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Abstract: We analyze the second-harmonic generation in two-dimensional
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nonlinear quadratic crystal. We demonstrate that the parametric conversion
of the Gaussian fundamental beam propagating along the axisof the annular
structure leads to the axial emission of the second-harmonic field in the
form of the radially polarized first-order Bessel beam.
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1. Introduction

It is well-established that the efficient second-harmonic generation (SHG) depends critically
on the phase-matching conditions usually achieved throughcrystal birefringence. For nonlin-
ear crystals without or with a very small birefringence, thephase-matching conditions can be
satisfied by means of the so-called quasi-phase-matching (QPM) technique [1] which relies on
introducing an additional spatial periodicity of the quadratic response of a nonlinear medium.
In typical situations, the QPM periodic structure is created by a series of parallel stripes with
alternating signs of the quadratic nonlinear response. This is achieved, for example, by peri-
odic poling of the ferroelectric crystals such as Lithium Niobate. Then the fundamental and
second-harmonic beams propagate along (or at a small angle to) the direction of modulation.

Recently, a novel geometry based on the annular domain pattern has been suggested theoret-
ically and studied experimentally. It has been shown that the annular geometry enables phase-
matched parametric processes with larger acceptance angle, simultaneous frequency conversion
into a number of beams propagating at different directions [2, 3], and second-harmonic beam
shaping [4]. In these studies, the geometry of wave interaction was such that all beams propa-
gate in the same plane which is also the plane of the structure’s periodicity.

In the recent observation of SHG in Strontium Barium Niobatecrystals with randomly dis-
tributed ferroelectric domains, the fundamental wave propagatesperpendicularlyto the plane of
the nonlinearity modulation, and this results in the conical emission of the second-harmonic sig-
nal with its axis coinciding with the polar axis of the domains [5, 6, 7]. Random modulation of
the second order nonlinearity in the transverse direction is a source of a pool of grating vectors
which ensure the phase matching for all generated waves propagating along the cone with its
apex angle 2α determined by the longitudinal phase-matching condition 2k1 = k2cosα, where
k1 andk2 are the wave numbers of the fundamental and second-harmonicwaves, respectively.
In addition, because of the symmetry of the correspondingχ(2) tensor, the second-harmonic
wave is radially polarized [5, 8].

In this paper, we discuss the quasi-phase-matched SHG processes in the annular geometry
of periodically poled nonlinear crystal, as shown in Fig. 1.We demonstrate analytically that
for the fundamental beam propagating along the symmetry axis of the structure, the transverse
phase-matching condition leads to the emission of the second-harmonic wave in the form of a
radially polarized Bessel beam. This method can be used for generating nondiffracting Bessel
beams, and we discuss prospects for its experimental realization.
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Fig. 1. Schematic of the parametric generation of the axial Bessel beam with the double
frequency 2ω. NLC denotes a quadratic nonlinear crystal with poled domains of the radially
symmetric periodic modulation of the second-order nonlinearity.

2. Transverse phase matching

We consider the annular second-harmonic interaction geometry in a quadratic nonlinear
medium, as illustrated in Fig. 1. A nonlinear structure is created by a series of oppositely ori-
ented ferroelectric domains in the form of the concentric rings of the constant width. This
structure can be considered as a two-dimensional nonlinearphotonic crystal [9]. It is illumi-
nated by a strong pump wave with the frequencyω. The resulting spatial modulation of the
second-order nonlinearity coefficientd(2) is radially periodic, and it can be presented in the

form d(2)(ρ) = d(2)
0 g(ρ), where

g(ρ) = sgn[cos(2πρ/Λ+δ )], (1)

ρ = (x2 +y2)1/2 is the transverse radial coordinate,Λ is the period of the annular modulation,
δ is the phase offset, and ‘sgn′ stands for the sign function. As a result of the second-order
nonlinearity, the fundamental wave generates the second-harmonic beam. We assume that the
pump beam propagates along thez-axis (which is also the symmetry axis of the periodic domain
structure), and it can be presented in the form,

Eω
0 (ρ,z) =

u
2

[

A(z)e−ik1zexp

(

−
ρ2

w2
01

)

+c.c.

]

, (2)

whereu = (ux,uy) is the polarization vector,k1 is the wave number of the fundamental beam,
and we assume that the beam widthw01 is much larger than the poling periodΛ. In what
follows, we consider a nonlinear crystal belonging to the symmetry groups 4mmor 3m.

The beam propagation in such a structure generates the nonlinear polarization of the medium
which, due to the symmetry of the quadratic nonlinear-response tensor, has only one nonvan-
ishing component, and it can be presented in the form,P2ω = (0,0,P2ω

z ), where

P2ω
z = d31E

ω
x Eω

x +d32E
ω
y Eω

y . (3)
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Fig. 2. (a). Phase matching diagram for the second-harmonic generation in the medium
with the transverse modulation of the second-order nonlinearity. Notationsare:Gm - quasi-
phase matching vectors,P2–medium polarization at the doubled frequency. (b) Emitted
cone of the radially polarized second-harmonic radiation, presented asa sum of infinite
plane waves propagating at the angleα with respect to the propagation axisz.

Here the fundamental field components are:Eω
x = Eω

0 cosφ andEω
y = Eω

0 sinφ , whereφ is the
angle between the polarization direction and thex axis. Note, that for the symmetry groups
considered hered32 = d31 and, consequently

P2ω
z = d32(Eω

0 )2 . (4)

Nonlinear polarization (3) becomes a source for generatingthe second-harmonic wave. Be-
cause of the orientation of this polarization vector along thez-axis, the second-harmonic wave
can only be generatednon-collinearlywith the fundamental wave, and along the direction de-
termined by the specific phase-matching condition, which can be written as

k2−2k1 = Gm, (5)

whereGm is the QPM vector of them-th order representing the radial modulation of the second-
order nonlinearity, and defined asGm = m(2π/Λ), wherem is integer. This phase-matching
geometry is illustrated in Fig. 2(a).

Since we are dealing here with a non-collinear QPM process, we consider separately longi-
tudinal and transverse phase-matching conditions [10]. The longitudinal phase-matching con-
dition is 2k1 = k2cosα, whereα is the angle between thez-axis and the propagation direction
of the second-harmonic wave [see Fig. 2(a)]. As this condition determines only the propagation
angle of the second harmonics, this wave will be created via the simultaneous emission of many
plane waves all located on a cone with the conical angleα [see Fig. 2(b)]. Fig. 2(a) illustrates
the process of simultaneous generation of two such plane waves located in the same plane, be-
ing both linearly polarized. For a thin medium, the amplitude of each of these components can
be found from the expression

E2ω ∝ P2ω
z sinα = ±d32(E

ω
0 )2sinα, (6)

and, therefore, the effective nonlinearity for this parametric process is determined asd(2)
eff =

d32sinα. As the electric field of each generated planar component is perpendicular to the cone
surface, the emitted field isradially polarized.
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Fig. 3. Transverse structure of the second-harmonic field describedby the first-order Bessel
function (blue), and the corresponding annular domain grating (red) for three different
values of the phase offsetδ defined in Eq. (1): (a)δ = 0, (b)δ = π/4, and (c)δ = π/2.

The transverse phase-matching conditionGm = k2sinα determines the required periodicity
of the QPM structure. Considering the particular example ofStrontium Barium Niobate crystal
and the fundamental wavelength ofλ1 = 1500nm, we determine the conical angleα = 12.7◦

and findGm = 4.2µm−1. For the first-order QPM process, this would require the period Λ1 ≈
1.50µm of the domain structure. While, in principle, such a period could be fabricated with
some advanced poling technologies [11, 12], one may relax this condition using a higher-order
phase-matching process. For example, takingm= 3 leads toΛ3 = 4.5µm which can be achieved
by patterned electrodes [13] or laser-induced domain nucleation [14].

3. Second-harmonic field

It is known that a superposition of an infinite number of planewaves with the wave vectors
laying on a cone forms a Bessel beam [15, 16]. This corresponds exactly to the geometry shown
in Fig. 2(b). In order to find an analytical form of the second-harmonic field, we integrate over
all plane wave components contributing to the conical emission,

E2ω(ρ,z) = S(z)e−ik2zz
∫ 2π

0
uρ(φ)e−ik2ρ ρ cos(φ−ϕ)dφ , (7)

wherek2z = k2cosα, k2ρ = k2sinα, S(z) is the amplitude of the second harmonic wave. The
function uρ(φ) = x̂cosφ + ŷsinφ represents the radial component of the polarization vector,
φ is azimuthal angle andϕ = cos−1 (x/ρ) is the azimuthal coordinate of the observation point
(x,y). After integrating Eq. (7) we find that for a thin nonlinear medium the amplitude of the
emitted second-harmonic field at the arbitrary locationr = (ρ,z) is given by

E2ω(ρ,z) = 2πS(z)e−ik2zz
[

iJ1(k2ρ sinα)uρ − tanαJ0(k2ρ sinα)uz
]

, (8)

whereuz represent thezcomponent of the polarization vector.
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The result (8) shows that the parametric generation in a radially symmetric, periodically
poled χ(2) structure results in the emission of the second-harmonic field in the form of the
radially polarized diffractionless Bessel beam. Such nondiffracting vector beam has been al-
ready discussed in the literature [16]. It is worth mentioning that while in the case discussed
here the radial polarization of the beam is a natural consequence of the axial symmetry of the
second harmonic generation process, in a conventional optics such beam can be created using
polarizing axicon [17, 18].

In order to obtain a complete analytical formula for the amplitude of this beam we have to
resort to the solution of the wave equation with the source term given by the polarization vector
Eq. (3). While the rigorous approach would require a full vectorial analysis we will employ
here a simplified scalar model due to Tewariet al. [10]. For the Gaussian pump beam as in
Eq. (2) we search for the second harmonic field in the following form

E2ω(ρ,z) =
[uρ

2
S(z)J1(k2ρ ρ)exp(−ik2zz)+c.c.

]

. (9)

After substituting Eq. (9) into the wave equation and following the procedure outlined in
Ref. [10], we obtain (in the undepleted pump regime) the intensity of the radial component
of the second-harmonic field in the following form

I2ω(ρ,L) =
8π2d2

32(I
ω)2L2

ε0cλ 2
0 n2n2

1

|tanα J1(k2ρ sinα)ITPM|
2 , (10)

whereL is the crystal length,Iω = 1
2|E

ω
0 |2ε0cn1 is the intensity of the fundamental beam, c is

velocity of light, λ0 is the fundamental wavelength, andn1 andn2 are the refractive indices of
the fundamental and SH waves, respectively. The valueITPM denotes the so-called transverse
phase matching (TPM) integral

ITPM =
1
T

∫ wm

0
J1(r)exp

(

−
4r2

k2
2ρw2

01

)

g

(

r
k2ρ

)

dr, (11)

with

T =
∫ wm

0
rJ2

1(r)exp

(

−
2r2

k2
2ρw2

01

)

dr (12)

where the functiong(r) is defined in Eq. (1), and it is assumed thatwm≫w01. The method of the
TPM integral has been extensively used to study the frequency conversion of the fundamental
Bessel beam [19, 20]. Here we use this approach to study the frequency conversion of the
Gaussian beam in nonlinear media with the transverse patterning.

It is important to analyze the dependence of the efficiency ofsecond-harmonic process on
the TPM integral which characterizes an overlap between theBessel function, i.e. the ampli-
tude of the second-harmonic signal, and the function representing periodicity of the nonlinear
medium. First, in Fig. 3 we show the overlap of the electricalfield of the first-order Bessel
beamJ1(k2ρ sinα) inside the structure and the periodical change of the sign ofthe nonlinearity
with the period defined from the transverse phase-matching condition Λ = 2π/(k2sinα), for
three different values of the phase offsetδ in Eq. (1). In the case of the optimal phase (b),
the TPM integral (as shown in Fig. 4) has maximum, and there appears no shift between pe-
riodicity of the structure and the asymptotic representation of J1(k2ρ sinα). In Fig. 4, we plot
ITPM as a function of the poling periodΛ for the first-order transverse quasi-phase matching
for the parametric frequency doubling process. As follows from those results, the TPM integral
and, consequently, the generated second-harmonic signal,depends strongly on the value ofΛ
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Fig. 4. Dependence ofITPM on the periodΛ of the circular grating in Strontium Barium
Niobate crystal for different values of the phase offsetδ and fixed angleα defined from the
condition 2k1 = k2cosα . The radius of the fundamental beamw01 = 40µm.

reaching its maximum forΛ = 1.5µm which coincides with an asymptotic value of the period
of the first-order Bessel function that describes the spatial distribution of the generated second-
harmonic field. This sensitivity onΛ and the phase offsetδ can be important to determine the
allowed inaccuracy of the fabrication process of the annular periodic structure.

Finally, it is worth mentioning that in a real experimental situation a finite size of the pump
beam may affect the spatial structure of the second-harmonic wave. One may expect that, sim-
ilarly to the case of the Bessel beam generation using an axicon [21], the SH will reflect the
first-order Bessel character only within a finite spatial region determined by the diameter of the
pump and apex angle of the conical emission.

4. Conclusion

We have studied the SHG in nonlinear quadratic crystals withan annular periodic domain struc-
ture. We have demonstrated that in such a structure the Gaussian fundamental beam propagat-
ing along the central axis of the radially symmetric structure will generate the second-harmonic
field in the form of the radially polarized first-order Besselbeam. This process can be employed
as a novel and efficient tool for generating optical Bessel beams of higher frequencies.
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