresitn

ries depend also on the amount of seeding and on the input
phase difference between the two input sigmBls The in- |y addition to the trivial solutiorh?=1, Eq. (17) gives the

put phase of the seeded wave has strong influence on thgner eigenmodes of the systéf). In Fig. 5 the dependence
process. Fofb = 0,77 eigenmode solutions of the systé#) 2

. ] of the eigensolutionig, on the normalized mismatchk
are possible. Figure 4 represents the phase curvealor

r r OF = Ak/ysu? is shown for®,=0 and®,=. Some of the
=0 ®,=0,7 and different values ofi,. From the figure it  ejgensolution values do not correspond to the stationary

can be seen that for these initial conditions the propagatiopaves in the media and they are marked with.

of stationary waveswaves that do not alter their intensity  The evolution of the phase for the stationary waves is
but only change their phasethrough the nonlinear media is |inear with the propagation distance and the irradiance. Inte-
possible, as it is possible in quadratic mefdi8,20,33. grating Eq.(4b) we have

B. Stationary waves ©1= @10+ [y1(1— hgg) +?2h§g
The stationary waves are characterized by constant ampli- PEETVEY 2
tude and as follows from Eq4a) they can exist only for +5gr(cosPo) V(1= heghegl y3u"z. (18)

sin®=0 and, i.e., ford®/d¢=0. Using this condition and ) )
Egs.(4b) and(4c) one may obtain the following equation for Only the last term in the square brackets is connected

the eigensolutions of systefd): with the process of third-harmonic generation. We have to
bear in mind that in the case of second-harmonic generation
[(Ay?*+16)h®+ (4AAy—24)h*+ (4A%2+9)h?—1]=0. the phase evolution of the eigensolutions is linear with the

(17)  field [19]. In the case of eigensolutions in the third-harmonic
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phase shift due to cascading (rad)

nonlinear phase shift due to CTOP (rad)
[\

0 2 4 6 8 10

e . . R (a) normalized input intensity, y3u2 L
0.0 0.2 0.4 0.6 0.8 1.0

normalized distance, E=z/L 1.0

FIG. 7. Variation of the cascaded nonlinear phase shift with the .
normalized distanc&=z/L for various phase mismatches for the
case of unseeded third-harmonic generation. Normalized input in-
tensity ysu?L = 10.

o
)
T
.
v

o
(=2
T

-

generation process the nonlinear media acts as lossless media
for both waves with the nonlinear index of refraction defined

fundamental intensity, f 2

04
as
hgg heg 021
Npeq= N2l 1+ (y2/v1) f—2‘+(73/71)59TTC05¢0) I
eg eg
(19) 0.0 . 1 L 1 N ! " t L
0 2 4 6 8 10
(b) lized input intensit 2L
C. The evolution of the fundamental phase normatizec wmput intensity,

The phase evolution of the fundamental wave can be of FIG. 8. Cascaded NP®) and fundamental transmittand® vs
primary interest for all optical applications as well as forthe normalized input intensity for the case of unseeded third-
measurement purposes. For finding the phase we applied diarmonic generation. The parameter is the mismatkh.
rect integration of Eq(1). The two invariant$Figs. 5a) and
5(b)] of the system were used to control the accuracy of they| yalues of Ak except for the values between0.56 and

calculated data. _ . —5, for which high conversion coefficients in the third-

Let us first consider the case of zero third-harmonic signa},5rmonic wave are predictégee Fig. 3. For these values of
at the input of the nonlinear media. The dependence of thﬁwe AK the NPS due CTOP has a stepwise dependence. The
NPS due to CTOP on the normalized mismatdais shown  5qymmetric behavior of the curves with respect to the nor-
in Figs. 6a) and 65’)' Only the cascaded part of the NPS 3ji;eq phase mismatchkL is evident. For the chosen
Ay cas= A1~ 71UL=A ¢, —p is presented on the graph. ,qiive sign ofy, and the relations between nonlinear cou-
It can be seen that the dispersionlike curves are centered ngfing coefficients it is possible to obtain a large positive ad-
at Ak=0, but at a small negative value fark and this can ditional phase shift for negative mismatches.
be explained by the correct accounting for the nonlinear re- The dependence of the cascaded NPS on the input inten-
fractive indices. Fop<1, the positive and negative branchessijty is shown in Fig. 8. The parameter is the normalized
of the curves have the same magnitude, while for biggenkL. Three types of graphs can be distinguished from the
values ofp the positive branch has a higher amplitudéren  figure. The first one is obtained for positive not very big
¥3>0). The amount of the phase shift due to CTOP is com-yalues for the mismatchAkL=<p). Cascaded NPS is linear
parable to the phase shifteg;, due to the inherent® of  with the input intensity. The linear dependence of the NPS
the media Q ¢, g=p). In fact we see that fop>1 the  due to CTOP on the distance and the input intensity means
additional phase shift i ¢asc=(0.4-0.5A ¢y that the cascadge(®: y(®) process has, behavior. For small

In Fig. 7 the cascaded part of the NRSpi**“is shown as  negative values ahkL the depletion of the wave intensity is
a function of the ngrmalized length of the media. The nor-substantial[Fig. 8b)] and the cascaded NPS has steplike
malized mismatchAk was used as a parameter. The phasalependence on the intensity. The jumps in the curves for
shift depends linearly on the normalized lengtfor almost AkL=-—3 andAkL=—5 correspond to the points where
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FIG. 9. Cascaded NPS for the case of seeded third-harmonic ) )
generation as a function of the normalized mismatéh The input FIG. 10. Cascaded NPS for the case of seeded third-harmonic
phase differenc@,=35(0)— ¢;(0) is indicated. The normalized 9€neration as a function of thf input phase differedgge The
input intensity isysu?L=0.3. The amount of the seeding lr% normalized input |ntenS|tp=_y3u L is indicated on the graph. The
=0.05. The dotted line represents the analytical calculations ob(-)the_r pazrameters are the mismatkkL=—0.3 and the seeded in-
tained from Eq.(10). The solid line is the numerical solution of tensity hg=0.03.
system(1).

be used for constructing switching interferometric devices. If
one takes 1l-cm-long polydiacetilene paratoluene sulfonate
the parametennk crosses the value-0.56. These abrupt (PTS, as nonlinear medig4,3€], thenp=4.5 corresponds to
changes ofA ¢, Can be used for constructing all optical 50 Mw/en.
switching elements that discriminate the intensity of the in-
put pulses. Quadratic dependence for the NPS as a function
of the intensity is obtained for high values of the mismatch, V. CONCLUSION

|AK|L>p (see the graph foAkL=—50). For the range of We have investigated the nonlinear phase shift due to
the intensities shown on the graph the normalized mismatcyo-step cascaded third-order processes in centrosymmetric
is [Ak|>1 and as we explained in Sec. lll B\¢1casc  media at different input conditions. NPS due to CTOP can be
«y3u*L. Note that at these conditions the high-value casof the same order of magnitude as NPS due to difédt
caded NPS is combined with relatively low depletion of theprocesses.
fundamental wave intensity. For low input intensities §<|Ak|L) the NPS due to

In the case of the nonzero third-harmonic wave at theCTOP has, behavior(cascaded NPS is linear with distance
input of the media the situation becomes considerably morand quadratic with input intensityFor higher input intensi-
complex. The relative input phase,= ¢3(0)—3¢,(0) be- ties (p=|Ak|L) NPS due to CTOP has a behavior that is
tween the seeded and the fundamental beam influences badlbser ton, (linear with distance and input intensity after
the magnitude and the collected phase of the interactingveraging over the stepsThis means that the nonlinear
waves. We present here~two dependencies. The dependermqase shift due tq(B);X(?») processes has a similar behavior
of the cascaded NPS akk, for ®,=0, &=, and®y,= to the nonlinear phase shift due&: x'?) processes only in
—/2 is shown in Fig. 9. The change of the input phasethe sense that there is a saturation with increasing irradiance.
leads to a shift of the curves with respect to the nonseeded/e remind that the initial dependence of the NPS due to
position (see Fig. . We use this graph to demonstrate the y(2): y(2) processes on the field is quadratic and at higher
applicability of the developed low depletion analytical ap-irradiance becomes linear.
proach in the previous section. It is interesting to perform similar analysis for type-l|

At input intensities that correspond >4 it is possible  phase-matched third-harmonic generation. As in the case of
to obtain a change in the value of the cascaded phase shift hype-Il phase second-harmonic generatjii,38, but now
more thans by controlling the input phase differenc,.  as a result of cascagé®: y(®) processes, cross phase modu-
This is illustrated in Fig. 10, where the cascaded part of NP3ation for the two fundamental waves is obsery&8]. The
is plotted vs the input phase differendg for three different  third-order cascade processes should influence the phase of
values of the parametgr. The seeded third harmonic inten- the pump beams involved in other types phase matchable
sity is 3% of the total input intensity. The changedig by @  cubic processes as four-wave mixing, electric-field-induced
leads to a change i ¢ 5.y values exceeding. This can  second-harmonic generation and phase conjugation.
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