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Abstract. A simple autocorrelation scheme for measurement of single ultrashort light pulses 
in the 1-500 ps range is proposed. Only a diffraction grating and a mirror are utilized to 
obtain a variable time delay between two collinear beams. The advantages of the proposed 
method and the effect of the grating dispersion on the autocorrelator performance are 
discussed. 

PACS: 42.80, 06.60Jn 

The autocorrelation technique is widely used for the 
measurement of ultrashort light pulses. Although it 
does not provide complete information concerning the 
pulse shape, the autocorrelation pulse evaluation 
avoids the prohibitive cost of the streak-camera 
measurements. 
In recent years special attention was paid to the 
methods for single-shot autocorrelation which are 
especially suitable for low-repetition-rate lasers. 
Since the pioneering work, utilizing two-photon 
fluorescence [1], a number of techniques for 
individual-pulse duration measurements were 
proposed. In most of them the light beam is splitted 
into two beams, which are made to generate 
noncollinear second harmonic at a high angle in a 
nonlinear crystal [-2-5]. This method has two 
advantages: 1) the variable time delay is automatically 
introduced by the angle between the two interacting 
beams, and 2)the noncollinear second-harmonic 
generation (SHG) results in a background-free 
autocorrelation function. 
More recently a diffraction grating was used to 
produce a linearly increasing time delay with respect to 
the beam cross-section of the light pulse [-6, 7]. Wyatt 
and Marinero [6] have used a complicated optical 
arrangement, incorporating a diffraction grating 
at grazing incidence to record second-order auto- 
correlation function (ACF) with 1 ps time res- 
olution. In [7] two diffraction gratings in a 

Michelson-like interferometer provided variable time 
delay for single-shot pulse measurement. The second- 
order ACF is obtained by means of a noncollinear 
SHG with estimated 0.2ps time resolution. In this 
paper we propose and analyze a simple autocorrelator 
in which only a grating and a mirror are used to obtain 
the necessary for autocorrelation pulse measurement 
time delay between two parts of a light beam. The 
advantages of the device and the effect of the grating 
dispersion on the SHG are discussed. 

The Autocorrelator 

We utilize the linearly-increasing time delay with 
respect to the beam cross-section, produced when the 
beam is diffracted by a grating, as shown in Fig. la. 
One half of the light beam, denoted as A is diffracted 
directly into rn th order by a grating G, while the other 
half of the beam B is diffracted into the -mth order 
after a reflection by a mirror M. The latter is situated 
normally to the grating. The angle of incidence is 
chosen in such a way, that the diffracted beams are 
normal to the grating surface. In this case the grating 
equation simplifies to: 

m2=a .  since, (1) 

where m is order of diffraction, 2 is the mean 
wavelength of the light pulse, a is grating constant, and 
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Fig. la and b. Schematic diagram of the 
difffraction-grating autocorrelator 
(G: diffraction grating, M: totally reflecting 
mirror, NLC: nonlinear crystal, 
ACF: autocorrelation function, 
A, B: ultrashort light pulse). (a) The mirror 
M is normal to the grating, and (b) the 
mirror M is inclined at an angle 6 with 
respect to the normal position 

is angle of incidence. The same equation holds for the 
reflected by the mirror part of the beam, if the mirror is 
normal to the grating. For the conditions, mentioned 
above, the time delay between a ray diffracted directly 
at a point x and a ray, diffracted at the same point after 
reflection by the mirror, is 

2x sin 
�9 ( x )  = - - ,  (2)  

c 

where "c(x) is the time delay, corresponding to the point 
x and c is speed of light. 
In this way two collinear beams are formed, which are 
diffracted into the m th order normally to the grating 
and having linearly increasing time delay from zero (at 
a point x = 0) to 2L sin c~)/c, where L is the length of the 
illuminated part of the grating. It is worth mentioning 
that the beam should be properly expanded by a 
cylindrical telescope and a uniform-intensity part of it 
should be used in the measurement. This expansion 
may be less, if the grating is used at a grazing 
incidence. 
It is also possible to obtain collinear beams A and B in 
the case when the angle between the mirror M and the 
grating G differs from 90 ~ by an angle a. Then the 
angles of incidence el and e2 are determined by 
(Fig. lb): 

2m2 = a(sin ~1 + sin c~2), (3) 

28 = 0~ 2 - el-  (4) 

The diffracted pulses will propagate in the direction, 
defined by an angle/c, which is derived from 

2 sin ~: = sine2 - sin e l .  (5) 

The main advantage of this arrangement is that the 
back-reflections to the laser are avoided. 
For simplicity, we will continue from now with a 
normally situated grating and a mirror. Assuming 
uniform spatial distribution of the beam in the plane of 

incidence, the corresponding amplitudes of parts A 
and B of the beam can be written in the form 

EA = Eo " F i t -  (x /c)  sine],  (6) 

E13 = Eo . f [  t + (x /c )  sin c~], (7) 

where F(t )  is the temporal pulse profile. 
The autocorrelation function may be obtained by 
means of a second-harmonic generation in a nonlinear 
crystal. The intensity distribution of the SHG is easily 
derived [5] 

I z ( x  ) = C . G(Z)[ (2x/czp)  sin c~], (8) 

where C is a constant, G (2) is a normalized ACF, and Zp 
is the duration of the incident pulse. If A x  is the half 
width of the autocorrelation trace, the pulse duration is 
determined by 

zp = (y.  A x / c )  sin~, (9) 

with ? as a pulse-form factor [8]. 
Because the second-order ACF is a symmetrical one, 
one can use only half of it to estimate the pulse 
duration, as is in the case. 
If a constant time delay z d is inserted into the lower half 
of the beam, the zero point of the autocorrelation 
function is displaced to a point x n = ( n - 1 ) l e / 2 s i n e ,  
where n is the index of refraction of a plane-parallel 
piece of glass of a length ld. In this way the total ACF 
may be recorded. 
Slight detuning of the mirror M or detuning of the 
grating-mirror system as a whole with respect to the 
angle e introduces a small angle between the two 
diffracted beams. This leads to noncollinear SHG, 
which gives a background-free ACF. 
Finally, if there is a small angle e between the two 
diffracted beams, interference fringes, spaced at a 
distance 2/e are readily observed. The interference 
pattern represents a first-order ACF and may be used 
for pulse duration measurements as well [9]. 



A Diffraction Grating Autocorrelator 47 

Discussion 

In this section we shall deal with the performance of the 
autocorrelator, the influence of the grating dispersion 
and the choice of the nonlinear crystal. 

The main advantage of the proposed autocorrelator is 
its simplicity, compared to the other grating 
autocorrelators [6, 7]. Using different gratings with 
respect to the grating constant and different orders of 
diffraction, pulse durations in a very wide range can be 
measured. For subnanosecond pulses incidence angles 
close to 90 ~ (grazing incidence, 2 < a) should be used. 
For these conditions maximum delay of 2L/c is 
obtained. With a 5 cm-long grating it is possible to 
measure 0.5 ns pulses. When measuring shorter pulses, 
the length of the autocorrelation trace becomes 
smaller, which complicates the pulse-width mea- 
surement. In this case one should use lower orders 
of diffraction and gratings with a larger constant a, 
corresponding to smaller incidence angles ~. This 
results in shorter time delays and longer 
autocorrelation traces. For very short light pulses 
(1-10ps range) coarse gratings (30(L6001/mm) are 
suitable. For shorter pulses the main limitation will 
arise from the walk-off effect in the nonlinear 
crystal [3]. 

The beam, diffracted by the grating, becomes 
divergent, due to the finite spectral bandwidth and the 
angular dispersion. This divergence may influence the 
process of SHG in the nonlinear crystal and should be 
taken into account. Assuming a Gaussian-shaped 
pulse of a time duration zp, it is easy to calculate the 
divergence of the beam in the plane of incidence, which 
is due to dispersion 

~2 
A 0disp : 0 . 4 4 - - .  (10) 

CZpa 

The shorter is the light pulse, the wider is the spectral 
bandwidth and the higher is the divergence. Because 
the divergence is proportional to the angular 
dispersion dO/d2 = m/a cos e, one should use again for 
short-pulses measurement first-order diffraction and 
coarse gratings. Thus, the divergence due to dispersion 
can be kept low if one employs gratings with constant a 
inversely proportional to the pulse width, see (10). 
Combining (9) and (10) one obtains 

A0disp" Ax =0 .312 .  (11) 

This equation may help the evaluation of the 
divergence for a fixed wavelength and an 
autocorrelation trace, of a convenient length. For 
example, if the pulse width is 5ps at 1.06gm 
wavelength and we use a grating which provides an 

autocorrelation trace of i ram, the divergence is only 
1 arcmin. This value is acceptable for most of the 
available nonlinear crystals. 

As mentioned above, in order to perform background- 
free measurements (BFM), it is necessary to produce 
noncollinear SHG. If the two diffracted beams A and B 
are propagating in the crystal at an angle a, the 
condition a>AOpm is imposed on this angle, where 
A 0pro is the full width of the phase-matching angle for 
collinear SHG. The full width depends on the crystal 
type and its length, A 0pro = 2/2" file. The crystal length Ic 
is chosen to be smaller than: l~o=2/2.flAOdisp or 
la~ = 2n/g. A2, whichever is less. Here fl stands for the 
walk-off angle, g = #/c/02 (k being the wavevector), and 
A2 is the spectral width [10]. Note that this 
autocorrelator provides BFM at small angles for the 
nonlinear interaction. This makes possible to use 
relatively long nonlinear crystals, suitable for collinear 
SHG. The SHG is more effective in this case and the 
sensitivity of the method is higher. An important 
advantage of the proposed autocorrelator is that for 
the whole range of pulse durations 1-500 ps a crystal of 
a fixed orientation may be used. 

BFM can be performed using oe-e type SHG and a )~/2 
plate, inserted into the lower part A of the incident 
beam. For very short pulses the thickness of the 2/2 
plate should be taken into account, because the zero 
point of the ACF will be displaced. 

Considering the interference method for measuring 
ultrashort light pulses [-9], any desired fringe 
separation is easily obtainable, independently on the 
time delay. This facilitates the interference pattern 
registration and processing. Replacing the nonlinear 
crystal with a photodiode array or with a 
photographic plate and counting the number of the 
interference fringes, the pulse width can be easily 
deduced. Measurements in a very wide spectral range 
can be performed for wavelengths, where no suitable 
nonlinear crystals are available and the power levels of 
the measured pulses are extremely low. 

Conclusion 

We have proposed a simple and versatile method for 
measuring single ultrashort light pulses, using only a 
diffraction grating and a mirror. We have shown that 
for very short light pulses the divergence due to 
dispersion can be easily lowered, using coarse gratings 
and providing at the same time autocorrelation traces 
of appropriate length. A noncollinear SHG in 
conventional crystals for collinear SHG is readily 
achieved, resulting in a highly sensitive background- 
free measurements. If the interference pattern of the 
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two diffracted beams is observed, the electric-field 
ampli tude A C F  m a y  be used to estimate the pulse 
dura t ion  in a spectral region, where no suitable 
nonl inear  media  exist. 
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