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Abstract: We analyze the second-harmonic generation in two-dimaatio
photonic structures with radially periodic domains crdalbg poling of a
nonlinear quadratic crystal. We demonstrate that the patrégrconversion
of the Gaussian fundamental beam propagating along thegtkie annular
structure leads to the axial emission of the second-hamnield in the
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1. Introduction

It is well-established that the efficient second-harmorg@neagation (SHG) depends critically
on the phase-matching conditions usually achieved thraugstal birefringence. For nonlin-
ear crystals without or with a very small birefringence, ffese-matching conditions can be
satisfied by means of the so-called quasi-phase-matchiRlylj@chnique [1] which relies on
introducing an additional spatial periodicity of the quatilr response of a nonlinear medium.
In typical situations, the QPM periodic structure is creaty a series of parallel stripes with
alternating signs of the quadratic nonlinear responses iBhachieved, for example, by peri-
odic poling of the ferroelectric crystals such as Lithiunobite. Then the fundamental and
second-harmonic beams propagate along (or at a small agdleetdirection of modulation.

Recently, a novel geometry based on the annular domairrpéits been suggested theoret-
ically and studied experimentally. It has been shown thattmular geometry enables phase-
matched parametric processes with larger acceptance aigldtaneous frequency conversion
into a number of beams propagating at different directi@s], and second-harmonic beam
shaping [4]. In these studies, the geometry of wave intenaetas such that all beams propa-
gate in the same plane which is also the plane of the strusfueeodicity.

In the recent observation of SHG in Strontium Barium Niobatestals with randomly dis-
tributed ferroelectric domains, the fundamental wave agapeperpendicularlyto the plane of
the nonlinearity modulation, and this results in the corecaission of the second-harmonic sig-
nal with its axis coinciding with the polar axis of the doms[b, 6, 7]. Random modulation of
the second order nonlinearity in the transverse direci@sgource of a pool of grating vectors
which ensure the phase matching for all generated wavesgabipg along the cone with its
apex angle & determined by the longitudinal phase-matching condition-2k, cosa, where
ki andk; are the wave numbers of the fundamental and second-harwenis, respectively.
In addition, because of the symmetry of the correspongiffy tensor, the second-harmonic
wave is radially polarized [5, 8].

In this paper, we discuss the quasi-phase-matched SHGgsex@ the annular geometry
of periodically poled nonlinear crystal, as shown in FigWle demonstrate analytically that
for the fundamental beam propagating along the symmetsyaixhe structure, the transverse
phase-matching condition leads to the emission of the sebarmonic wave in the form of a
radially polarized Bessel beam. This method can be usedefoergting nondiffracting Bessel
beams, and we discuss prospects for its experimental aéaliz
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Fig. 1. Schematic of the parametric generation of the axial Bessel béidnthe double
frequency 2. NLC denotes a quadratic nonlinear crystal with poled domains of thdlsadia
symmetric periodic modulation of the second-order nonlinearity.

2. Transverse phase matching

We consider the annular second-harmonic interaction gegnie a quadratic nonlinear
medium, as illustrated in Fig. 1. A nonlinear structure isated by a series of oppositely ori-
ented ferroelectric domains in the form of the concentngsi of the constant width. This
structure can be considered as a two-dimensional nonlpteatonic crystal [9]. It is illumi-
nated by a strong pump wave with the frequengyThe resulting spatial modulation of the
second-order nonlinearity coefficiedt?) is radially periodic, and it can be presented in the

form d® (p) = d{?g(p), where
9(p) = sgricog2rp /A + )], 6y

p = (X +y?)1/2 is the transverse radial coordinateijs the period of the annular modulation,

d is the phase offset, and ‘Sgstands for the sign function. As a result of the second-order
nonlinearity, the fundamental wave generates the secanddnic beam. We assume that the
pump beam propagates along #haxis (which is also the symmetry axis of the periodic domain
structure), and it can be presented in the form,

EQ(p,2) = % {A(z)e‘iklzexp(vﬁgj +c.c.] , 2

whereu = (uy, Uy) is the polarization vectok; is the wave number of the fundamental beam,
and we assume that the beam widthy, is much larger than the poling perigil In what
follows, we consider a nonlinear crystal belonging to thesyetry groups ghmor 3m.

The beam propagation in such a structure generates theaanpolarization of the medium
which, due to the symmetry of the quadratic nonlinear-raspdensor, has only one nonvan-
ishing component, and it can be presented in the f&#,= (0,0, P?“), where

P2 = dgELEY + O3B Ey. (3)
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Fig. 2. (a). Phase matching diagram for the second-harmonic gemena the medium
with the transverse modulation of the second-order nonlinearity. NotaienG, - quasi-
phase matching vector®,—medium polarization at the doubled frequency. (b) Emitted
cone of the radially polarized second-harmonic radiation, presentadsam of infinite
plane waves propagating at the anglevith respect to the propagation axis

Here the fundamental field components &g:= E¢’ cosp andE)’ = E{’sing, whereg is the
angle between the polarization direction and xhaxis. Note, that for the symmetry groups
considered herds, = d3; and, consequently

P29 = dgp (EQ)?. 4)

Nonlinear polarization (3) becomes a source for generdtiagecond-harmonic wave. Be-
cause of the orientation of this polarization vector aldmgztaxis, the second-harmonic wave
can only be generatatbn-collinearlywith the fundamental wave, and along the direction de-
termined by the specific phase-matching condition, whichlm&written as

ko —2k1 = G, (5)

whereGp, is the QPM vector of therth order representing the radial modulation of the second-
order nonlinearity, and defined &y, = m(2r7/A), wherem is integer. This phase-matching
geometry is illustrated in Fig. 2(a).

Since we are dealing here with a non-collinear QPM process;amsider separately longi-
tudinal and transverse phase-matching conditions [1(}.[®hgitudinal phase-matching con-
dition is Zk; = kp cosa, wherea is the angle between tteaxis and the propagation direction
of the second-harmonic wave [see Fig. 2(a)]. As this conditietermines only the propagation
angle of the second harmonics, this wave will be createchéaimultaneous emission of many
plane waves all located on a cone with the conical angleee Fig. 2(b)]. Fig. 2(a) illustrates
the process of simultaneous generation of two such planesiacated in the same plane, be-

ing both linearly polarized. For a thin medium, the ampléwd each of these components can
be found from the expression

E?® 0 P??sina = +dsp(EY)?sina, (6)

and, therefore, the effective nonlinearity for this partineprocess is determined aié? =
dszsina. As the electric field of each generated planar componerdrizgmdicular to the cone
surface, the emitted field radially polarized
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Fig. 3. Transverse structure of the second-harmonic field desdribta: first-order Bessel
function (blue), and the corresponding annular domain grating (@dhfee different
values of the phase offsétdefined in Eq. (1): (ap =0, (b) d = /4, and (c)d = m1/2.

The transverse phase-matching condit@&pn= ko sina determines the required periodicity
of the QPM structure. Considering the particular exampl8tadntium Barium Niobate crystal
and the fundamental wavelength of = 1500nm, we determine the conical angle= 12.7°
and findGp, = 4.2um~1. For the first-order QPM process, this would require thequef; ~
1.50um of the domain structure. While, in principle, such a periodld be fabricated with
some advanced poling technologies [11, 12], one may relaxtndition using a higher-order
phase-matching process. For example, takirg3 leads to\3 = 4.5um which can be achieved
by patterned electrodes [13] or laser-induced domain atiolke [14].

3. Second-harmonic field

It is known that a superposition of an infinite number of plaveeses with the wave vectors
laying on a cone forms a Bessel beam [15, 16]. This correspexalctly to the geometry shown
in Fig. 2(b). In order to find an analytical form of the secdrarmonic field, we integrate over
all plane wave components contributing to the conical eioiss

) 2 )
E(p,2) = S(z)e” % [ up(g)e P v Vg, ™)

whereky, = ko cosa, kyp = ko sina, §(z) is the amplitude of the second harmonic wave. The
function up (@) = Xcosp + ysing represents the radial component of the polarization vector
@ is azimuthal angle and = cos ™ (x/p) is the azimuthal coordinate of the observation point
(x,y). After integrating Eq. (7) we find that for a thin nonlinear dinen the amplitude of the
emitted second-harmonic field at the arbitrary locatien (p, z) is given by

E%?(p,2) = 2nS(z)e 22 [iJ; (kpp sina )u, — tanado(kop sina)uy) , (8)

whereu; represent the component of the polarization vector.
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The result (8) shows that the parametric generation in aallgdsymmetric, periodically
poled x(@ structure results in the emission of the second-harmoriid iiethe form of the
radially polarized diffractionless Bessel beam. Such iftrnadting vector beam has been al-
ready discussed in the literature [16]. It is worth mentignthat while in the case discussed
here the radial polarization of the beam is a natural coresszpiof the axial symmetry of the
second harmonic generation process, in a conventionalsogttich beam can be created using
polarizing axicon [17, 18].

In order to obtain a complete analytical formula for the atoge of this beam we have to
resort to the solution of the wave equation with the sounaa tgven by the polarization vector
Eqg. (3). While the rigorous approach would require a full eeie analysis we will employ
here a simplified scalar model due to Teweatial. [10]. For the Gaussian pump beam as in
Eq. (2) we search for the second harmonic field in the follgWorm

E2(p,2) — u?pS(Z)Jl(kgpp)exp(—ikZZz) +ecl. ©)

After substituting Eq. (9) into the wave equation and folilogvthe procedure outlined in
Ref. [10], we obtain (in the undepleted pump regime) thensity of the radial component
of the second-harmonic field in the following form

_ 81Pd5,(19)2L2

129(p,L) = eI tana J; (ko sinat) F7pw|, (10)
0 1

wherelL is the crystal length,® = %|E33|Zeocn1 is the intensity of the fundamental beam, c is
velocity of light, Ag is the fundamental wavelength, angandn; are the refractive indices of
the fundamental and SH waves, respectively. The vafagy denotes the so-called transverse
phase matching (TPM) integral

1 [Wm 4r2 r
ITPM = T A Ji(r)exp <k§pWSl> g <k2p> dr, (11)
with
T= /Wm rd2(r)exp (_22r2> dr (12)
0 kZpW?)l

where the functiogy(r) is defined in Eq. (1), and itis assumed that>> wp1. The method of the
TPM integral has been extensively used to study the frequenraversion of the fundamental
Bessel beam [19, 20]. Here we use this approach to study ¢ogiéncy conversion of the
Gaussian beam in nonlinear media with the transverse paiter

It is important to analyze the dependence of the efficiencyeabnd-harmonic process on
the TPM integral which characterizes an overlap betweerBtssel function, i.e. the ampli-
tude of the second-harmonic signal, and the function reptesy periodicity of the nonlinear
medium. First, in Fig. 3 we show the overlap of the electriigalld of the first-order Bessel
beamJ; (kop sina) inside the structure and the periodical change of the sigineohonlinearity
with the period defined from the transverse phase-matchongiton A = 2r7/(kysina ), for
three different values of the phase offéetn Eq. (1). In the case of the optimal phase (b),
the TPM integral (as shown in Fig. 4) has maximum, and thepeas no shift between pe-
riodicity of the structure and the asymptotic represeatatf J; (kop sina). In Fig. 4, we plot
J1pm as a function of the poling periof for the first-order transverse quasi-phase matching
for the parametric frequency doubling process. As followsTthose results, the TPM integral
and, consequently, the generated second-harmonic siagp#nds strongly on the value &f
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Fig. 4. Dependence afrpy on the period\ of the circular grating in Strontium Barium
Niobate crystal for different values of the phase offseind fixed angler defined from the
condition X; = kycosa. The radius of the fundamental beavg; = 40um.

reaching its maximum foA = 1.5um which coincides with an asymptotic value of the period
of the first-order Bessel function that describes the spdittribution of the generated second-

harmonic field. This sensitivity oA and the phase offsét can be important to determine the

allowed inaccuracy of the fabrication process of the anmagiodic structure.

Finally, it is worth mentioning that in a real experimentaiiation a finite size of the pump
beam may affect the spatial structure of the second-hamweave. One may expect that, sim-
ilarly to the case of the Bessel beam generation using ammaxfl], the SH will reflect the
first-order Bessel character only within a finite spatialsagletermined by the diameter of the
pump and apex angle of the conical emission.

4, Conclusion

We have studied the SHG in nonlinear quadratic crystalsavitannular periodic domain struc-
ture. We have demonstrated that in such a structure the @adassdamental beam propagat-
ing along the central axis of the radially symmetric struetwill generate the second-harmonic
field in the form of the radially polarized first-order Bessem. This process can be employed
as a novel and efficient tool for generating optical Bessahizeof higher frequencies.
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